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Abstract
En-route charging stations allow electric vehicles
to greatly extend their range. However, as a full
charge takes a considerable amount of time, there
may be significant waiting times at peak hours. To
address this problem, we propose a novel navi-
gation system, which communicates its intentions
(i.e., routing policies) to other drivers. Using these
intentions, our system accurately predicts conges-
tion at charging stations and suggests the most ef-
ficient route to its user. We achieve this by ex-
tending existing time-dependent stochastic routing
algorithms to include the battery’s state of charge
and charging stations. Furthermore, we describe a
novel technique for combining historical informa-
tion with agent intentions to predict the queues at
charging stations. Through simulations we show
that our system leads to a significant increase in
utility compared to existing approaches that do not
explicitly model waiting times or use intentions, in
some cases reducing waiting times by over 80%
and achieving near-optimal overall journey times.

1 Introduction
The expected increase in the number of electric vehicles
(EVs) necessitates novel solutions for managing the infras-
tructure required to charge these vehicles [R.A.E., 2010].
One of the most significant potential bottlenecks is the con-
gestion at charging stations. This is likely to occur because
fully charging an EV currently takes between half an hour
and several hours and, moreover, EVs need to be charged
frequently to complete longer trips. In order to address this
challenge, new navigation systems need to be designed that
predict congestion at charging stations based on stochastic
information about arrivals, and then suggest to EV owners
the most efficient route and station, in order to minimise both
travel time and expected delays due to charging.

Within the transportation literature, the problem of optimal
routing under uncertainty has been studied for several years.
In particular, Hall [1986] and later Gao and Chabini [2006]
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show that optimal policies can be computed even for settings
where the stochastic information is not only link-dependent,
but also time-dependent (i.e., travel times are conditional on
the time of day). These approaches compute routing policies,
i.e., time and location-dependent directions, to deal with such
situations where travel times are not known in advance. How-
ever, they currently do not consider the specific requirements
of EVs, which have a limited charge and may need to route
past charging stations to reach their destination.

The problem of routing agents through a network is
also studied using game-theoretic approaches. In this vein,
Gawron [1998] studies a model in which each driver’s choice
over alternative routes is given by a discrete probability dis-
tribution and finds a dynamic equilibrium through simulation.
However, these approaches take a centralised perspective and,
moreover, abstract away from the details of the problem we
consider related to EVs, such as their charging state and de-
lays at charging stations.

A crucial problem, from an EV perspective, is coordinat-
ing en-route charging. Since charging EVs takes time and
the capacity at charging stations is limited, waiting times can
contribute significantly to the total journey time. For exam-
ple, if one additional vehicle arrives at a station with a single
charging point, this could immediately result in a 30-minute
delay to all subsequent arrivals. Indeed, this problem has
been recognised before. In particular, Qin and Zhang [2011]
propose an approach where congested charging stations di-
vert EVs by placing reservations at less congested stations on
the same route. Kim et al. [2012] develop a constraint-based
scheduler for charging stations to prevent peak consumption.
These existing solutions are based on reserving a specific time
slot. However, travel times are typically uncertain, and the
distribution of such travel times changes throughout the day.
Because of this, delays give rise to changes in the arrival time,
but could also necessitate re-routing to a different charging
station, invalidating any reservations.

To address this problem, we propose a novel Intention-
Aware Routing System (IARS), which is implemented as a
software agent embedded in the navigation system of an EV.
Crucially, this agent autonomously exchanges intentions (i.e.,
routing decisions) with other IARS agents. These intentions
constitute probabilistic information about which stations the
EVs will visit and when, thereby allowing the agent to accu-
rately predict congestion (and thus waiting times) at charg-



ing stations and compute the most efficient route for the EV
owner. Our proposed system employs and extends a range
of techniques from the field of artificial intelligence to deal
with the highly dynamic and uncertain environment it oper-
ates in. In more detail, it makes the following contributions
to the current state of the art:
• We formalise the optimal EV routing problem with en-

route charging stations. This is a challenging problem, be-
cause both travel and waiting times are stochastic and time-
dependent. Furthermore, the problem is highly constrained
by the current state of charge of an EV and the need to route
via charging stations.
• We propose the first EV routing system that uses in-

tentions to produce accurate predictions of waiting times at
charging stations. A key contribution of this system is its
novel approach to fusing a range of information sources that
vary in their precision — from information about historical
and recent EV arrivals at stations (including from those EVs
that do not communicate their intentions), to the probabilistic
information encoded in the agents’ intentions.
• We show experimentally that IARS leads to a signifi-

cantly higher utility than state-of-the-art routing algorithms
that rely only on historical information about road travel
times (as used by some modern navigation devices). In some
cases, our approach leads to an over 80% improvement in
waiting times and a more than 50% reduction in overall jour-
ney times. As IARS also reasons about agents that do not use
intentions, we demonstrate that even when only a small pro-
portion of EV drivers use IARS, they achieve a significantly
higher utility than those that do not.

The remainder of the paper is structured as follows. In Sec-
tion 2 we formalise the routing problem with en-route charg-
ing. Then, in Section 3, we explain IARS and in Section 4 de-
scribe our experimental results. Finally, Section 5 concludes.

2 Model
First we introduce our model of stochastic time-dependent
routing for EVs, where roads and charging stations are ab-
stractly represented by probability distributions of their wait-
ing time. We then go on to model the charging stations and
the waiting times explicitly, which enables us to derive the
waiting time probabilities when computing the policies, tak-
ing into account the intentions of other EVs.

2.1 The EV Routing Problem
We model an EV routing domain by 〈V,E, T, P, S, C〉, with
directed edges e = 〈vi, vj〉 ∈ E and vertices vi, vj ∈ V .
Edges represent either roads or charging stations, denoted by
Estations ⊂ E and Eroads ⊂ E respectively. Roads and charg-
ing stations incur a probabilistic amount of travel or waiting
time, described by a probability mass function P (more de-
tails below). These travel and waiting times vary depending
on the time of the day, and T = {1, 2, . . . , tmax} denotes a fi-
nite set of time points (e.g., within a day, or over a week).
Roads furthermore incur a cost to EVs in terms of power
usage, whereas charging stations reset the EV battery to its
maximum capacity level (we assume that a battery is always
fully charged at a station). To this end, we introduce a finite

set of possible charging states S = {0, 1, . . . , smax}, where a
state represents the current capacity of the battery, and smax
denotes a fully charged battery. Furthermore, we introduce
function C, where C(e) ∈ S is the (deterministic) charging
cost for edge e ∈ Eroads.1 This charging cost is deducted from
the current state of charge when the edge is traversed.

We consider time-dependent stochastic travel and waiting
times and treat them as stochastically independent. That is,
conditional on the time of day, the distributions at edges
are uncorrelated, and we do not take into account that these
distributions may be updated over time. This is common
in the stochastic routing literature [Hall, 1986]. Formally,
P (tb − ta|e, ta) denotes the probability mass function of the
travel/waiting time at edge e = 〈va, vb〉 ∈ E, where ta ∈ T
denotes the arrival time at vertex va, and tb ∈ T, tb ≥ ta the
arrival time at vertex vb. Thus, when e is a road, then tb − ta
is the travel time, and when e is a charging station, tb − ta is
the combined waiting and charging time.

Given this, the problem is to find an optimal routing policy
π∗ which maximises the agent’s expected utility without run-
ning out of charge at any point during the journey. Formally,
a routing policy is a function π : V × T × S → V which
gives, for each vertex, each possible realisation of the arrival
time, and each state of charge, the next vertex. Then, given a
policy π, our current position vc ∈ V , current time tc ∈ T ,
current state of charge sc ∈ S and final destination vdest ∈ V ,
the first edge to follow is equal to ec = (vc, π(vc, tc, sc)) and
the expected utility for the policy π can be computed using
the following recursive formulation:

EU(ec = (vc, w), tc, sc|π) =
−∞ if sc ≤ 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′) if w = vdest∑
∆t∈T P (∆t|ec, tc)·

EU ((w, π(w, tc + ∆t, s′)), tc + ∆t, s′|π) otherwise

where s′ = SOC(ec, sc) determines the new state of charge
when traversing edge ec, i.e., SOC(ec, sc) = sc − C(ec)
if ec ∈ Eroads and SOC(ec, sc) = smax if ec ∈ Estations.
Furthermore, U(tc, sc) is the agent’s utility function for a
given arrival time tc and a state of charge sc on arrival such
that U(tc, sc) = −∞ if sc < 0. Otherwise, for example,
U(tc, sc) = −tc; then maximising the expected utility means
minimising the expected time of arrival.

The optimal policy is then given by π∗(vc, tc, sc) =
arg maxπ∈Π EU((w, π(vc, tc, sc)), tc, sc|π), where Π is the
set of all valid policies.

2.2 Charging Stations Model
So far, we have modelled the waiting times at both edges and
stations using abstract probability distributions, and we have
not discussed where these distributions actually come from.
Now, a main contribution of our paper is to combine historic
information and intentions (policies) of other agents to derive
the waiting time distributions at charging stations (we assume

1Since we compute the route for each vehicle separately, it is
straightforward to extend this model by allowing a different function
C and a different smax for each type of EV.



1 user input: destination vi,dest
2 initialise vi, si, and ti to the current state
3 compute P arr based on historical arrivals
4 while vi 6= vi,dest do
5 input: states vj , sj , tj , intentions πj ,∀j ∈ I \ {i},

and new arrivals
6 compute P arrj (e, t),∀j ∈ I
7 compute P (∆t|e, t),∀e ∈ Estations
8 compute policy πi
9 output: intention πi and current state vi, si, ti

10 execute policy and update vi, si, ti
Algorithm 1: Intention-aware routing for an EV

that the distributions for roads are derived using existing ap-
proaches, such as [Eglese et al., 2006], since they are influ-
enced less by individual EVs). However, to do so, we first
need to explicitly model the queues at the charging stations.
In Section 3, we then show how we use this model to derive
the waiting time probability distributions using a principled
approach that includes the intentions of other agents.

The queueing model is as follows. We assume that each
station e ∈ Estations has a fixed capacity, cape, due to space
or electricity network constraints. This capacity is the maxi-
mum number of vehicles that can charge simultaneously. Fur-
thermore, for simplicity, we assume that the time to (fully)
charge a vehicle, denoted by tcharge ∈ T , is fixed (although it
is straightforward to extend the model to stochastic or charge-
dependent times). We assume a first-come-first-served queue-
ing model when the station is at full capacity and that there is
no queue before time t = 1. Finally, if several EVs arrive at
the same time, we assume they arrive in the order of their ID.

3 Intention-Aware Routing System
The IARS optimises the policy of an EV using the intentions
of other EVs. The main feature of this system is that it is able
to route using only historical information when no other in-
formation is available, but then gradually replaces this infor-
mation with more accurate information about vehicles whose
intentions become known or change, and as vehicles actually
arrive at the stations. Algorithm 1 presents an overview of
the steps involved. In detail, the journey starts by the user,
denoted by i, entering his or her destination, vi,dest. The sys-
tem is then initialised based on the current location, state of
charge and departure time (line 2). Before it can compute the
optimal policy (line 8), it needs to process the historical in-
formation about arrivals of vehicles at stations, and combine
these with the currently known intentions of other users in
the system and actual arrivals at the stations (lines 3, 6, and
7, detailed in the subsections below), where I denotes the set
of EVs whose intentions are currently known. Importantly,
since the system only knows intentions of users who have al-
ready entered their destination, the set I is not fixed and can
change over time with users entering and leaving the system
dynamically. For this reason, and because the available in-
formation is continually updated (line 5), the probability dis-
tributions and optimal policies are also updated at each new
vertex (i.e., the decision points). We now describe the com-
putation steps, lines 3, 6, 7, and 8 in detail.

3.1 Historical Arrival Probabilities
A possible approach to compute waiting times probabilities is
to keep track of the historic waiting times, and simply take the
average waiting time for each station and time point. How-
ever, this approach does not readily allow information of in-
dividual vehicles to be integrated as and when this becomes
available. We therefore take a different approach which keeps
track of when and where (i.e., at what station) vehicles ar-
rive for charging.2 We then aggregate these historical arrivals
to compute the probabilities P arr(e, t) which gives, for an
average EV, the probability that he or she arrives at station
e ∈ Estations at time t ∈ T . In Section 3.3 we then show how
this distribution is used to estimate the queues at the stations,
and compute the waiting times.

3.2 Intention-Based Arrival Probabilities
The historical arrival probabilities represent the likelihood of
a vehicle arriving at a certain station at a certain time, with-
out having any additional information about these vehicles.
However, a key aspect of our approach is that, for those ve-
hicles with intentions, we can derive much more accurate es-
timates about which station they are going to visit, based on
their current state and their policy (note that the information
about station visits is still probabilistic since the actual route
and arrival time depends on the realised travel times). To this
end, we show how to derive P arri (e, t), the probability that
EV i is at station e ∈ Estations at time t ∈ T .

In detail, given πi, the current state (vi, ti, si) of i, and
known travel time distributions at road edgesP (∆t|(v, w), t),
we can compute P arri via summing up over s ∈ S of
P arri (v, t, s), the probabilities that i arrives at a particular
vertex v at a particular time t with charging state s, using
the dynamic program below:

P arr
i (v, t, s)← 0 for all v, t, s, but P arr

i (vi, ti, si)← 1
P arr
i (e, t)← 0 for all t ∈ T , e ∈ Estations

for t← 1, 2, . . . , tmax do
forall the v ∈ V and s ∈ S do

if P arr
i (v, t, s) > 0 then
(v, w)← π(v, t, s)
if (v, w) ∈ Estations then

add P arr
i (v, t, s) to P arr

i ((v, w), t)
for ∆t ∈ T do

add P (∆t|(v, w), t) to
P arr
i (w,∆t+ t, SOC((v, w), s))

3.3 Computing Waiting Times Probabilities
We now discuss the main part of the system and show
how to compute the waiting times probability mass function,
P (∆t|e, t), by combining the historical information, P arr,
with known arrivals so far, and with the intentions-derived
probabilities, P arri , i ∈ I , where I is the set of EVs who
have (so far) reported their intentions to the system. We let n
denote the total number of unique vehicles that have charged
in the past (across stations), including both ones that use the
system, and ones that do not. For simplicity, we assume that
each EV charges en-route at most once a day, although having

2In practice, this can be achieved, for example, through sensors
and/or credit card payment information at stations.



a single vehicle charge multiple times can be approximated
by considering these are different vehicles (in which case n is
the maximum number of charges per day). Furthermore, let
m denote the number of vehicles who have already charged
today, and I ′ ⊆ I those vehicles with known intentions who
still need to charge (i.e., they are visiting a station with non-
zero probability). Given this, there are n −m EVs that may
still choose to charge, of which |I ′| we know their intentions.

We then approximate the probability mass function us-
ing Monte-Carlo simulation as follows. For each sample,
we independently draw for n − m − |I ′| vehicles a pair
〈e, t〉 ∈ (Estations × T ) ∪ {⊥} according to the probabil-
ities P arr(e, t|not charged), i.e., the arrival conditional on
not having charged before (where the probability of charg-
ing before the current time is zero). Here, P arr(⊥)=1-∑
e∈Estations,t∈T P

arr(e, t|not charged) is the probability that
the EV does not charge at all. Similarly, we draw a single pair
〈e, t〉 from each distribution P arri (note that we do not need
to compute the conditional distribution, since it has already
been updated). Finally, we add the EVs that have already ar-
rived today with probability 1. Then, starting from t = 1, we
simulate the queues at each station based on the model de-
scribed in Section 2.2 until the end of the day, and measure
the waiting times for each future time point. This process is
repeated for a number of times (in the experiments in Sec-
tion 4 we use 100 samples), and P (∆t|e, t) is estimated by
averaging the waiting times at each station and time slot.

3.4 Computing the Optimal Policy
The final part is the computation of the routing policy.
Since for every computation of EU the policy πi is re-
quired only for times strictly later than ti (we assume
∆t > 0), the optimal policy can be computed using dy-
namic programming in line with work on Markov deci-
sion processes [Puterman, 1994] based on the following
recursive definition: if vi = vdest or si ≤ 0, then
there is no good decision, and otherwise π∗(vi, ti, si) =
arg max{e|(vi,w)∈E} EU(e, ti, si|π∗). All computations de-
scribed above can be done in O

(
|T |2 · |V | · |S| · |E|

)
.

4 Experiments
In this section, we experimentally evaluate our intention-
aware routing system in a wide range of settings. The purpose
of this is to establish and quantify the potential benefits of 1)
modelling station waiting times and 2) incorporating other
agents’ intentions into routing decisions. For ease of presen-
tation, we assume that all agents wish to minimise their arrival
time at the destination, and therefore our primary measure of
performance is the average journey time of individual agents.
In the following, we first describe the benchmarks we test,
provide details of our setup and then present the results.

4.1 Benchmarks Solutions
We evaluate a range of navigation systems in this section:
• IARS: Our proposed intention-aware routing system,

which is the main contribution of this paper.
•MIN: A system that always minimises the expected jour-

ney time. As such, it simulates existing state-of-the-art navi-
gation systems.

• LOGIT(λ): This is a randomised variant of MIN. We in-
clude this, because agents employing MIN on similar source
and destination pairs will often follow the same routes, ex-
acerbating congestion at charging stations. While this is an
inherent problem with current routing systems, we are inter-
ested in whether occasional randomisation may alleviate this.
To achieve this, we use an approach where the probability of
selecting an alternative is directly related to the expected util-
ity of that same alternative. This is in line with work on the
logit agent quantal response equilibrium [McKelvey and Pal-
frey, 1998] and is defined as follows. Given a λ ∈ [0,∞] the
probability of selecting an edge e is defined as:

P (e|vc, tc, sc) =
eλ·EU(e,tc,sc|π′)∑

{e′|(vc,w)∈E} e
λ·EU(e′,tc,sc|π′)

(1)

The policy π′(vc, tc, sc) is then just drawn from this dis-
tribution, and the expected utilities are computed know-
ing that this distribution is used in future time steps, i.e.,
EU((u, vc), tc, sc|π′) =

∑
{e′|(vc,w)∈E} P (e′|vc, tc, sc) ·

EU(e′, tc, sc|π′).
We also attach a parameter FALSE or TRUE to each ap-

proach other than IARS, which determines whether the sys-
tem models waiting times at charging stations using historical
arrivals (TRUE), or always assumes the minimum charging
time (FALSE). As such, MIN(FALSE), for example, always
picks the shortest route and does not model charging delays
(which may occur when using current standard GPS routing
systems in an EV), while LOGIT(100,TRUE) uses historical
arrivals to estimate queueing times, but sometimes randomly
deviates from the optimal path.

4.2 Experimental Setup
Throughout our experiments, we assume that charging takes
30 minutes, which is realistic for current state-of-the-art
charging stations (modelling 10 minutes as one time step).
We also run each setting for 20 simulated days, in order to
allow agents to learn and respond to the behaviour of others.3
Whenever agents use Monte Carlo simulation to estimate ar-
rival probabilities, we take 100 samples, which leads to good
results in practice. We also repeat all experiments 1,000 times
and report 95% confidence intervals.

We examine two separate scenarios in this section, in order
to verify that similar trends hold in different graph topolo-
gies and problem sizes. Both scenarios are shown in Fig-
ure 1. Here, EVs leave from vertices labelled ‘S’ (source) and
wish to travel to vertices labelled ‘D’ (destination), which are
chosen uniformly at random between the alternatives in the
second scenario. Charging stations are indicated by looping
edges, with their charging capacities given by the label on the
adjacent vertex. We set charging costs appropriately to ensure
that all EVs must charge at least once, and, as we are inter-
ested in how the systems cope with congestion at peak times,
we assume all vehicles leave at time t = 1 (we obtained sim-
ilar results when vehicles leave gradually).

More specifically, the first of these scenarios, the bottle-
neck setting, focuses only on the decision of which charging

3This is a conservative choice — in practice, the results typically
do not change significantly after the first five days.
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Figure 1: Routing graphs bottleneck (left) and grid (right).

stations to route to and assumes that all agents share the same
source and destination. Here, non-station edges have proba-
bilistic travel times, which we generate by drawing five sam-
ples from the set {1, 2, . . . , 12} (with replacement). Then we
attach a value drawn uniformly at random from [0, 1] to each
unique sample and normalise these to sum to 1, in order to
obtain a probability mass function.4 This is a realistic setting
for the case where several potential routes exist to a popular
destination, e.g., different roads between two large cities or
from a commuter town to the commercial centre of a city. It
represents an extreme setting, as agents need to commit to
a station on departure, some of which will clearly be more
desirable than others in the absence of congestion and may
therefore become bottlenecks. Here, we simulate 20 EVs.

The second scenario, the grid setting, represents a case
where agents have diverse sources and destinations and can
potentially change their policy based on new information
before reaching a station (if using IARS). Thus, it mod-
els a realistic road network, e.g., between several cities or
other points of interest. Here, the travel time distribution on
each road edge is generated by drawing two samples from
{1, 2, . . . , 4}. We simulate 50 EVs, representing a larger,
more complex setting.5 Note the average travel time from
a source to a random charging station (and again to the desti-
nation) is between 65 minutes for bottleneck, and 75 minutes
for grid. This is reasonable, given the current range of EVs.

4.3 Results for Overall Performance
In our first set of experiments, we compare the performance
of all systems in the two settings, as shown in Figure 2. As
we show in Section 4.4, λ = 10 and λ = 100 perform well in
these settings, respectively, and so we only show their perfor-
mance here. For the bottleneck setting we also plot a centrally
computed optimal solution. As a globally optimal algorithm
is computationally not feasible in the grid setting (due to the
large number of vehicles and possible paths), we give a lower
bound on the journey time here, which is based on a simpler

4For ease of presentation and because we focus on charging sta-
tions in this paper, these are not time-dependent.

5We stress that significantly larger settings are similarly feasible.
To illustrate this, simulating 1,000 EVs with IARS arriving over the
course of a day in the grid setting takes just over two minutes. We
choose 50 EVs here for practical reasons, to allow us to explore a
large parameter space and collect statistically significant data. The
general trends are the same as in larger settings.
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Figure 2: Average journey and waiting times for different sys-
tems in the bottleneck (left) and the grid (right) settings.

graph that combines all charging stations into a single one
with an appropriately higher capacity. This is a very opti-
mistic lower bound, because it allows a simple optimal strat-
egy, where vehicles ignore congestion and choose the path
with the shortest expected travel time.

Several interesting trends emerge here. First, in the bottle-
neck setting, both MIN approaches perform badly, leading to
an average journey time of around 386 and 399 minutes (for
MIN(FALSE) and MIN(TRUE), respectively). This is more
than twice the optimal with 186 minutes. The reason for this
is that the MIN approaches always choose the one route that
minimises their travel time (in expectation), but as all agents
act on the same information, they pick the same path, leading
to a single extremely congested station. This is evidenced by
the high proportion of time spent queueing rather than travel-
ling. Surprisingly, performance decreases even further when
an explicit model of waiting times is used by the MIN ap-
proach. This is because the agents learn that the first station
was highly congested, but then move in tandem to the next
best option, resulting in the same queues, but longer travel
times. Clearly, this highlights the perils of using a simple
travel time minimisation approach in settings where agents
have similar requirements.

The remaining approaches in the bottleneck setting all per-
form surprisingly well. Our proposed IARS system achieves
the same performance as the globally optimal benchmark,
while even the simpler randomised LOGIT approaches lead
to an average journey time of 192 minutes.

The trends in the grid setting are slightly different. Here,
MIN(FALSE) without queueing model still achieves an over-
all bad performance with an average journey time of 329 min-
utes (a 101% increase over the optimal bound of 163 min-
utes), most of which is spent queueing again. However, this is
significantly improved by including an explicit model of sta-
tion waiting times using historical arrivals (223 minutes, 38%
increase), because it allows the agent to reason about queues
(which are more heterogeneous in this setting due to the vari-
able sources and destinations). Also, adding randomisation
(242 minutes, 48% increase over the bound) is beneficial in
this setting, because it avoids congestion at otherwise more
desirable stations. Combining both, the LOGIT(100,TRUE)
achieves an average travel time of 195 minutes (20% in-
crease). Finally, the IARS achieves an even higher perfor-
mance, with an average journey time of 184 minutes (13%
more than the optimal bound).
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4.4 Results for LOGIT(λ)
So far, LOGIT(λ) appears to be a promising alternative to
IARS. To examine this in more detail, we show the perfor-
mance of LOGIT(λ,TRUE) for a range of λ parameters in
Figure 3. These results show that LOGIT is somewhat sen-
sitive to the choice of λ, which raises the question of how λ
should be chosen in real-life settings.

More significantly, however, the figure also shows the av-
erage journey time a single deviating agent would achieve by
switching to the MIN(TRUE) approach (assuming all other
agents use LOGIT). This is never higher than LOGIT and,
in fact, typically lower. In other words, while randomisation
benefits the overall system, as it disperses agents across the
stations, a single agent always has an incentive to deviate and
head for the station with the lowest expected journey time.
Thus, LOGIT is not a viable alternative in realistic systems.

4.5 Results for IARS
To further explore our proposed IARS system, we now con-
sider settings where only a proportion of agents use IARS,
while the others use MIN(TRUE) or LOGIT(100,TRUE).
This is an interesting setting, because it shows how the system
performance changes as intentions are gradually introduced
into a system (and indeed whether it is beneficial if only a
few agents use IARS). Similar to the previous section, it also
investigates whether agents have an incentive to switch to (or
from) IARS. In this setting, we measure the average journey
time for each type of agent, but we also measure the system-
wide average across the population (i.e., the social welfare).

The results are given in Figure 4 (we show only the grid
settings, as the results in the bottleneck setting are simi-
lar). Here, several clear trends emerge: as more agents use
IARS, the system-wide average journey time decreases. Fur-
thermore, agents that use IARS always have lower average
journey times than those that do not, indicating that there
is a strong incentive to use IARS for all system partici-
pants. Apart from this, the graphs show two further interest-
ing trends. First, even when only a few agents use intentions,
their average journey time already dramatically decreases as
they can coordinate their decisions. In fact, when others use
LOGIT, the IARS agents achieve their minimum journey time
when only a small proportion use the system. This is similar
to the results in Figure 3, where agents can exploit inefficien-
cies in the strategies of other agents. The second interesting
trend is that agents using MIN benefit themselves when more
agents switch to IARS, but this trend is not evident for agents
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Figure 4: Average journey times as the number of EVs using
IARS is varied in the grid setting. Top graph assumes others
use MIN(TRUE), while bottom assumes LOGIT(λ,TRUE).

using LOGIT. This is simply because the typically high con-
gestion at desirable stations caused by MIN is gradually re-
duced as fewer agents adopt this approach.

5 Conclusions and Future Work
This work extends both models and algorithms for stochastic
time-dependent routing to take charging stations and the state
of charge of EVs into account. Another main contribution is a
novel approach where we combine (stochastic) intentions of
other agents with historical data to obtain more accurate wait-
ing time distributions. In order to do so, we explicitly model
queues at charging stations. As part of our evaluation we de-
fined an optimistic bound, as well as an alternative routing
system based on logit that does not use intentions, but helps to
prevent congestion at charging stations by randomising over
options. Through extensive experiments, we established that
both an explicit queueing model as well as randomisation
increases social welfare, but that IARS outperforms even a
combination of these systems. Moreover, agents using the
randomised system have an incentive to switch to a determin-
istic strategy, while we showed that individual agents always
achieve lower journey times with IARS.

The IARS does not require any monetary transfers. How-
ever, an interesting direction for further study is to view co-
ordinating the en-route charging of EVs under uncertainty
as a mechanism design problem. In particular, we are in-
terested in combining our work with pricing models to be
able to find more efficient solutions, such as used for charg-
ing at home [Stein et al., 2012; Clement-Nyns et al., 2010;
Vasirani and Ossowski, 2011].

To transition our solution into a practical application, we
additionally plan to extend our work with simulations with
real data to obtain better insights into the quantitative advan-
tages of deploying IARS, and it would be useful to develop
heuristics for both policy computation as well as combining
the distributions to improve run time and scalability.
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