
Effective String Processing and Matching for Author
Disambiguation

Wei-Sheng Chin, Yu-Chin Juan, Yong Zhuang, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang,
Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo,

Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin,
Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin.

National Taiwan University
{d01944006, r01922136, r01922139, b99902090, b98901044, r01922141, r01922165, r01944041, r99902109, b99902019,
b99902059, b99902073, b99902023, b97902055, b98902105, r01922159, b98901037, d00922023, r01922001, r01944011,

r01922025}@ntu.edu.tw, {sdlin, htlin, cjlin}@csie.ntu.edu.tw

ABSTRACT
Track 2 in KDD Cup 2013 aims at determining duplicated
authors in a data set from Microsoft Academic Search. This
type of problems appears in many large-scale applications
that compile information from different sources. This paper
describes our solution developed at National Taiwan Uni-
versity to win the first prize of the competition. We propose
an effective name matching framework and realize two im-
plementations. An important strategy in our approach is
to consider Chinese and non-Chinese names separately be-
cause of their different naming conventions. Post-processing
including merging results of two predictions further boosts
the performance. Our approach achieves F1-score 0.99202
on the private leader board, while 0.99195 on the public
leader board.

1. INTRODUCTION
Track 2 in KDD Cup 2013 is a task of name disambigua-

tion. Ideally, a name uniquely identifies an entity, but prac-
tically an entity may correspond to different names. For
example, once two data sets assigning an entity two or more
names are integrated, the entity may become associated with
different names. In this article, we call these names as du-
plicates of the original entity.

The data set is offered by Microsoft Academic Search
(MAS). As a search engine, MAS integrates information of
authors and their publications from different sources. We
have mentioned that duplicates more frequently occur when
data sets are integrated to a larger one, so MAS naturally
suffers from this issue. The aim of this competition is to
find which of around 250,000 authors are duplicates. We are
given seven files, Author.csv, Paper.csv, PaperAuthor.csv,
Conference.csv, Journal.csv, Train.csv, and Valid.csv.
The two more important ones are Author.csv and Paper-

Author.csv, where the former stores author information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

(e.g., names and identifiers), and the letter gives authorships
for around two millions publications. Each line, a record, in
both Author.csv and PaperAuthor.csv includes an author
identifier and a name. The task is to upload duplicated
identifiers in Author.csv. Other details of data sets and the
competition can be found in [7]. Because no training in-
formation is given, the problem is an unsupervised learning
task. The evaluation measure is the average of F1-scores
over all authors in Author.csv. The definition of F1-score
is

F1-score =
2× precision× recall

precision + recall
, where

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negative
.

For example, to find author A’s duplicates, if our algorithm
returns A, B, C, F, and the true duplicates are A, B, C, D,
E, then

precision =
| {A,B,C} |

| {A,B,C} |+ | {F} | =
3

4
, and

recall =
| {A,B,C} |

| {A,B,C} |+ | {D,E} | =
3

5
.

In the competition, 20% of authors in Author.csv are used
to evaluate duplicates submitted by participants. We refer
to them as results on the public leader board. For the fi-
nal evaluation, the remaining 80% authors in Author.csv

are used and the F1-scores are called results on the private
leader board. The baseline F1-score on the public leader
board is 0.94411 by assuming no duplicates (i.e., all author
names are considered as different entities).

Author disambiguation is a difficult problem that is also
known as entity resolution [10] [11] [5], duplication elimina-
tion/detection [1], object matching [6], and record linkage
[4] [2]. Similar to [8] [9] [3], we consider author name strings
as the major feature to measure the similarity between two
authors. Thus all strategies in our algorithm are highly re-
lated to string processing.

We describe our approach in Section 2. It is realized in
our two implementations described in Sections 3 and 4, re-
spectively. Section 5 proposes a strategy to ensemble the
predictions from these two implementations. We handle ty-
pographical errors (typos) in Section 6. Finally, Section 7

summarizes our work. Our implementations are avaliable at
https://github.com/kdd-cup-2013-ntu/track2.

2. OUR APPROACH
In this section, we discuss three key strategies of our ap-

proach, and then introduce a framework based on these
strategies. Two implementations of the framework were fin-
ished by two groups within the team. They are respectively
described in Sections 3 and 4.

2.1 The Main Strategies
The first strategy is that we identify duplicates mainly

based on string matching; in particular, name matching.
Academic authors often use their real names. If two au-
thors are duplicates, then their name strings are similar.
Therefore, name matching is very effective for this problem.

The second strategy is that if an author in Author.csv

has no publication records in PaperAuthor.csv, then we as-
sume that this author has no duplicates. In our earlier ex-
periments, this strategy significantly improves the F1-score
by around 0.02.Apparently MAS implements this rule inter-
nally, so we admit that this strategy may not be useful for
other data sets.

The third strategy is to classify an author as Chinese or
non-Chinese before any string matching. This strategy is
useful because Chinese and non-Chinese names have some
crucial differences. First, a western name may be written
without the middle name. For example, “Vladimir Nau-
movich Vapnik” may write his name as “Vladimir Vapnik.”
In contrast, Chinese generally do not omit any part of their
name. For instance, “Chih Lin” and “Chih Jen Lin” are al-
most surely different authors. Second, Chinese last names
provide much less information than non-Chinese ones be-
cause some Chinese last names are very common (e.g.,“Wang”
and “Lin”) and the romanization process may map different
last names to the same English word (e.g., “林” and “藺” are
romanized to “Lin”). The common last names cause diffi-
culties to analyze a shortened Chinese name. For example,
there are much more names that can be shortened as ”C. J.
Lin” comparing to those of ”E. W. Dijkstra.” Besides, Ko-
rean, Vietnamese, and Singaporean names have a similar
structure (i.e., two-word first name and a short last name),
so we include them along with Chinese names. Examples
include “Chi Minh Ho” (Vietnamese), “Yong Jun Bae” (Ko-
rean), and “Hsien Loong Lee” (Singaporean). Interestingly,
we do not consider Japanese names because they often have
a longer last name and a one-word first name (e.g., “Ichiro
Suzuki”).

In this paper, we define a word as a shortened word if it is
one single character or includes a period. For example, “C”
and “Chris.” are shortened words. A word is a full word if
it is not a shortened word. A name is a shortened name if
it consists of at least one shortened word; otherwise, it is a
full name.

2.2 The Framework
Our framework can be divided into six stages. Here we

briefly introduce each stage, but leave details in Sections 3
and 4.
1. Chinese-or-not. We classify each author as Chinese or

non-Chinese.
2. Cleaning. To efficiently compare author names, we re-

move redundant information. For example, “CHIH JEN

LIN” is likely to be a duplicate of “chih jen lin,” so we
lowercase all strings.

3. Selection. For each author we select some candidates of
possible duplicates. Naively, an author should be com-
pared with all other authors, but the computational cost
is high. Therefore, we select only some candidates for
subsequent analysis. At this stage, recall is the main
concern because any missed names cannot be recovered
in a later stage.

4. Identification. For each author, we check if those in the
candidate set are duplicates or not.

5. Splitting. Because some names are wrongly grouped to-
gether after the identification stage, we make corrections
by splitting some of them.

6. Linking. This stage maps author names back to author
identifiers. It is needed for our second implementation;
see more explanation below.

We illustrate an important difference between our two ap-
proaches by the following example.

Author identifier 1001
Name in Author.csv “Chih Jen Lin”

“C. J. Lin”
Names in PaperAuthor.csv “Chih Jen Peter Lin”

“C. J. P. Lin”

In the given data, one identifier may correspond to differ-
ent names. Following the competition requirement to find
duplicates of each author identifier, in the first implementa-
tion, each author is referred to as an author identifier. How-
ever, the second implementation treats each name string as
an author. That is, the four names in the above examples
are considered different. The algorithm must group them
together among all name strings. Therefore, the second im-
plementation needs a linking stage so that in the end we
have groups of author identifiers.

3. THE FIRST IMPLEMENTATION
In this section, we discuss details of the first implementa-

tion. Each sub-section corresponds to a stage of the frame-
work. Note that the linking stage is not performed in this
implementation.

3.1 Chinese-or-not
An author is classified to be either Chinese or non-Chinese

by the flowchart in Figure 1. The process relies on infor-
mation including the romanization of common Chinese last
names and Chinese syllables. We build two dictionaries,
which differ in the coverage of Chinese words. The first dic-
tionary contains 2,381 English words that are the roman-
ization of top 100 Chinese last names and 410 syllables.
Roughly each Chinese word is romanized to four English
words, though we omit details here. The second dictionary
extends from the first by including 853 additional words of
the romanization of 406 Chinese last names and 20 Korean
last names. Moreover, each dictionary consists of two sub-
dictionaries storing last names and syllables respectively.
Some words in our Chinese dictionary are also common in
non-Chinese names (e.g., “van,” “den,” and “ben”), so we
construct a “banned list.”

The flow to determine if an input name is Chinese or not is
in Figure 1. To begin, a name is cleaned and then tokenized.
Next, we consider three cases according to the number of full
words (0, 1, or more) in an author name.

1. If there is no full word in a name (upper sub-tree in Fig-
ure 1), words in our Chinese dictionary cannot be used
and hence the author is classified as non-Chinese. For
example, “C J L” is considered as non-Chinese.

2. If an author has only one full word (right sub-tree in
Figure 1), then we consider the author as Chinese if the
full word is one of the last names in our dictionary but
not in the bannned list. This case is mainly for detecting
Chinese authors with abbreviated first name such as “C.
J. Lin,”“C.-J. Lin,” and “C. J. P. Lin.”

3. For a name with more than one full word (left sub-tree
in Figure 1), if it has more than one full word not in our
Chinese dictionary, then the name is considered as non-
Chinese. For example, “Chih J. Peter Lin” is Chinese if
“Peter” is the only full word not in our dictionary. In
contrast, if our dictionary does not contain “Chih,” then
the name becomes non-Chinese because of having two
non-Chinese full words. The banned list plays a similar
role as in the previous rule. We consider all full words
which is contained in the banned list as Chinese once
any Chinese full words are found. In pratice, Counter3
always outputs 0 when Counter2 returns 0. Otherwise,
the output of Counter3 becomes the number of matches
of full words and the banned list.

In Figure 1, hexagons are the final decision of Chinese or
non-Chinese, ellipses stand for variables, and rectangles are
operations. Every counter directly counts the number of
inputs. For example, Counter2 gives the total number of
Chinese words in a name after checking the dictionary.

We illustrate our Chinese classification using an author
with four full words. Given “Chih Jen Dean H. Lin,” “H.”
is removed first, and then four words “Chih,”“Jen,”“Dean,”
and “Lin” are obtained. Counter1 in Figure 1 returns 4 be-
cause of four full words. Then we use the left sub-tree in
Figure 1. Assume that
1. our Chinese dictionary contains common last names {lin,

wang} and common Chinese words {wang, chih, dean,
and jen}.

2. the banned list is {dean}.
Counter2 returns 3 for one match of the last name “lin” and
two matches of syllables “chih” and “jen.” Because the out-
put of Counter2 is larger than 0 (some Chinese full words are
found), Counter3 is activated and returns 1 for the match
of “dean.” Then the adder returns 4. Finally, the subtracter
returns 0 to be the number of non-Chinese full words, so
“Chih Jen Dean H. Lin” is classified as Chinese.

3.2 Cleaning
The purpose of data cleaning is to make name comparisons

more accurate. This process consists of the following steps.
1. Split two consecutive uppercase characters because we

suspect that each character is an abbreviation of a word.
For instance, replace “CJ” with “C J.”

2. Remove English honorifics (e.g., “Mr.” and “Dr.”), and
some suffixes such as “Jr.” and “III.”

3. Transform uppercase to lowercase.
4. Remove apostrophes and replace punctuations. For ex-

ample, “o’relly” becomes “orelly.” We then replace punc-
tuations except periods with blanks. We keep the period
because it is useful to determine if a word is a shortened
one or not.

5. Replace European alphabets with similar English alpha-
bets. For example, replace “ä” with “a.”

Figure 1: Flow of finding if a name is Chinese or
not.

6. Replace common English nicknames. For example, re-
place “bill” with “william.”

3.3 Selection
In this stage, for each author, a set of possible dupli-

cates are obtained. The purpose is to reduce the quadratic
complexity of subsequent string matchings to linear. Our
method includes two phases. In the first phase, we build a
dictionary of (key, value) pairs. Each key is a set of words,
while each value is a set of authors containing the key. To
generate keys, we consider all word combinations of an au-
thor name. For example, “Chih Jen Lin” leads to the follow-
ing keys.

“Chih” “Jen” “Lin”
“Chih Jen” “Jen Lin” “Chih Lin”

“Chih Jen Lin”

Note that the order does not matter, so “Chih Lin” is con-
sidered the same as “Lin Chih.” To avoid too many keys, we
do not consider the combination of more than four words. In
the second phase, for each given author, we examine his/her
(key, value) pairs. If the “value” contains no more than 17
authors, then they are included as possible duplicates. The
reason to discard a “value” with too many authors is be-
cause the corresponding key is too common. For example,
two authors shall not be suspected as duplicates merely be-
cause their first name is “Lin.” Including these names does
not improve the recall much, but significantly increases the
running time. In our experience, changing the threshold
from 17 to 100 results in a three-fold increase of the running
time. Moreover, a higher recall may not lead to a better

final result.

3.4 Identification
Because the criteria to select candidates in the previous

stage is loose, many authors were wrongly selected. In this
stage, we find a subset as duplicates by applying a main pro-
cedure and two additional procedures. The main procedure,
described in Section 3.4.1, uses many matching functions
listed in Section 3.4.2. The two additional procedures are
described in Section 3.4.3.

3.4.1 The Main Procedure
We iteratively apply matching functions to identify dupli-

cates from the candidate set. Each matching function checks
if two given authors are similar to each other. Criteria used
in matching functions here should be stricter than those in
the previous stage because the aim is to remove authors that
were wrongly selected. However, although a strict criterion
gives high precision, it many cause low recall. Therefore,
we sequentially apply matching functions (listed in Section
3.4.2) from the strictest to the loosest.

Each iteration consists of two steps. First, between an
author and any member of its candidate set, a matching
function returns if the two names are duplicates or not. For
a name “Chih Jen Lin,” if his candidate set is

“Chih Jen Lin,”“Lin Chih Jen,”“Chih Jen M. Lin,” and
“Chih Jen K. Lin,”

and the matching function requires that two names have the
same word set, then “Chih Jen Lin” and “Lin Chih Jen” are
considered as duplicates.

In the second step of an iteration, we make some correc-
tions because duplicates obtained after applying matching
functions may be wrong. For example, assume the following
duplicates have been identified.

“C. J. Lin,”“Chih Jen Lin,” and “Chen Ju Lin.”

Obviously they are not the same author because “Chih Jen
Lin” and “Chen Ju Lin” are very different. We design a
dry-run procedure to detect if a set of selected duplicates
contains some very different names. If such names exist,
then the set is discarded. For describing the dry-run func-
tion, we say that two author names are loosely identical if
one of the following conditions holds.
1. One author has at least a short word and one author’s

first-character set of words is a subset of the other.
2. Both authors contain full words only and one author’s

first-three-character set of words is a subset of the other.
For example, “C J Lin” and “Chih Jen Lion” are loosely
identical, while “Chih Jen Lin” and “Chen Ju Lin” are not.

In the dry-run procedure, we divide the selected set of
duplicates to two sets: the longest-name set and the shorter-
name set, where the former contains names with the largest
number of words, while the latter contains the rest. The
dry-run is passed if the following conditions hold.
1. In the longest-name set, any two names are loosely iden-

tical.
2. In the shorter-name set, any name is loosely identical to

at least one name in the longest-name set.
The identification procedure is shown in Algorithm 1.

3.4.2 Matching Functions
For easy description, we define the following relationship

between two author names.

Data: Each author has a set of candidates.
Result: All authors are split to groups of duplicates.
begin

for f ∈ matching functions do
for a ∈ all authors do

P ← {duplicates already identified for a}
for c ∈ {candidates of a} do

if f(a, c) then
P ← P ∪ {c’s identified duplicates}

end

end
if P passes the dry-run procedure then

authors in P are duplicates
end

end

end

end

Algorithm 1: The main procedure in the identification
stage of the first implementation.

1. The same name: Two names share the same set of
words.
Example: “Chih Jen Lin” and “Lin Chih Jen.”

2. A shortened name: The first author is a shortened
name of the second one if the following conditions hold.
• The full-word set of the first is a subset of the second.
• Each shortened word in the first name is the prefix of

a word in the second.
Example: “Ch. J. Lin” and “Chih Jen Lin.”

3. A partially shortened name: The first author is a
shortened name of the second and each word in the first
name is the prefix of a word in the second.
Example: “C. J. Lin” and “C. J. Lint.”

4. Alias: Name A in PaperAuthor.csv is an alias of name
B in Author.csv if A and B have the same author iden-
tifiers, and B is a shortened name of A.
Example: “C. J. Lin” is in Author.csv, while “C. Jen
Lin” and “Chih Jen Lin” are in PaperAuthor.csv. If they
have the same author identifiers, then “C. Jen Lin” and
“Chih Jen Lin” are aliases of “C. J. Lin.”

Now we introduce the following matching functions.
1. Two authors have the same words in their names.

Example: “Chih Jen Lin,” and “Lin Chih Jen.”
2. One is a shortened name of the other and both have the

same initial-character set of words. However, this rule is
not applied if
• both authors are Chinese and each has at least one

shortened word, or
• one of the authors is Chinese and contains no more

than two words.
Example: “John S. Nash” and “John Smith Nash.”

3. (Non-Chinese only) One author name is a shortened name
of the other.
Example: “Michael Jordan” and “Michael I. Jordan.”

4. (Non-Chinese only) One author name is a partially short-
ened name of the other.
Example: “Marek J. Druzdze” and “Marek J. Druuz-
duzel.”

5. Two authors have at least one identical alias.
Example: Suppose that the name “1273890, Thomas

J. Webb” in PaperAuthor.csv is an alias of the author
“1273890, Thomas Webb” in Author.csv, while “207564,
Thomas J. Webb”is an alias of the author“207564, Thomas
J. Webb.” Then“207564, Thomas J. Webb”and“1273890,
Thomas Webb” are considered as duplicates.

6. (Non-Chinese only) Two author names are loosely iden-
tical and both have at least one identical paper or affili-
ation.
Example: “571595, Alex Pentland” and “993869, Alex
Pentland Perceptual” are loosely identical and both have
the same affiliation “MIT Media Laboratory.”

7. The two authors satisfy the following conditions.
• Each author name has at least three words.
• Two author names are the same after removing their

respective last word.
• The last word of each name should be the same after

removing the last character of the longer word.
Example: “Chih Jen Linu” and “Chih Jen Lin.”

8. (Non-Chinese only) Only one author name has middle
name and their last names differ in the last two charac-
ters.
Example: “Michael I. Jordan” and “Michael Jordann.”

9. (Chinese only) Two authors have at least one identical
alias and one identical affiliation.
Example: Assume “Chih Jen Lin” in Author.csv has
the same identifier with “Chih Jen Lin” and “C. J. Lin”
in PaperAuthor.csv. Similarly, “Chih J. Lin” has “Chih
Jen Lin” and “C. J. Lin” in PaperAuthor.csv.
The two authors have the same alias “C. J. Lin.” If both
have the same affiliation, then they are considered as du-
plicates.

10. (Chinese only) Each author has at least three words, but
has no shortened words. Moreover, one author’s word set
is a subset of the other.
Example: “Michael Chih Jen Lin” and “Chih Jen Lin.”

11. (Chinese only) Both author names have more than three
words and their lists of initial characters are the same.
Example: “Michael Chih Jen Lin” and “M. Chih Jen
Lin.”

12. (Chinese only) Both author names have more than three
words, neither has a shortened word, and the full-word
set of one’s name is a subset of the other.
Example: “Michael Chih Jen Lin” and “Michael Jackson
Chih Jen Lin.”

13. (Chinese only) The two authors satisfy one of the fol-
lowing conditions.
• Each has three words and both have the same list of

initial characters.
• Neither has a shortened word and one author’s full-

word set is a subset of the other.
Example: “Lin Chih Jen” and “C. Jen Lin.”

3.4.3 The Additional Procedures
We conduct two additional procedures to improve the

identification of duplicates. Instead of fitting them to the
main procedure, we find that separately considering them is
more suitable.

Same paper title: Because data are collected from dif-
ferent sources, some papers have an identical title after re-
moving non-alphabet characters. For any two such papers,
if an author of one paper is a partially shortened name of
an author of the other paper, then the two authors are con-
sidered as duplicates. For example, assume two papers are

shown in Table 1. “C. C. Chang” is a partially shortened
name of “Chih-Chung Chang,” while “C. J. Lin” is that of
“Chih J. Lin” and “Chih Jen Lin.” Therefore, authors 1 and
2 are regarded as duplicates, and so are authors 3 and 5.

Paper IDs 1 2
PaperName LIBSVM lib-svm

1, C. C. Chang 2, Chih-Chung Chang
AuthorList 3, Chih Jen Lin 3, Chih J. Lin

5, C. J. Lin

Table 1: An example of using papers with the same
title to identify duplicates.

Parsing alleviation: Because of incorrect string parsing,
some names such as “Chih JenLin,” and “Chih Jen LinAN”
may appear although the correct one is “Chih Jen Lin.”
To find duplicates for these ill-formed names, we map each
name to some keys and group names with the same key as
duplicates.

To obtain keys and identify duplicates, we run two sepa-
rate steps. The first one uses two keys. After some dupli-
cates have been identified, the second uses three keys to get
more duplicates.

The step of using two keys generates keys for each author.
Words in a name are concatenated and lowercased to get
the first key. By removing the last character of this key, we
generate the second key if one of the following conditions
holds.
1. The name has one shortened and two full words.
2. The name has more than two full words and the length

of the name is greater than 12.
3. The length of each word in the name is greater than four.

For example, “Chih Jen Lin” has a key “chihjenlin,” while
“Chih J. Lint” has keys “chihjlint” and “chihjlin.”

In the step of using three keys, the first key is the same as
that in the previous step. The second key is also by removing
the last character of the first key, but it is generated if one of
the four conditions holds. These four conditions are similar
to the three conditions used in generating the second key in
the case of using two keys except that the first condition is
modified to the following two rules:
1. The name has one shortened and two full words. More-

over, the length of the last word is greater than four.
2. The name has more than two full words and the length

of the last name is greater than four.
Then we remove the last two characters of the first key to

get a new key if one of two conditions holds.
1. The length of the name is greater than 15 and that of the

last word is greater than five.
2. The number of full word in one’s name is greater than

two and the length of the last word is greater than five.
For example,“Petra QuillfeldtA”has keys“petraquillfeldta,”

“petraquillfeldt,” and “petraquillfel.”

3.5 Splitting
In some groups of duplicates that have been identified,

we still observe very different author names. For example,
the following authors are considered as duplicates after the
identification stage.

“k. kobayashi” ”keven w. kobayashi”
“kazuo kobayashi” “kunikazu kobayashi”

When the third matching function mentioned in Section
3.4.2 is applied to the author “k. kobayashi,” the above four
authors are considered as duplicates. Then because “keven
w. kobayashi” is the longest name in the set, and “kazuo
kobayashi” and “kunikazu kobayashi” are loosely identical to
“keven w. kobayashi,” they pass the dry-run function. Obvi-
ously the grouping is incorrect. Therefore, in this splitting
stage, we check the number of incorrectly identified pairs
(details described below) in every set of duplicates. If the
number exceeds three, then we dissolve the group and each
element goes back to be an individual. We say two authors
are incorrectly identified if they satisfy that
1. Each author name is a full name with two words.
2. Neither author name is a partially shortened name of the

other.
For example, “kazuo kobayashi” and “kunikazu kobayashi”
satisfy the above criteria because “kazno” is not a prefix of
“kunikazu” and vice versa. We do not consider names with
more than two words because “Alex Pentland Perceptual”
and “Alexander Pentland” may be unexpectedly treated as
incorrect duplicates.

4. THE SECOND IMPLEMENTATION
In this section, we introduce the second implementation

following the framework in Section 2. As mentioned in Sec-
tion 2.2, we treat all names in PaperAuthor.csv and Au-

thor.csv as individuals and find groups of duplicates. Only
in the end we obtain groups of author identifiers as requested
by the competition.

4.1 Chinese-or-not
In contrast to Section 3.1, the implementation is simpler

here. We build a Chinese dictionary that consists of 694
words of romanized Chinese syllables and a banned list. For
each author name after tokenization, we check if any word
is on the Chinese list but not on the banned list. If such a
word exists, we classify the name Chinese.

4.2 Cleaning
This stage goes through three phases: character-based fil-

tering, word-based filtering, and parsing alleviation.
1. Character-based filtering: This phase replaces European

alphabets to English alphabets and we remove all punc-
tuations except the blank.

2. Word-based filtering: This phase splits two consecutive
uppercase characters (e.g., “CJ”→ “C J”), removes En-
glish titles and some suffixes, transforms uppercase to
lowercase, and replaces common English nicknames with
formal names. In addition, the nobility particles (e.g.,
“von” and “de”) are removed, and we split each two-
Chinese-character word to two words (e.g., “ChihJen”→
“Chih Jen”).

3. Parsing alleviation: This phase addresses incorrect string
parsing by going through two steps. First, among names
that are the same after blank removal, we keep only the
longest one. For instance, if “Joseph Douglas Horton,”
“Josephdouglas Horton,” and“JosephDouglasHorton”ap-
pear in the database, we keep only “Joseph Douglas Hor-
ton.” The second step handles typos caused by incorrect
string parsing; see examples in Section 3.4.3. For any pair
of names, if the longer one differs from the shorter one in
less than four characters, then we remove the longer one.
The threshold four is chosen by the scores on the leader

board.

4.3 Selection
Recall that in this stage for each author name we obtain

a candidate set. One author name is a candidate of another
(and vice versa) if one of the following conditions holds.
1. Both names are exactly the same regardless of the order

of words.
Example: “Chih Jen Lin” and “Lin Chih Jen.”

2. Both names are Chinese with more than two words or
neither is Chinese, the set of initial characters of words
in a name is a subset of the other and so is the set of full
words.
Example: “Chih Jen Lin” and “Chih Jen K. Lin.”

3. The set of initial characters of words in a name is a subset
of the other. The shorter name has only one full word not
in the longer, but the word is the prefix of a word in the
longer name.
Example: “Ch Jen Lin” and “Chih Jen Lin.”

4.4 Identification
In contrast to the first implementation, we believe that the

candidates selected in Section 4.3 are of high credibility, so
this stage is not performed. That is, the candidates selected
in Section 4.3 are identified as duplicates.

4.5 Splitting
After Section 4.4, some names are still wrongly grouped

as duplicates (e.g., “Chih Jen Lin,”“Chih K. Lin,” and“Chih
H. Lin”). In this stage, we split such groups to improve pre-
cision. For easy explanation, we define the following terms.

• An extended/abbreviated name: For two names sat-
isfying the conditions in Section 4.3, if A is not shorter
(not longer) than B, then A is an extended (abbreviated)
name of B.

Example: “Chih Jen Lin” is an abbreviated name of
“Chih Jen Bob Lin,” while “Chih Jen Bob Lin” is an ex-
tended name of “Chih Jen Lin.”

• Common extended names (CEN): In a set of dupli-
cates, B is a CEN of A if B is an extended name of A and
every A’s extended name is either B’s abbreviated or ex-
tended name. Note that any name is a common extended
name of itself.

Example: In Figure 2, assume “Chih Jen Bob Lin” and
five other names are grouped as duplicates. All names
except “Chih Jen Lin” are its extended names because of
equal or longer length. We see that “Chih Jen Bob T.
Lin” is not a CEN of “Chih Jen Bob Lin” because “Chih
Jen Bob K. Lin” is an extended name of the latter, but is
neither an extended nor abbreviated name of the former.
Therefore, “Chih Jen Bob Lin” is the only CEN of “Chih
Jen Bob Lin.” Another example is in Figure 3. Further,
Table 2 and Table 3 respectively list CENs of some authors
in Figure 2 and 3.

• Longest common extended name (LCEN): A name
B is an LCEN of A if B is a CEN of A and has the largest
number of abbreviated names among A’s CENs.

Example: In Figure 3, assume “Chih Jen Bob Lin” and
five other names are grouped as duplicates. For “Chih Jen
Lin,” whose CENs include “Chih Jen Lin,”“Chih Jen Bob
Lin,” and “Chih Jen Bob Tom Ken Lin.” In these CENs,

Author Name CEN LCEN

Chih Jen Bob Lin Chih Jen Bob Lin !

Chih Jen Bob T. Lin
Chih Jen Bob T. Lin

Chih Jen Bob Tom Lin !

Table 2: An part of examples for CEN and LCEN
for Figure 2.

Author Name CEN LCEN
Chih Jen Lin

Chih Jen Lin Chih Jen Bob Lin

Chih Jen Bob Tom Ken Lin !

Chih Jen Bob T. Lin
Chih Jen Bob T. Lin

Chih Jen Bob Tom Ken Lin !

Table 3: An part of examples for CEN and LCEN
for Figure 3.

“Chih Jen Bob Ken Lin” has three abbreviated names,
more than the other two CENs. Therefore, “Chih Jen
Bob Tom Ken Lin” is an LCEN of “Chih Jen Lin.”

For each group of duplicates, we construct an undirected
graph so that nodes are names and any two names are con-
nected by an edge.

For each name, we get the corresponding LCEN. We then
split any edge whose two nodes have different LCENs. Next,
names in each connected sub-graph are considered as a set
of duplicates.

Consider an example in Figure 2, where six names are
considered as duplicates after Section 4.4. We will show
how edges are split.

Take an example to show how we split edges. The LCEN
of “Chih Jen Bob T. Lin” is “Chih Jen Bob Tom Lin,” which
differs from “Chih Jen Bob Lin” of “Chih Jen Bob Lin.”
Therefore, the link between “Chih Jen Bob T. Lin” and
“Chih Jen Bob Lin” is removed. We remove many other
edges by the similar reason. In the end only three edges
remain.

We give another example in Figure 3, in which any two
names have the same LCEN “Chih Jen Bob Tom Ken Lin.”
Therefore, we keep all edges. All names in this figure are
then considered as duplicates.

4.6 Linking
As mentioned in Section 2.2, previous stages group du-

plicated names together rather than identifiers. However,
the competition task is to group duplicated identifiers, so
some transformation is needed. Recall that each record in
Author.csv and PaperAuthor.csv is a (name, identifier)
pair. Our procedure starts from removing pair in Paper-

Author.csv that conflict with pairs in Author.csv. For ex-
ample if “C J Lin” in PaperAuthor.csv and “C C Lin” in
Author.csv have the same identifier, we remove “C J Lin”
because of the name mismatching. Next, for any group of
names considered as duplicates, we construct an undirected
graph so that each node is a name. For any node, we link
it to all nodes satisfying that their (name, identifier) pairs
appear in either Author.csv and or PaperAuthor.csv. In
the end, if one identifier appears in two connected compo-
nents of the graph, then the two groups are put together as
duplicates. We consider the following example
Each group corresponds a connected component component

Chih Jen Lin

Chih Jen Bob Lin

Chih Jen Bob T. Lin

Chih Jen Bob Tom Lin

Chih Jen Bob K. Lin

Chih Jen Bob Ken Lin

Figure 2: An example to illustrate the splitting pro-
cedure. Dashed edges are removed from the figure.
In the end, the graph is split to three sub-graphs,
each of which is considered as a set of duplicates.

Chih Jen Lin

Chih Jen Bob Lin

Chih Jen Bob T. Lin Chih Jen Bob Ken Lin

Chih Jen Bob Tom Ken Lin

Figure 3: An example to illustrate the splitting pro-
cedure. All edges are preserved, so all names in this
figure are considered as duplicates.

Group1 Group2

name identifier name identifier
“C J Lin” 9A, 41A “Chih Lin” 9A, 41A

“Chihjen Lin” 75A “C Lin” 8PA, 10PA

“Chih Jen Lin” 12PA, 28PA

of the undirected graph. The subscript of an identifier in-
dicates the source of the (name, identifier), where “A” and
“PA”denotes Author.csv and PaperAuthor.csv, respectively.
Because the two groups share identifiers 9 and 41, all author
identifiers in this table are considered as duplicates.

5. ENSEMBLE
Because the two implementations in Sections 3 and 4 de-

tect different sets of duplicates, an ensemble of their results
may improve the performance. In this section, we propose
a conservative setting to accurately find more duplicates by
using background information such as an author’s affiliation
and field of study. The main idea is that if two authors have
similar background, then we are more confident in saying
that they are duplicates.

For the two predictions generated by our implementations,
we call the prediction with better performance (see Table 5)
generated by the first implementation as the major predic-
tion, while the other as the auxiliary prediction. Given an
author a, we say a′ is an additional duplicate if a and a′ are
considered as duplicates only in the auxiliary prediction. We
use a filter to check if a and a′ have similar background. If
they pass the filter, then we consider a′ as a possible dupli-
cate of a. By an approach similar to that in Section 3.4.1, we
choose from these possible duplicates by a dry-run function.
Moreover, in our practical experience, if a high-frequency

file author identifier duplicates
major 10 10,11

auxiliary 10 10,11,12,13,14
ensembled 10 10,11,12,14

Table 4: An example of ensembling duplicates.

word such as “Lin” exists in names considered as duplicates,
the precision is often low. The reason is that people with
a common last name are in general different. Therefore, we
discard names having high-frequency words.1

Table 4 shows an example, where the additional duplicates
of author 10 are 12, 13, and 14. Therefore, we apply the filter
to pairs (10, 12), (10, 13), and (10, 14). Assume 12 and 14
pass the filtering. We then check if 10, 11, 12, and 14 could
be duplicates by the dry-run function, and examine if high-
frequency words exist in the names of these authors. In this
example, we assume that the two checks are passed, so 12
and 14 are added as duplicates of 10.

In Section 5.1, we discuss the collection of background
information, while in Section 5.2, we describe the filter. The
ensemble procedure is summarized in Algorithm 2.

5.1 Collection of Background Information
For each author, we collect two sets of words: the affiliation-

word set and the field-word set. The affiliation-word set is
collected from affiliation information in Author.csv and Pa-

perAuthor.csv; the field-word set is collected from paper
titles and keywords in Paper.csv. The procedure can be
divided into three stages: cleaning, stop-word removal, and
collection.

In the cleaning stage, we remove common punctuations
and handle several synonyms in the sources. From our statis-
tics, some frequent words in affiliation sources are synonyms.
For example, “univ” and “universidade” frequently appear in
the data set, but they are equivalent to“university.” For each
set of synonyms, we replace all words with the most frequent
one. Totally we consider three sets of synonyms, which are
respectively transformed to words “university,”“center,” and
“department.”

In the stop-word removal stage, we generate two stop-word
lists for affiliation and fields, respectively. Each includes a
stop-word list and some high-frequency words (words oc-
curred more than 1,704 and 32,000 in affiliation and field
sources, respectively). In addition, for affiliation, we include
several common country names. For fields, we include words
that appear only once because such words are not very in-
formative. After the two lists are generated, we remove all
stop words.

Finally, in the collection stage, for each author all collected
strings are split by space. The resulting two sets of words
on affiliations and fields are then used by the filter in the
ensemble process.

5.2 Filter
The filter considers that two authors have similar back-

ground if the following conditions hold.
1. Two authors have at least two common words in their

affiliation-word sets and at least one common word in
their field-word sets, or they have at least one empty

1We call a word as a high-frequency one if it appears in
Author.csv more than 1,200 times.

affiliation-word set and at least two common field words.
2. The two authors’ field-word sets have no more than 75

common words.
The first condition implies that authors must share some
words on affiliations or fields for having a similar background.
The second condition addresses some special situations where
two authors have papers in various fields. For such cases
data tend to be more noisy.

Data: A major prediction and a auxiliary prediction
denoted by Pm and Ps, respectively.

Result: Pm and Ps are ensembled.
begin

background information collection
for a ∈ all authors do

Dm ← duplicates of a from Pm

Ds ← duplicates of a from Ps

P ← Dm

for a′ ∈ Ds −Dm do
if filter (a,a′) then

P ← P ∪ {a′ and its duplicates in Pm}
end

end
if any author in P has high-frequency words in

its name then
continue

end
if P passes the dry-run procedure then

authors in P are duplicates
end

end

end

Algorithm 2: Ensemble of two results.

6. TYPO CORRECTION
In this competition, typos occur in many places such as

author names and paper titles. We focus on typos in author
names because they are directly related to author disam-
biguation. From our observation, names in PaperAuthor.csv

are too noisy, so we only handle typos in author names of
Author.csv. To begin, we pre-process data by replacing all
non-word characters with blanks and converting strings to
lowercase. We also remove 11 manually selected common
words of author affiliations in Author.csv such as “depart-
ment,”“university,” and “institute.”

Because typos rarely occur, we assume that a word which
appears at least twice in all author names is not a typo.
Based on this principle, we split all words of author names
in Author.csv to two sets. The first one includes words that
appear only once as typo candidates, while the second in-
cludes all others. Next, for any typo candidate in the first
set, we find their corrections from the second set. Specifi-
cally, a word in the second set is called a correction of a typo
candidate if they differ in only one character. Note that a
typo may have several corrections. For example, corrections
of “cocn” may include “coin,”“corn,” and “conn.”

After obtaining (typo, correction) pairs, the remaining
task is to find duplicates. Two author names are consid-
ered as duplicates if
1. their word sets are the same, where a typo and its cor-

rections are considered as the same, and

2. their affiliations are required to share at least one com-
mon word.

The first rule identifies “Lin Chih Jen” and “Litn Chih Jen”
as duplicates if (“lint”, “lin”) is a (typo, correction) pair.
However, the same rule also identifies “Lin C J” and “Litn C
J” as duplicates, though the two names are likely different.
Therefore, we impose the second rule. In the end, about 10
pairs of duplicates are obtained.

Finally, we merge the newly founded duplicates with re-
sults obtained in Section 5. Two author groups are combined
if they share at least one author name.

7. RESULTS AND CONCLUSIONS
Table 5 presents the results (F1-score) on both public

and private leader boards. Our first implementation gives
slightly higher F1-scores than the second. After the post-
processing procedure in Sections 5 and 6, the result is fur-
ther boosted. Our approach gives the best F1-score in this
competition, while the first implementation gives the second
best (see the submitted results in Table 5).

Several factors attribute to the success of our approach.
Important ones include the identification of Chinese/non-
Chinese names and effective string matching procedures to
find duplicates with few of ad hoc parameters. Taking Chinese-
or-not and dry-run procedure as examples, Table 6 shows
the degeneration of implementation 1 if we do not include
them into our approach. Therefore, we expect that these
techniques can be useful for other applications of author
disambiguation.

F1-score on leader board
method public private submitted
baseline 0.94411 0.94352 yes
implementation 1 0.99186 0.99198 yes
implementation 2 0.99071 0.99083 no
ensemble 0.99192 0.99201 no
ensemble + typo 0.99195 0.99202 yes

Table 5: F1-scores by our approach. Baseline means
that we assume no duplicates at all. Typo is the ab-
breviation of typo correction. A result is submitted
if and only if it was uploaded during the competi-
tion.

F1-score on leader board
method public private submitted
implementation 1 0.99186 0.99198 yes
without Chinese

0.99109 0.99125 no
-or-not
without dry-run 0.99097 0.99112 no
without both 0.98891 0.98934 no

Table 6: Evaluations of implementation 1 without
Chinese-or-not and/or dry-run.

8. ACKNOWLEDGEMENT
We thank the organizers for holding this interesting com-

petition. We also thank the College of Electrical Engineer-
ing and Computer Science as well as the Department of
Computer Science and Information Engineering at National
Taiwan University for their supports and for providing a

stimulating research environment. The work was also sup-
ported by National Taiwan University under Grants NTU
102R7827, 102R7828, 102R7829, and by National Science
Council under Grants NSC 101-2221-E002-199-MY3, 101-
2628-E002-028-MY2, 101-2628-E002-029-MY2.

9. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In
Proceedings of the VLDB Endowment, pages 586–597,
2002.

[2] I. Bhattacharya and L. Getoor. Iterative record
linkage for cleaning and integration. In DMKD ’04:
Proceedings of the 9th ACM SIGMOD workshop on
Research issues in data mining and knowledge
discovery, pages 11–18, 2004.

[3] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. Intelligent Systems, IEEE, 18(5):16–23,
2003.

[4] D. G. Brizan and A. U. Tansel. A Survey of Entity
Resolution and Record Linkage Methodologies.
Communications of the IIMA, 6(3):41–50, 2006.

[5] H. Köpcke and E. Rahm. Frameworks for entity
matching: A comparison. Data & Knowledge
Engineering, 69(2):197–210, 2010.

[6] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. In Proceedings of the VLDB Endowment,
pages 484–493, 2010.

[7] S. B. Roy, M. D. Cock, V. Mandava, B. Dalessandro,
C. Perlich, W. Cukierski, and B. Hamner. The
Microsoft academic search dataset and KDD Cup
2013. In ACM SIGKDD KDD-Cup WorkShop, 2013.

[8] V. I. Torvik and N. R. Smalheiser. Author name
disambiguation in MEDLINE. ACM Transactions on
Knowledge Discovery from Data, 3(3):11:1–11:29,
2009.

[9] P. Treeratpituk and C. L. Giles. Disambiguating
authors in academic publications using random
forests. In Proceedings of the 9th ACM/IEEE-CS joint
conference on Digital libraries, pages 39–48, 2009.

[10] S. E. Whang and H. Garcia-Molina. Joint entity
resolution. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering, pages
294–305, 2012.

[11] S. E. Whang, D. Marmaros, and H. Garcia-Molina.
Pay-as-you-go entity resolution. IEEE Transactions on
Knowledge and Data Engineering, 25(5):1111–1124,
2013.

