
Lt

C++ Toolbox
Editor: G. Bowden Wise, Dept, of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; wiseb@cs.rpi.edu

An Object Oriented Framework for Creating Models in
Hydrology

Knut Alfredsen and BjCrn Scether

Computer simulation programs have a wide use in hy-
drologic and hydraulic applications. We have developed
an object-oriented framework that serves as a basis for
describing the hydrological system and its processes, and
used this as a basis for development of applications. A
special consideration is placed on easy reuse and support
for further development by the user, thereby solving some
of the problems found in existing tools.

The hydrologic system is strongly dynamic, the states
are frequently updated as the environment changes. A
model of this dynamic behaviour imposes special require-
ment on the data handling and storage routines regarding
speed and efficiency of use.

The framework consists of 4 main parts:

Structure elements and system topology description,
describing the real world hydrological components
like lakes and rivers and the transport processes be-
tween them.

• Computational methods, describing the processes
taking place in the structure elements.

• Components for data transport, storage and admin-
istration.

• Simulation control and time handling.

1 Structure Elements and Topology

The structure elements describes the components found
in the real hydrological system, describing their internal
structure and the relations to the other parts of the sys-
tem. They are implemented as classes inheriting from a
common abstract base class. This approach has two main
objectives. It allows for the insertion of different com-
ponent types into a container, and it provides a founda-
tion for the addition of new components by the users of

," Hydcomp ,

/ Waterway--" / x Lake
41 II ~I ii

1

RiverReach ~, ~ Tunnel , ~ S
/ s % ¢

i ~ i J --.-

Figure 1" Part of the structure hierarchy of the framework.
Notation after Booch [1].

the framework. A small set of functions in the base class
are made virtual and have to be reimplemented depending
upon the type of component being derived. The base class
also contains the basic functions to describe the transport
processes in the system and the connectivity needed to
describe downstream and upstream relations. Figure 1 il-
lustrates a part of the structure hierarchy.

Each of the structure elements contains data that de-
scribe the physical structure of the component (like the
bathymetry of a lake) and data that describe THE states
of the element (like the level of the water surface in the
lake). All data are derived from a common base class to
facilitate list insertion of objects of different type, they
are later converted back to the original type using embed-
ded type information and a type request function. In the
future this conversion will be done using Run Time Type
Identification (RTTI) when this is available.

Each structural class has two lists, one storing the state
information and one storing physical data. The insertion

16

http://crossmark.crossref.org/dialog/?doi=10.1145%2F251621.251623&domain=pdf&date_stamp=1997-02-01

method has the necessary logic to prevent illegal data
objects fi'om being connected to the structural object, it
would for instance prevent a lake's bathymetric informa-
tion from being connected to a tunnel object. The in-
formation about which data type can be stored in which
component is stored in a global, static object, that is ac-
cessible from all structural objects. By using this strategy,
there is no need for lists of legal data inside the structural
classes, and when new data is defined it is not necessary
to update the structural elements. This allows users of the
system to define new types of data for their specific needs
without accessing the implementation of the structural el-

ements.

To facilitate the construction of structural elements and
the necessary data objects, a structure factory has been
developed. The factory is based on the abstract factory
pattern described by Gamma et.al. [2]. The user of the
system can use the factory to request the structure element
wanted, and the factory will generate both the structure
element and the data objects that the structure element
must contain.

In practice, the rivers system used in the model will
consist of several structure elements ordered together in
a network structure. To store and control the network, a
topology network container has been developed. Traver-
sal of the topology is done through a specialised iterator
class. Traversal is usually done by starting at the down-
stream element and requesting input from the upstream
neighbours. If the upstream element is also dependent of
its upstream elements, the request is moved up one level
and repeated. This goes on until the upstream element
has no dependencies, then calculation is performed and
the results are transferred downstream. This is normally
done for each time step in the simulation. To speed up
the process the iterator will find the simulation sequence
of the topology during the initialisation, and store this in
a list for use by the simulation control system. The actual
simulation sequence then traverses the list for each time
step, activating the calculations for each element in the

list.

After each calculation the internal states are updated
and data marked for transfer are sent to the downstream
node. This process is done by marking one or more of
the items in the list of states as transferable. Each of the
transferable objects are then sent to the downstream ele-
ment when the computations are finished. In a practical
application an output state in the upstream element will
be transferred to the input state in the downstream ele-
ment. The mapping of states from one element to the
next is controlled by mapping structure, which stores the

, Hydcomp

si~,~uhteO

? g

Computational ",
' " Method (\

" " , C~culat .eO ',
i

• Muskingum ~, / Level.Pool ",

(- . . C,tlcul~tt, 0 ', '- . Caleuhte O "

Figure 2: Separation of computational methods and struc-
ture.

corresponding states. The transfer process are controlled
from the run control unit, and it can be changed if special
computational requirements arises.

2 Computational Methods

The choice of which computational method to use is de-
pendent on what to analyse, the detail needed and the
availability of data. One of the demands put on the de-
sign was that it should give the user several computa-
tional methods to select fl'om, and that it should be possi-
ble for users to add their own methods without changing
the structure elements. A solution with the computational
methods as class methods in the structure elements was
unusable, so we developed a link between a separate hi-
erarchy of computational methods and the structural hier-
archy. Using this solution, the user can add the necessary
methods to a list of computational methods found in each
structure element. The necessary datalinks are defined in
the base class of the computational hierarchy, thereby iso-
lating the users from the details in the data structure. This
approach is in many ways similar to the Strategy design
pattern found in Gamma et.al [2]. The structure of the
solution is shown in Figure 2.

In most cases each method will be made for one struc-
ture element, a water transport routine for a river will have
other data needs and another solution method than a sim-
ilar method for a lake. Most of the methods will also
need a minimum of physical and state data available in
the structural element. To check that a method can be
connected and used in a structure object, a verification
function is defined and called each time a method is con-
nected to a structural object. This function will throw an
exception if the method is found to be unsuitable in com-
bination with the structural element.

17

N: s
Each method will also need a set of data specific to the

method such as calibration constants, convergence crite-
ria and others. These are placed in data blocks that be-
long to each method and then connected to the method at
construction time. A specialised factory class is used to
create the methods and the necessary data blocks needed.

When a new method is to be added to the system, the
user must derive it from the base class of the compu-
tational hierarchy and implement functions for calcula-
tion, verification and connection to method specific data.
These functions must be implemented for each class and
they are therefore defined as pure virtual functions in the
base class. The new computational method will then be
available for insertion into the structural objects.

3 Data HandlingClasses

The most important data type in a hydrological model is
time series, either in the form of data with a constant
time step between each value or in the form of irregu-
larly spaced event data. Specialised classes to store these
data types have been developed, providing the user with
a consistent interface to time series data.

Input/output from the time series are separated in IO
classes. The regular time series class (RegTS) has a
RegTSIO base for several different derived classes han-
dling different kinds of IO. Both ASCII, binary and
database storage (SQL based) are supported, in addition,
similar interfaces exists for screen output. All the IO
classes overload the stream operators, so input and output
will be handled in a similar fashion. An example shows
how to move a time series from the database to screen
output:

/ / Define a time series object

RegularTimeSeries reg_ts;

/ / A database IO class

RegularTSDatabase rts_db;

// A screen plot IO class.

RegularTSPlotter rts_screen;

//

// Some initialization of

// database and screen.

// Transfer the timeseries from

// the database and into the

" / / timeseries object.

rts_db >> reg_ts;

/ / Transfer the regular time

/ / series to the screen output

// class.
rts_screen << reg_ts;

Tools Ior time series calculations and analysis have
been developed that work on the timeseries objects. A
timeseries collector has been developed to store several
timeseries during a simulation, handling input and out-
put from the timeseries. The timeseries class is part of a
model-view-controller structure, thereby allowing tor dy-
namic presentation of results during a simulation.

Similar classes with the same IO structure have been
developed for storing x-y based data (curves) and three
dimensional surface data.

In many hydraulic calculations, different kinds of grids
are used in the calculation. A special grid container has
been developed to handle a variety of 2- or 3- dimensional
grid structures. An iterator allows the user to traverse the
grid independent from the type of grid used. The grid
container is a template class, which enables users to cre-
ate a custom designed grid element that reflects the com-
putational method used.

// A finite volume cell grid,
// grid data in class Cell.

GridContainer <Cell> cellgrid;

/ / A FEM grid,

/ / class Node represent the nodes.

GridContainer <Node> nodegrid;

A common way of describing a river reach is by a set
of cross sections taken at locations along the river. Cross
sections are stored in a cross section class that in addition
to holding the cross section data (coordinates) also has
methods to retrieve and calculate information about the
cross section. Several cross sections can be grouped in a
cross section list. The cross section list also has a set of
methods e.g., to find the slope between two cross sections
or the water covered area between cross sections.

4 Simulation Control and Time
Handling

To handle time steps in the model a special time handler
class has been developed. This class is instantiated as a

18

l
singleton object (Gamma et.al [2], globally available to
all the other objects in the model. The methods can in-
quire the time handler for the current time step, start time,
remaining time and other information about the simula-
tion setup.

The simulation control system is the overlaying con-
trol structure of the entire model. The control system will
build the model structure, assign the methods, initialise
the time handler and start the simulation. All user inter-
action (in the form of user interfaces) with the system is
isolated to the simulation control, thereby avoiding user
interaction embedded in the structural, computational or
data storage classes.

The simulation control is derived from a common base
defining the interface to the simulation control unit, and
it is possible to redefine it to provide the model with a
custom designed control unit. This provides the user with
the possibility to build specialised simulation procedures
based on the predefined interface. This functionality is
necessary in many hydraulic and hydrologic application
when a sequential traversal and simulation of the system
must be changed to an iterative or optimising scheme.

5 Conclusion

One of the main considerations of the framework was that
it should be possible for users to incorporate their own de-
signs by extending the framework. This is possible by us-
ing inheritance from the base classes defined for structure
elements, computational classes, physical data blocks and
state data blocks. It is also possible to reimplement key
functions in the run control system to accommodate spe-
cial simulation strategies.

In most cases the user of the system will only ex-
tend parts of the system, by usually adding computational
methods and new state data. The structural elements and
physical data will for most applications already be avail-
able through the ti'amework. In many cases it will be nec-
essary to redefine the simulation control unit to accom-
modate special simulation strategies.

The reusability of the system components have proven
itself to be good. The data storage and IO classes have
been applied to several projects, both as a part of using
the entire framework and as data containers in other de-
velopments.

We have so far applied the entire framework in the de-
velopment of a flood routing application and as a base for
a series of models for assessing the impacts of changed

flow regime on fish habitat. Compared to the traditional
design and development used in our environment, the
framework has proved itself to be a very effective tool for
fast prototyping and testing of new modeling strategies.

References

[1] BOOCH, G. Object-Oriented Analysis and Design
with Applications. Benjamin-Cummings Publishing
Company, Inc., 1994.

[2] GAMMA, E., HELM, R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: Elements (~f Reusable
Object-Oriented Software. Professional Computing
Series. Addison-Wesley, 1994.

Knut Al/?edsen (Knut.A!f?edsen@bygg.ntnu.no) re-
ceived a MSc degree in Civil Engineering /?om The Nor-
wegian Institute of Technology in 1988. Currently doc-
toral student at the Department of Hydraulic and Envi-
ronmental Engineering, The Norwegian University of Sci-
ence and Technology. The main working area is the use of
object-oriented analysis and design methods in creation
~" models in hydrology and hydraulics. Other interests
include models for impact analysis of river regulations
and fish habitat modelling.

BjCrn Scether (Bjorn.Sather@civil.sinte[~no) received a
MSc degree in Civil Engineering from The Norwegian In-
stitute of Technology in 1980. Currently Research En-
gineer at SINTEF Civil and Environmental Engineering,
Department of Water Resources. The main working areas
is application of object-oriented methods in hydrological
modelling, simulation of river systems and hydrological
database systems.

19

_ m

