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Computer simulation programs have a wide use in hy- 
drologic and hydraulic applications. We have developed 
an object-oriented framework that serves as a basis for 
describing the hydrological system and its processes, and 
used this as a basis for development of applications. A 
special consideration is placed on easy reuse and support 
for further development by the user, thereby solving some 
of the problems found in existing tools. 

The hydrologic system is strongly dynamic, the states 
are frequently updated as the environment changes. A 
model of this dynamic behaviour imposes special require- 
ment on the data handling and storage routines regarding 
speed and efficiency of use. 

The framework consists of 4 main parts: 

Structure elements and system topology description, 
describing the real world hydrological components 
like lakes and rivers and the transport processes be- 
tween them. 

• Computational methods, describing the processes 
taking place in the structure elements. 

• Components for data transport, storage and admin- 
istration. 

• Simulation control and time handling. 

1 Structure Elements and Topology 

The structure elements describes the components found 
in the real hydrological system, describing their internal 
structure and the relations to the other parts of the sys- 
tem. They are implemented as classes inheriting from a 
common abstract base class. This approach has two main 
objectives. It allows for the insertion of different com- 
ponent types into a container, and it provides a founda- 
tion for the addition of new components by the users of 
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Figure 1" Part of the structure hierarchy of the framework. 
Notation after Booch [ 1 ]. 

the framework. A small set of functions in the base class 
are made virtual and have to be reimplemented depending 
upon the type of component being derived. The base class 
also contains the basic functions to describe the transport 
processes in the system and the connectivity needed to 
describe downstream and upstream relations. Figure 1 il- 
lustrates a part of the structure hierarchy. 

Each of the structure elements contains data that de- 
scribe the physical structure of the component (like the 
bathymetry of a lake) and data that describe THE states 
of the element (like the level of the water surface in the 
lake). All data are derived from a common base class to 
facilitate list insertion of objects of different type, they 
are later converted back to the original type using embed- 
ded type information and a type request function. In the 
future this conversion will be done using Run Time Type 
Identification (RTTI) when this is available. 

Each structural class has two lists, one storing the state 
information and one storing physical data. The insertion 
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method has the necessary logic to prevent illegal data 
objects fi'om being connected to the structural object, it 
would for instance prevent a lake's bathymetric informa- 
tion from being connected to a tunnel object. The in- 
formation about which data type can be stored in which 
component is stored in a global, static object, that is ac- 
cessible from all structural objects. By using this strategy, 
there is no need for lists of legal data inside the structural 
classes, and when new data is defined it is not necessary 
to update the structural elements. This allows users of the 
system to define new types of data for their specific needs 
without accessing the implementation of the structural el- 

ements. 

To facilitate the construction of structural elements and 
the necessary data objects, a structure factory has been 
developed. The factory is based on the abstract factory 
pattern described by Gamma et.al. [2]. The user of the 
system can use the factory to request the structure element 
wanted, and the factory will generate both the structure 
element and the data objects that the structure element 
must contain. 

In practice, the rivers system used in the model will 
consist of several structure elements ordered together in 
a network structure. To store and control the network, a 
topology network container has been developed. Traver- 
sal of the topology is done through a specialised iterator 
class. Traversal is usually done by starting at the down- 
stream element and requesting input from the upstream 
neighbours. If  the upstream element is also dependent of 
its upstream elements, the request is moved up one level 
and repeated. This goes on until the upstream element 
has no dependencies, then calculation is performed and 
the results are transferred downstream. This is normally 
done for each time step in the simulation. To speed up 
the process the iterator will find the simulation sequence 
of the topology during the initialisation, and store this in 
a list for use by the simulation control system. The actual 
simulation sequence then traverses the list for each time 
step, activating the calculations for each element in the 

list. 

After each calculation the internal states are updated 
and data marked for transfer are sent to the downstream 
node. This process is done by marking one or more of 
the items in the list of states as transferable. Each of the 
transferable objects are then sent to the downstream ele- 
ment when the computations are finished. In a practical 
application an output state in the upstream element will 
be transferred to the input state in the downstream ele- 
ment. The mapping of states from one element to the 
next is controlled by mapping structure, which stores the 
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Figure 2: Separation of computational methods and struc- 
ture. 

corresponding states. The transfer process are controlled 
from the run control unit, and it can be changed if special 
computational requirements arises. 

2 Computational Methods 

The choice of which computational method to use is de- 
pendent on what to analyse, the detail needed and the 
availability of data. One of the demands put on the de- 
sign was that it should give the user several computa- 
tional methods to select fl'om, and that it should be possi- 
ble for users to add their own methods without changing 
the structure elements. A solution with the computational 
methods as class methods in the structure elements was 
unusable, so we developed a link between a separate hi- 
erarchy of computational methods and the structural hier- 
archy. Using this solution, the user can add the necessary 
methods to a list of computational methods found in each 
structure element. The necessary datalinks are defined in 
the base class of the computational hierarchy, thereby iso- 
lating the users from the details in the data structure. This 
approach is in many ways similar to the Strategy design 
pattern found in Gamma et.al [2]. The structure of the 
solution is shown in Figure 2. 

In most cases each method will be made for one struc- 
ture element, a water transport routine for a river will have 
other data needs and another solution method than a sim- 
ilar method for a lake. Most of the methods will also 
need a minimum of physical and state data available in 
the structural element. To check that a method can be 
connected and used in a structure object, a verification 
function is defined and called each time a method is con- 
nected to a structural object. This function will throw an 
exception if the method is found to be unsuitable in com- 
bination with the structural element. 
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Each method will also need a set of data specific to the 

method such as calibration constants, convergence crite- 
ria and others. These are placed in data blocks that be- 
long to each method and then connected to the method at 
construction time. A specialised factory class is used to 
create the methods and the necessary data blocks needed. 

When a new method is to be added to the system, the 
user must derive it from the base class of the compu- 
tational hierarchy and implement functions for calcula- 
tion, verification and connection to method specific data. 
These functions must be implemented for each class and 
they are therefore defined as pure virtual functions in the 
base class. The new computational method will then be 
available for insertion into the structural objects. 

3 Data HandlingClasses 

The most important data type in a hydrological model is 
time series, either in the form of data with a constant 
time step between each value or in the form of irregu- 
larly spaced event data. Specialised classes to store these 
data types have been developed, providing the user with 
a consistent interface to time series data. 

Input/output from the time series are separated in IO 
classes. The regular time series class (RegTS) has a 
RegTSIO base for several different derived classes han- 
dling different kinds of IO. Both ASCII, binary and 
database storage (SQL based) are supported, in addition, 
similar interfaces exists for screen output. All the IO 
classes overload the stream operators, so input and output 
will be handled in a similar fashion. An example shows 
how to move a time series from the database to screen 
output: 

/ /  Define a time series object 

RegularTimeSeries reg_ts; 

/ /  A database IO class 

RegularTSDatabase rts_db; 

// A screen plot IO class. 

RegularTSPlotter rts_screen; 

// 

// Some initialization of 

// database and screen. 

// Transfer the timeseries from 

// the database and into the 

" / /  timeseries object. 

rts_db >> reg_ts; 

/ /  Transfer the regular time 

/ /  series to the screen output 

// class. 
rts_screen << reg_ts; 

Tools Ior time series calculations and analysis have 
been developed that work on the timeseries objects. A 
timeseries collector has been developed to store several 
timeseries during a simulation, handling input and out- 
put from the timeseries. The timeseries class is part of a 
model-view-controller structure, thereby allowing tor dy- 
namic presentation of results during a simulation. 

Similar classes with the same IO structure have been 
developed for storing x-y based data (curves) and three 
dimensional surface data. 

In many hydraulic calculations, different kinds of grids 
are used in the calculation. A special grid container has 
been developed to handle a variety of 2- or 3- dimensional 
grid structures. An iterator allows the user to traverse the 
grid independent from the type of grid used. The grid 
container is a template class, which enables users to cre- 
ate a custom designed grid element that reflects the com- 
putational method used. 

// A finite volume cell grid, 
// grid data in class Cell. 

GridContainer <Cell> cellgrid; 

/ /  A FEM grid, 

/ /  class Node represent the nodes. 

GridContainer <Node> nodegrid; 

A common way of describing a river reach is by a set 
of cross sections taken at locations along the river. Cross 
sections are stored in a cross section class that in addition 
to holding the cross section data (coordinates) also has 
methods to retrieve and calculate information about the 
cross section. Several cross sections can be grouped in a 
cross section list. The cross section list also has a set of 
methods e.g., to find the slope between two cross sections 
or the water covered area between cross sections. 

4 Simulation Control and Time 
Handling 

To handle time steps in the model a special time handler 
class has been developed. This class is instantiated as a 

18 



l 
singleton object (Gamma et.al [2], globally available to 
all the other objects in the model. The methods can in- 
quire the time handler for the current time step, start time, 
remaining time and other information about the simula- 
tion setup. 

The simulation control system is the overlaying con- 
trol structure of the entire model. The control system will 
build the model structure, assign the methods, initialise 
the time handler and start the simulation. All user inter- 
action (in the form of user interfaces) with the system is 
isolated to the simulation control, thereby avoiding user 
interaction embedded in the structural, computational or 
data storage classes. 

The simulation control is derived from a common base 
defining the interface to the simulation control unit, and 
it is possible to redefine it to provide the model with a 
custom designed control unit. This provides the user with 
the possibility to build specialised simulation procedures 
based on the predefined interface. This functionality is 
necessary in many hydraulic and hydrologic application 
when a sequential traversal and simulation of the system 
must be changed to an iterative or optimising scheme. 

5 Conclusion 

One of the main considerations of the framework was that 
it should be possible for users to incorporate their own de- 
signs by extending the framework. This is possible by us- 
ing inheritance from the base classes defined for structure 
elements, computational classes, physical data blocks and 
state data blocks. It is also possible to reimplement key 
functions in the run control system to accommodate spe- 
cial simulation strategies. 

In most cases the user of the system will only ex- 
tend parts of the system, by usually adding computational 
methods and new state data. The structural elements and 
physical data will for most applications already be avail- 
able through the ti'amework. In many cases it will be nec- 
essary to redefine the simulation control unit to accom- 
modate special simulation strategies. 

The reusability of the system components have proven 
itself to be good. The data storage and IO classes have 
been applied to several projects, both as a part of using 
the entire framework and as data containers in other de- 
velopments. 

We have so far applied the entire framework in the de- 
velopment of a flood routing application and as a base for 
a series of models for assessing the impacts of changed 

flow regime on fish habitat. Compared to the traditional 
design and development used in our environment, the 
framework has proved itself to be a very effective tool for 
fast prototyping and testing of new modeling strategies. 
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