
ar
X

iv
:1

81
1.

09
98

2v
1

 [
cs

.L
G

]
 2

5
N

ov
 2

01
8

Is Data Clustering in Adversarial Settings Secure?

Battista Biggio
Università di Cagliari

Piazza d’Armi
09123, Cagliari, Italy

battista.biggio@diee.unica.it

Ignazio Pillai
Università di Cagliari

Piazza d’Armi
09123, Cagliari, Italy

pillai@diee.unica.it

Samuel Rota Bulò
FBK-irst

Via Sommarive, 18
38123, Trento, Italy
rotabulo@fbk.eu

Davide Ariu
Università di Cagliari

Piazza d’Armi
09123, Cagliari, Italy

davide.ariu@diee.unica.it

Marcello Pelillo
Università Ca’ Foscari di

Venezia
Via Torino, 155

30172 Venezia-Mestre
pelillo@dais.unive.it

Fabio Roli
Università di Cagliari

Piazza d’Armi
09123, Cagliari, Italy

roli@diee.unica.it

ABSTRACT
Clustering algorithms have been increasingly adopted in se-
curity applications to spot dangerous or illicit activities.
However, they have not been originally devised to deal with
deliberate attack attempts that may aim to subvert the
clustering process itself. Whether clustering can be safely
adopted in such settings remains thus questionable. In this
work we propose a general framework that allows one to
identify potential attacks against clustering algorithms, and
to evaluate their impact, by making specific assumptions on
the adversary’s goal, knowledge of the attacked system, and
capabilities of manipulating the input data. We show that
an attacker may significantly poison the whole clustering
process by adding a relatively small percentage of attack
samples to the input data, and that some attack samples
may be obfuscated to be hidden within some existing clus-
ters. We present a case study on single-linkage hierarchical
clustering, and report experiments on clustering of malware
samples and handwritten digits.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); G.3 [Probability and Statis-
tics]: Statistical computing; I.5.1 [Models]: Statistical;
I.5.2 [Design Methodology]: Clustering design and eval-
uation; I.5.3 [Clustering]: Algorithms

General Terms
Security, Clustering.

Keywords
Adversarial learning, Unsupervised Learning, Clustering, Se-
curity Evaluation, Computer Security, Malware Detection.

Preprint of the work published at AISec 2013. Please cite as: B. Biggio, I. Pillai, S. R.

Bulò, D. Ariu, M. Pelillo, and F. Roli. Is data clustering in adversarial settings secure?

In Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security,

AISec ’13, pages 87-98, New York, NY, USA, 2013. ACM.

1. INTRODUCTION
Clustering algorithms are nowadays a fundamental tool for
the data analysts as they allow them to make inference and
gain insights on large sets of unlabeled data. Applications of
clustering span across a large number of different domains,
such as market segmentation [14, 26], classification of web
pages [10], and image segmentation [12]. In the specific do-
main of computer security, clustering algorithms have been
recently exploited to solve plenty of different problems, e.g.,
spotting fast-flux domains in DNS traffic [24], gaining use-
ful insights on tools and sources of attacks against Internet
websites [25], detecting repackaged Android applications [16]
and (Android) mobile malware [9], and even automatically
generating signatures for anti-virus software to enable de-
tection of HTTP-based malware [23].

In many of the aforementioned scenarios, a large amount of
data is often collected in the wild, in an unsupervised man-
ner. For instance, malware samples are often collected from
the Internet, by means of honeypots, i.e., machines that pur-
posely expose known vulnerabilities to be infected by mal-
ware [28], or other ad hoc services, like VirusTotal.1 Given
that these scenarios are intrinsically adversarial, it may thus
be possible for an attacker to inject carefully crafted samples
into the collected data in order to subvert the clustering pro-
cess, and make the inferred knowledge useless. This raises
the issue of evaluating the security of clustering algorithms
against carefully designed attacks, and proposing suitable
countermeasures, when required. It is worth noting that re-
sults from the literature of clustering stability [29] can not
be directly exploited to this end, since the noise induced
by adversarial manipulations is not generally stochastic but
specifically targeted against the clustering algorithm.

The problem of learning in adversarial environments has re-
cently gained increasing popularity, and relevant research
has been done especially in the area of supervised learning
algorithms for classification [6, 8, 17, 3], and regression [13].
On the other hand, to the best of our knowledge only few
works have implicitly addressed the issue of security evalua-
tion related to the application of clustering algorithms in ad-
versarial settings through the definition of suitable attacks,

1http://virustotal.com

1

http://arxiv.org/abs/1811.09982v1
http://virustotal.com

while we are not aware of any work that proposes specific
countermeasures to attacks against clustering algorithms.

The problem of devising specific attacks to subvert the clus-
tering process was first brought to light byDutrisac and Skil-
licorn [11, 27]. They pointed out that some points can be
easily hidden within an existing cluster by forming a fringe
cluster, i.e., by placing such points sufficiently close the bor-
der of the existing cluster. They further devised an attack
that consists of adding points in between two clusters to
merge them, based on the notion of bridging. Despite this
pioneering attempts, a framework for the systematic security
evaluation of clustering algorithms in adversarial settings is
still missing, as well as a more general theory that takes
into account the presence of the adversary to develop more
secure clustering algorithms.

In this work we aim to take a first step to fill in this gap, by
proposing a framework for the security evaluation of cluster-
ing algorithms, which allows us to consider several potential
attack scenarios, and to devise the corresponding attacks, in
a more systematic manner. Our framework, inspired from
previous work on the security evaluation of supervised learn-
ing algorithms [6, 17, 3], is grounded on a model of the
attacker that allows one to make specific assumptions on
the adversary’s goal, knowledge of the attacked system, and
capability of manipulating the input data, and to subse-
quently formalize a corresponding optimal attack strategy.
This work is thus explicitly intended to provide a cornerstone
for the development of an adversarial clustering theory, that
should in turn foster research in this area.

The proposed framework for security evaluation is presented
in Sect. 2. In Sect. 3 we derive worst-case attacks in which
the attacker has perfect knowledge of the attacked system.
In particular, we formalize the notion of (worst-case) poison-
ing and obfuscation attacks against a clustering algorithm,
respectively in Sects. 3.1 and 3.2. In the former case, the
adversary aims at maximally compromising the clustering
output by injecting a number of carefully designed attack
samples, whereas in the latter one, she tries to hide some at-
tack samples into an existing cluster by manipulating their
feature values, without significantly altering the clustering
output on the rest of the data. As a case study, we evalu-
ate the security of the single-linkage hierarchical clustering
against poisoning and obfuscation attacks, in Sect. 4. The
underlying reason is simply that the single-linkage hierar-
chical clustering has been widely used in security-related
applications [4, 16, 23, 24]. To cope with the computa-
tional problem of deriving an optimal attack, in Sects. 4.1
and 4.2 we propose heuristic approaches that serve well our
purposes. Finally, in Sect. 5 we conduct synthetic and real-
world experiments that demonstrate the effectiveness of the
proposed attacks, and subsequently discuss limitations and
future extensions of our work in Sect. 6.

2. ATTACKING CLUSTERING
In this section we present our framework to analyze the se-
curity of clustering approaches from an adversarial pattern
recognition perspective. It is grounded on a model of the ad-
versary that can be exploited to identify and devise attacks
against clustering algorithms. Our framework is inspired by
a previous work focused on attacking (supervised) machine
learning algorithms [6], and it relies on an attack taxonomy
similar to the one proposed in [17, 3]. As in [6], the adver-

sary’s model entails the definition of the adversary’s goal,
knowledge of the attacked system, and capability of manip-
ulating the input data, according to well-defined guidelines.

Before moving into the details of our framework, we intro-
duce some notation. Clustering is the problem of organizing
a set of data points into groups referred to as clusters in a
way that some criteria is satisfied. A clustering algorithm
can thus be formalized in terms of a function f mapping a
given dataset D = {xi}

n

i=1 to a clustering result C = f(D).
We do not specify the mathematical structure of C at this
point of our discussion because there exist different types
of clustering requiring different representations, while our
model applies to any of them. Indeed, C might be a hard or
soft partition of D delivered by partitional clusterings algo-
rithms such as k-means, fuzzy c-means or normalized cuts,
or it could be a more general family of subsets of D such as
the one delivered by the dominant sets clustering algorithm
[22], or it can even be a parametrized hierarchy of subsets
(e.g., linkage-type clustering algorithms).

2.1 Adversary’s goal
Similarly to [6, 17, 3], the adversary’s goal can be defined
according to the attack specificity, and the security violation
pursued by the adversary. The attack specificity can be
targeted, if it affects solely the clustering of a given subset
of samples; or indiscriminate, if it potentially affects the
clustering of any sample. Security violations can instead
affect the integrity or the availability of a system, or the
privacy of its users.

Integrity violations amount to performing some malicious
activity without significantly compromising the normal sys-
tem operation. In the supervised learning setting [17, 3],
they are defined as attacks aiming at camouflaging some
malicious samples (e.g., spam emails) to evade detection,
without affecting the classification of legitimate samples. In
the unsupervised setting, however, this definition can not be
generally applied since the notion of malicious or legitimate
class is not generally available. Therefore, we regard in-
tegrity violations as attacks aiming at deflecting the group-
ing for specific samples, while limiting the changes to the
original clustering. For instance, an attacker may obfuscate
some samples to hide them in a different cluster, without
excessively altering the initial clusters.

Availability violations aim to compromise the functionality
of the system by causing a denial of service. In the super-
vised setting, this translates into causing the largest possible
classification error [17, 6, 7]. According to the same ratio-
nale, in the unsupervised setting we can consider attacks
that significantly affect the clustering process by worsening
its result as much as possible.

Finally, privacy violations may allow the adversary to obtain
information about the system’s users from the clustered data
by reverse-engineering the clustering process.

2.2 Adversary’s knowledge
The adversary can have different degrees of knowledge of the
attacked system. They can be defined by making specific
assumptions on the points (k.i)-(k.iv) described below.

(k.i) Knowledge of the data D: The adversary might
know the data D or only a portion of it. More realistically,
she may not know D exactly, but she may be able to obtain a

2

surrogate dataset sampled from the same distribution as D.
In practice, this can be obtained by collecting samples from
the same source from which samples in D were collected;
e.g., honeypots for malware samples [28].

(k.ii) Knowledge of the feature space: The adversary
could know how features are extracted from each sample.
Similarly to the previous case, she may know how to com-
pute the whole feature set, or only a subset of the features.

(k.iii) Knowledge of the algorithm: The adversary’s
could be aware of the targeted clustering algorithm and how
it organizes the data into clusters; e.g., the criterion used to
determine the cluster set from a hierarchy in hierarchical
clustering.

(k.iv) Knowledge of the algorithm’s parameters: The
attacker may even know how the parameters of the cluster-
ing algorithm have been initialized (if any).

Perfect knowledge. The worst-case scenario in which the
attacker has full knowledge of the attacked system, is usually
referred to as perfect knowledge case [6, 7, 19, 8, 17, 3]. In
our case, this amounts to knowing: (k.i) the data, (k.ii) the
feature representation, (k.iii) the clustering algorithm, and
(k.iv) its initialization (if any).

2.3 Adversary’s capability
The adversary’s capability defines how and to what extent
the attacker can control the clustering process. In the super-
vised setting [17, 6], the attacker can exercise a causative or
exploratory influence, depending on whether she can control
training and test data, or only test data. In the case of clus-
tering, however, there is not a test phase in which some data
has to be classified. Accordingly, the adversary may only ex-
ercise a causative influence by manipulating part of the data
to be clustered.2 This is often the case, though, since this
data is typically collected in an unsupervised manner.

We thus consider a scenario in which the attacker can add
a maximum number of (potentially manipulated) samples
to the dataset D. This is realistic in several practical cases,
e.g., in the case of malware collected through honeypots [28],
where the adversary may easily send (few) samples with-
out having access to the rest of the data. This amounts
to controlling a (small) percentage of the input data. An
additional constraint may be given in terms of a maximum
amount of modifications that can be done to the attack sam-
ples. In fact, to preserve their malicious functionality, mali-
cious samples like spam emails or malware code may not be
manipulated in an unconstrained manner. Such a constraint
can be encoded by a suitable distance measure between the
original, non-manipulated attack samples and the manipu-
lated ones, as in [6, 20, 17, 3].

2.4 Attack strategy
Once the adversary’s goal, knowledge and capabilities have
been defined, one can determine an optimal attack strategy
that specifies how to manipulate the data to meet the ad-
versary’s goal, under the restriction given by the adversary’s
knowledge and capabilities. In formal terms, we denote by
Θ the knowledge space of the adversary. Elements of Θ hold

2One may however think of an exploratory attack to a clus-
tering algorithm as an attack in which the adversary aims to
gain information on the clustering algorithm itself, although
she may not necessarily manipulate any data to this end.

information about the dataset D, the clustering algorithm
f , and its parametrization, according to (k.i)-k(.iv). To
model the degree of knowledge of the adversary we con-
sider a probability distribution µ over Θ. The entropy of
µ indicates the level of uncertainty of the attacker. For
example, if we consider a perfect-knowledge scenario like
the one addressed in the next section, we have that µ is a
Dirac measure peaked on an element θ0 ∈ Θ (with null en-
tropy), where θ0 = (D, f, · · ·) holds the information about
the dataset, the algorithm and any other of the informations
listed in Sect.2.2. Further, we assume that the adversary is
given a set of attack samples A that can be manipulated be-
fore being added to the original set D. We model with the
function Ω(A) the family of sample sets that the attacker
can generate according to her capability as a function of the
set of initial attack samples A. The set A can be empty, if
the attack samples are not required to fulfill any constraint
on their malicious functionality, i.e., they can be generated
from scratch (as we will see in the case of poisoning attacks).
Finally, the adversary’s goal given the knowledge θ ∈ Θ is
expressed in terms of an objective function g(A′; θ) ∈ R

that evaluates how close the modified data set integrating
the (potentially manipulated) attack samples A′ is to the ad-
versary’s goal. In summary, the attack strategy boils down
to finding a solution to the following optimization problem:

maximize Eθ∼µ[g(A
′; θ)]

s.t. A′ ∈ Ω(A) .
(1)

where Eθ∼µ[·] denotes the expectation with respect to θ be-
ing sampled according to the distribution µ.

3. PERFECT KNOWLEDGE ATTACKS
In this section we provide examples of worst-case integrity
and availability security violations in which the attacker has
perfect knowledge of the system, as described in Sect. 2.2.
We respectively refer to them as poisoning and obfuscation
attacks. Since the attacker has no uncertainty about the sys-
tem, we set µ = δ{θ0}, where δ is the Dirac measure and θ0
represents exact knowledge of the system. The expectation
in (1) thus yields g(A′; θ0).

3.1 Poisoning attacks
Similarly to poisoning attacks against supervised learning
algorithms [7, 19], we define poisoning attacks against clus-
tering algorithms as attacks in which the data is tainted
to maximally worsen the clustering result. The adversary’s
goal thus amounts to violating the system’s availability by
indiscriminately altering the clustering output on any data
point. To this end, the adversary may aim at maximizing
a given distance measure between the clustering C obtained
from the original data D (in the absence of attack) and the
clustering C′ = fD(D′) obtained by running the clustering
algorithm on the contaminated data D′, and restricting the
result to the samples in D, i.e., fD = πD ◦ f where πD is
a projection operator that restricts the clustering output to
the data samples in D. We regard the tainted data D′ as
the union of the original dataset D with the attack samples
in A′, i.e., D′ = D ∪ A′. The goal can thus be written as
g(A′; θ0) = dc(C, fD(D ∪ A′)), where dc is the chosen dis-
tance measure between clusterings. For instance, if f is a
partitional clustering algorithm, any clustering result can be
represented in terms of a matrix Y ∈ R

n×k, each (i, k)th com-
ponent being the probability that the ith sample is assigned

3

to the kth cluster. Under this setting, a possible distance
measure between clusterings is given by:

dc(Y, Y
′) = ‖YY⊤ − Y

′
Y
′⊤‖F , (2)

where ‖ · ‖F is the Frobenius norm. The components of the
matrix YY⊤ represent the probability of two samples to be-
long to the same cluster. When Y is binary, thus encoding
hard clustering assignments, this distance counts the num-
ber of times two samples have been clustered together in one
clustering and not in the other, or vice versa. In general, de-
pending on the nature of the clustering result, other ad-hoc
distance measures can be adopted.

As mentioned in Sect. 2.3, we assume that the attacker can
inject a maximum of m data points into the original data
D, i.e. |A′| ≤ m. This realistically limits the adversary to
manipulate only a given, potentially small fraction of the
dataset. Clearly, the value of m will be considered as a pa-
rameter in our evaluation to investigate the robustness of
the given clustering algorithm against an increasing control
of the adversary over the data. We further define a box con-
straint on the feature values xlb ≤ x ≤ xub, to restrict the
attack points to lie in some fixed interval (e.g., the smallest
box that includes all the data points). Hence, we define the
function Ω encoding the adversary’s capabilities as follows:

Ωp =
{

{a′
i}

m

i=1 ⊂ R
d : xlb ≤ a

′
i ≤ xub for i = 1, · · · ,m

}

.

Note that Ω depends on a set of target samples A in (1), but
since A is empty in this case, we write Ωp instead of Ω(∅).
The reason is simply that, in the case of a poisoning attack,
the attacker aims to find a set of attack samples that do
not have to carry out any specific malicious activity besides
worsening the clustering process.

In summary, the optimal attack strategy under the afore-
mentioned hypothesis amounts to solving the following op-
timization problem derived from (1):

maximize dc(C, fD(D ∪ A′))
s.t. A′ ∈ Ωp .

(3)

3.2 Obfuscation attacks
Obfuscation attacks are violations of the system integrity
through targeted attacks. The adversary’s goal here is to
hide a given set of initial attack samples A within some ex-
isting clusters by obfuscating their content, possibly without
altering the clustering results for the other samples. We de-
note by Ct the target clustering involving samples in D∪A′

the attacker is aiming to, being A′ the set of obfuscated
attack samples. With the intent to preserve the cluster-
ing result C on the original data samples, we impose that
πD(Ct) = C, while the cluster assignments for the samples
in A′ are freely determined by the attacker. As opposed to
the poisoning attack, here the attacker is interested in push-
ing the final clustering towards the target clustering and
therefore her intention is to minimize the distance between
Ct and C′ = f(D ∪ A′). Accordingly, the goal function g in
this case is defined as g(A′; θ0) = −d(Ct, f(D ∪ A′)).

As for the adversary’s capability, we assume that the at-
tacker can perturb the target samples in A to some maxi-
mum extent. We model this by imposing that ds(A,A′) ≤
dmax, where ds is a measure of divergence between the two

sets of samples A and A′ and dmax is a nonnegative real
scalar. Consequently, the function Ω representing the at-
tacker’s capacity is given by

Ωo(A) =
{

{a′
i}

|A|
i=1 : ds(A,A′) ≤ dmax

}

.

The distance ds can be defined in different ways. For in-
stance, in the next section we define ds(A,A′) as the largest
Euclidean distance among corresponding elements in A and
A′, i.e.,

ds(A,A′) = max
i=1,...,m

‖ai − a
′
i‖2 (4)

where we assume A = {ai}
m

i=1 and A′ = {a′
i}

m

i=1. This
choice allows us to bound the divergence between the origi-
nal target samples in A and the manipulated ones, as typi-
cally done in adversarial learning [20, 17, 8, 6].

In summary, the attack strategy in the case of obfuscation
attacks can be obtained as the solution of the following op-
timization program derived from (1):

minimize dc(C
t, f(D ∪A′))

s.t. A′ ∈ Ωo(A) .
(5)

4. A CASE STUDY ON SINGLE-LINKAGE

HIERARCHICAL CLUSTERING
In this section we solve a particular instance of the optimiza-
tion problems (3) and (5), corresponding respectively to the
poisoning and obfuscation attacks described in Sects. 3.1
and 3.2, against the single-linkage hierarchical clustering.
The motivation behind this specific choice of clustering algo-
rithm is that, as mentioned in Sect. 1, it has been frequently
exploited in security-sensitive tasks [4, 16, 23, 24].

Single-linkage hierarchical clustering is a bottom-up algo-
rithm that produces a hierarchy of clusterings, as any other
hierarchical agglomerative clustering algorithm [18]. The hi-
erarchy is represented by a dendrogram, i.e., a tree-like data
structure showing the sequence of cluster fusion together
with the distance at which each fusion took place. To obtain
a given partitioning of the data into clusters, the dendro-
gram has to be cut at a certain height. The leaves that form
a connected sub-graph after the cut are considered part of
the same cluster. Depending on the chosen distance between
clusters (linkage criterion), different variants of hierarchical
clustering can be defined. In the single-linkage variant, the
distance between any two clusters C1, C2 is defined as the
minimum Euclidean distance between all pairs of samples in
C1 × C2.

For both poisoning and obfuscation attacks, we will model
the clustering output as a binary matrix Y ∈ {0, 1}n×k, in-
dicating the sample-to-cluster assignments (see Sect. 3.1).
Consequently, we can make use of the distance measure dc
between clusterings defined in Eq. (2). However, to obtain
a given set of clusters from the dendrogram obtained by the
single-linkage clustering algorithm, we will have to specify
an appropriate cut criterion.

4.1 Poisoning attacks
For poisoning attacks against single-linkage hierarchical clus-
tering, we aim to solve the optimization problem given by

4

✲� ✲✁✂✄ ✲✁ ✲☎✂✄ ☎ ☎✂✄ ✁ ✁✂✄

✲�✂✄

✲�

✲✁✂✄

✲✁

✲☎✂✄

☎

☎✂✄

✁

✁✂✄

�

�✂✄

�

✹

✻

✽

✁☎

✁�

✁✹

✁✻

✲� ✲✁✂✄ ✲✁ ✲☎✂✄ ☎ ☎✂✄ ✁ ✁✂✄

✲�✂✄

✲�

✲✁✂✄

✲✁

✲☎✂✄

☎

☎✂✄

✁

✁✂✄

�

�✂✄

☎✂✄

✁

✁✂✄

�

�✂✄

✸

✸✂✄

✹

✹✂✄

Figure 1: Poisoning single-linkage hierarchical clustering. In each plot, samples belonging to different clusters
are represented with different markers and colors. The left and middle plot show the initial partitioning of
the given 100 data points into k = 4 clusters. The objective function of Eq. 3 (shown in colors) for our greedy
attack (|A′| = 1) is respectively computed with hard (left plot) and soft assignments (middle plot), i.e., with
binary Y and posterior estimates. The k − 1 = 3 bridges obtained from the dendrogram are highlighted with
red lines. The rightmost plot shows how the partitioning changes after m = 20 attack samples (highlighted
with red circles) have been greedily added.

Eq. (3). As already mentioned, since the clustering is ex-
pressed in terms of a hierarchy, we have to determine a suit-
able dendrogram cut in order to model the clustering output
as a binary matrix Y. In this case, we assume that the clus-
tering algorithm selects the cut, i.e., the number of clusters,
that achieves the minimum distance between the clustering
obtained in the absence of attack C and the one induced by
the cut, i.e., min dc(C, fD(D ∪A′)). Although this may not
be a realistic cut criterion, as the ideal clustering C is not
known to the clustering algorithm, this worst-case choice for
the adversary gives us the minimum performance degrada-
tion incurred by the clustering algorithm under attack.

Let us now discuss how Problem (3) can be solved. First,
note that it is not possible to predict analytically how the
clustering output Y′ changes as the set of attack samples
A′ is altered, since hierarchical clustering does not have a
tractable, underlying analytical interpretation.3 One possi-
ble answer consists in a stochastic exploration of the solution
space (e.g. by simulated annealing). This is essentially done
by perturbing the input data A′ a number of times, and eval-
uating the corresponding values of the objective function by
running the clustering algorithm (as a black box) on D∪A′.
The set A′ that provides the highest objective value is even-
tually retained. However, to find an optimal configuration of
attack samples A′, one should repeat this procedure a very
large number of times. To reduce computational complexity,
one may thus consider efficient search heuristics specifically
tailored to the considered clustering algorithm.

For the above reason, we consider a greedy optimization ap-
proach where the attacker aims at finding a local maximum
of the objective function by adding one attack sample at a
time, i.e., |A′| = m = 1. In this case, we can more eas-
ily understand how the objective function changes as the
inserted attack point varies, and define a suitable heuris-
tic approach. An example is shown in the leftmost plot of
Fig. 1. This plot shows that the objective function exhibits a

3In general, even if the clustering algorithm has a clearer
mathematical formulation, it is not guaranteed that a good
analytical prediction can be found. For instance, though k-
means clustering is well-understood mathematically, its vari-
ability to different initializations makes it almost impossible
to reliably predict how its output may change due to data
perturbation.

global maximum when the attack point is added in between
clusters that are sufficiently close to each other. The reason
is that, when added in such a location, the attack point op-
erates as a bridge, causing the two clusters to be merged in
a single cluster, and the objective function to increase.

Bridge-based heuristic search. Based on this observa-
tion, we devised a search heuristic that considers only k− 1
potential attack samples, being k the actual number of clus-
ters found by the single-linkage hierarchical clustering at a
given dendrogram cut. In particular, we only considered
the k− 1 points lying in between the connections that have
been cut to separate the k given clusters from the top of
the hierarchy, highlighted in our example in the leftmost
plot of Fig. 1. These connections can be directly obtained
from the dendrogram, i.e., we do not have to run any post-
processing algorithm on the clustering result. Thus, one is
only required to evaluate the objective function k − 1 times
for selecting the best attack point. We will refer to this ap-
proach as Bridge (Best) in Sect. 5.1. The rightmost plot in
Fig. 1 shows the effect of our greedy attack after thatm = 20
attack points have been inserted. Note how the initial clus-
ters are fragmented into smaller clusters that tend to contain
points which originally belonged to different clusters.

Approximating Y′. To further reduce the computational
complexity of our approach, i.e., to avoid re-computing the
clustering and the corresponding value of the objective func-
tion k − 1 times for each attack point, we consider another
heuristic approach. The underlying idea is simply to select
the attack sample (among the k − 1 bridges suggested by
our bridge-based heuristic search) that lies in between the
largest clusters. In particular, we assume that the attack
point will effectively merge the two adjacent clusters, and
thus modify Y′ accordingly (without re-estimating its real
value by re-running the clustering algorithm). To this end,
for each point belonging to one of the two clusters, we set
to 1 (0) the value of Y′ corresponding to the first (second)
cluster. Once the estimated Y′ is computed, we evaluate the
objective function using the estimated Y′, and select the at-
tack point that maximizes its value. We will refer to this
approach as Bridge (Hard) in Sect. 5.1.

Approximating Y′ with soft clustering assignments.
Finally, we discuss another variation to the latter discussed

5

heuristic approach, which we will refer to as Bridge (Soft),
in Sect. 5.1. The problem arises from the fact that our ob-
jective function exhibits really abrupt variations, since it is
computed on hard cluster assignments (i.e., binary matri-
ces Y′). Accordingly, adding a single attack point at a time
may not reveal connections that can potentially merge large
clusters after few attack iterations, i.e., using more than one
attack sample. To address this issue, we approximate Y′ with
soft clustering assignments. To this end, the element y′

ik of Y′

is estimated as the posterior probability of point xi belong-
ing to cluster ck, i.e., y

′
ik = p(ck|xi) = p(xi|ck)p(ck)/p(xi).

The prior p(ck) is estimated as the number of samples be-
longing to ck divided by the total number of samples, the
likelihood p(xi|ck) is estimated with a Gaussian Kernel Den-
sity Estimator (KDE) with bandwidth parameter h:

p(xi|ck) =
1

|ck|

∑

xj∈ck

exp

(

−
||xi − xj ||

2

h

)

, (6)

and the evidence p(xi) is obtained by marginalization over
the given set of clusters.

Worth noting, for too small values of h, the posterior esti-
mates tend to the same value, i.e., each point is likely to
be assigned to any cluster with the same probability. When
h is too high, instead, each point is assigned to one cluster,
and the objective function thus equals that corresponding to
the original hard assignments. In our experiments we simply
avoid these limit cases by selecting a value of h comparable
to the average distance between all possible pairs of samples
in the dataset, which gave reasonable results.

An example of the smoother approximation of the objective
function provided by this heuristic is shown in the middle
plot of Fig. 1. Besides, this technique also provides a reliable
approximation of the true objective: although its values are
significantly re-scaled, the global maximum is still found in
the same location. The smooth variations that character-
ize the approximated objective influence the choice of the
best candidate attack point. In fact, attack points lying
on bridges that may potentially connect larger clusters after
some attack iterations may be sometimes preferred to attack
points that can directly connect smaller and closer clusters.
This may lead to a larger increase in the true objective func-
tion as the number of injected attack points increases.

4.2 Obfuscation attacks
In this section we solve (5) assuming the worst-case (perfect-
knowledge) scenario against the single-linkage clustering al-
gorithm. Recall that the attacker’s goal in this case is to
manipulate a given set of non-obfuscated samples A such
that they are clustered according to a desired configuration,
e.g., together with points in an existing, given cluster, with-
out altering significantly the initial clustering that would be
obtained in the absence of manipulated attacks.

As in the previous case, to represent the output of the clus-
tering algorithm as a binary matrix Y representing clustering
assignments, and thus compute dc as given by Eq. 2, we have
to define a suitable criterion for cutting the dendrogram.
Similarly to poisoning attacks, we define an advantageous
criterion for the clustering algorithm, that gives us the low-
est performance degradation incurred under this attack: we
select the dendrogram cut that minimizes dc(C

⋆, f(D∪A′)),
where C⋆ represents the optimal clustering that would be ob-

tained including the non-manipulated attack samples, i.e.,
C⋆ = f(D∪A). The reason is that, to better contrast an ob-
fuscation attack, the clustering algorithm should try to keep
the attack points corresponding to the non-manipulated set
A into their original clusters. For instance, in the case of
malware clustering, non-obfuscated malware may easily end
up in a well-defined cluster, and, thus, it may be subse-
quently categorized in a well-behaved malware family. While
the adversary tries to manipulate malware to have it clus-
tered differently, the best solution for the clustering algo-
rithm would be to obtain the same clusters that would be
obtained in the absence of attack manipulation.

We derive a simple heuristic to get an approximate solu-
tion of (5) assuming ds to be defined as in (4). We assume
that, for each sample ai ∈ A, the attacker selects the closest
sample di ∈ D belonging to the cluster to which ai should
belong to, according to the attacker’s desired clustering Ct.
To meets the constraint given by Ωo in Eq. 5, the attacker
then determines for each ai ∈ A a new sample a

′
i ∈ A along

the line connecting ai and di in a way not to exceed the
maximum distance dmax from ai, i.e., a

′
i = ai +α(di −ai),

where α = min(1, dmax/‖di − ai‖2).

5. EXPERIMENTS
We present here some experiments to evaluate the effec-
tiveness of the poisoning and obfuscation attacks devised
in Sect. 4 against the single-linkage hierarchical clustering
algorithm, under perfect knowledge of the attacked system.

5.1 Experiments on poisoning attacks
For the poisoning attack, we consider three distinct cases:
a two-dimensional artificial data set, a realistic application
example on malware clustering, and a task in which we aim
to cluster together distinct handwritten digits.

5.1.1 Artificial data
We consider here the standard two-dimensional banana-shaped
dataset from PRTools,4 for which a particular instance is
shown in Fig. 1 (right and middle plot). We fix the num-
ber of initial clusters to k = 4, which yields our original
clustering C in the absence of attack.

We repeat the experiment five times, each time by randomly
sampling 80 data points. In each run, we add up to m =
20 attack samples, that simulates a scenario in which the
adversary can control up to 20% of the data. As described in
Sect. 4.1, the attack proceeds greedily by adding one sample
at a time. After adding each attack sample, we allow the
clustering algorithm to change the number of clusters from
a minimum of 2 to a maximum of 50. The criterion used to
determine the number of clusters is to minimize the distance
of the current partitioning with the clustering in the absence
of attack, as explained in details in Sect. 4.1.

We consider five attack strategies, described in the following.

Random: the attack point is selected at random in the min-
imum box that encloses the data.

Random (Best): k− 1 attack points are selected at random,
being k the actual number of clusters at a given attack it-
eration. Then, the objective function is evaluated for each
point, and the best one is chosen.

4http://prtools.org

6

http://prtools.org

0% 2% 5% 7% 9% 12% 15% 18% 20%
0

10

20

30

40

50

60
O

bj
ec

tiv
e

F
un

ct
io

n
Banana

0% 1% 2% 3% 4% 5%
0

20
40
60
80

100
120
140
160
180

O
bj

ec
tiv

e
F

un
ct

io
n

Malware

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
0

100
200
300
400
500
600
700
800

O
bj

ec
tiv

e
F

un
ct

io
n

Digits

Random
Random (Best)
Bridge (Best)
Bridge (Soft)
Bridge (Hard)

0% 2% 5% 7% 9% 12% 15% 18% 20%
8

10
12
14
4
6

N
um

 C
lu

st
er

s
(k

)

Fraction of samples controlled by the attacker
0% 1% 2% 3% 4% 5%
5

10
15
20
25
30

N
um

 C
lu

st
er

s
(k

)
Fraction of samples controlled by the attacker

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
0

20
40
60
80

100

N
um

 C
lu

st
er

s
(k

)

Fraction of samples controlled by the attacker

Figure 2: Results for the poisoning attack averaged over five runs on the Banana-shaped dataset (first
column), the Malware dataset (second column), and the Digit dataset (third column). Top plots show the
variation of the objective function dc(f(D), fD(D ∪ A′)) as the fraction of samples controlled by the adversary
increases. Bottom plots report the number of clusters selected after the insertion of each attack sample.

Banana (20%) Malware (5%) Digits (1%)
Split Merge Split Merge Split Merge

Random 1.15 ± 0.22 1.29 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Random (Best) 1.40 ± 0.34 1.54 ± 0.30 1.00 ± 0.00 1.34 ± 0.39 1.00 ± 0.00 1.00 ± 0.00
Bridge (Best) 2.40 ± 0.60 1.40 ± 0.23 1.49 ± 0.23 1.31 ± 0.17 33.9 ± 0.15 1.02 ± 0.00
Bridge (Soft) 3.85 ± 1.35 1.22 ± 0.11 2.76 ± 0.84 1.12 ± 0.09 33.9 ± 0.15 1.02 ± 0.00
Bridge (Hard) 3.75 ± 1.43 1.21 ± 0.23 2.41 ± 0.73 1.10 ± 0.10 34.0 ± 0.00 1.02 ± 0.00

Table 1: Split and Merge averaged values and standard deviations for the Banana-shaped dataset (at 20%
poisoning), the Malware dataset (at 5% poisoning), and the Digit dataset (at 1% poisoning).

Bridge (Best): The k− 1 bridges suggested by our heuristic
approach are evaluated, and the best one is chosen.

Bridge (Hard): The k−1 bridges are evaluated here by pre-
dicting the clustering output Y′ as discussed in Sect. 4.1 (i.e.,
assuming that the corresponding clusters will be merged),
using hard clustering assignments.

Bridge (Soft): This is the same strategy as Bridge (Hard),
except for the fact that we consider soft clustering assign-
ments when modifying Y′. To this end, as discussed in
Sect. 4.1, we use a Gaussian KDE. We set the kernel band-
width h as the average distance between each possible pair
of samples in the data. On average, h ≈ 2 in each run.

It is worth remarking that Random (Best) and Bridge (Best)
require the objective function to be evaluated k − 1 times
at each iteration to select the best candidate attack sam-
ple. This means that the clustering algorithm has to be run
k − 1 times at each step. Instead, the other methods do
not require us to re-run the clustering algorithm to select
the attack point. Their complexity is therefore significantly
lower than the aforementioned methods.

The results averaged over the five runs are reported in Fig. 2
(first column). From the top plot one may appreciate how
the methods based on the bridge-based heuristics achieve
similar values of the objective function, while clearly out-
performing the random-based methods. Further, as reason-
ably expected, Random (Best) outperforms Random since it
considers the best point over k − 1 attempts. Nevertheless,
even selecting a random attack sample, in this case, turned
out to significantly affect the clustering results.

The bottom plot provides us a better understanding of how
the attack effectively works. The main effect is indeed to
fragment the original clusters into a high number of smaller
clusters. In particular, after the insertion of m = 20 data
points, i.e., when 20% of the data is controlled by the at-
tacker, the selected number of clusters increases from 4 to
about 7-14 clusters depending on the considered method.

To further clarify the effect of the attack on the clustering
algorithm, we consider two measures referred to as Split and
Merge in Table 5.1, which are given as follows. Let C and C′

be the initial and the final clustering restricted to elements
in D, respectively, and let C be a binary matrix, each entry
Ckk′ indicating the co-occurrence of at least one sample in
the kth cluster of C and in the k′th cluster of C′. Then, the
above measures are given as:

Split = mean
i

∑

j

Cij , Merge = mean
j

∑

i

Cij .

Intuitively, split quantifies to what extent the initial clusters
are fragmented across different final clusters, while merge
quantifies to what extent the final clusters contain samples
that originally belonged to different initial clusters.

From Table 5.1, it can be appreciated how, for the most
effective attacks, i.e., Bridge (Soft) and Bridge (Hard), the
initial clusters are split into approximately 3.8 clusters, while
the final clusters merge approximately 1.2 initial clusters, on
average. This clarifies how the proposed attack eventually
compromises the initial clustering: it tends to fragment the
initial clusters into smaller ones, and to merge together final

7

❘�✁✂✄☎

✥

✆

✥✶

❘�✁✂✄☎

✭✝✞✟✠✡

✝❇☛✂☞✞

✭✝✞✟✠✡

✝❇☛✂☞✞

✭✌✄✍✠✡

✝❇☛✂☞✞

✭✎�❇✂✡

Figure 3: Attack samples produced by the five
strategies at iterations 1, 2 and 10, for the digit data.

clusters which originally came from different clusters. Bridge
(Best) tends instead to induce a lower number of final clus-
ters, i.e., the clustering algorithm tends to merge more final
clusters than splitting initial ones. However, this is not the
optimal choice according to the attacker’s goal.

5.1.2 Malware clustering
We consider here a more realistic application example in-
volving malware clustering, and in particular a simplified
version of the algorithm for behavioral malware clustering
proposed in [23]. The ultimate goal of this approach is to
obtain malware clusters that can aid the automatic gen-
eration of high quality network signatures, which can be
used in turn to detect botnet command-and-control (C&C)
and other malware-generated communications at the net-
work perimeter. With respect to the original algorithm, we
made the following simplifications:

(a) we consider only the first of the two clustering steps
carried out by the original system. The algorithm pro-
posed in [23] clusters samples through two consecutive
stages, named coarse-grain and fine-grain clustering, re-
spectively. Here, we just focus on the coarse-grain clus-
tering, which is based on a set of numeric features.

(b) We consider a subset of six statistical features (out of
the seven used by the original algorithm). They are: (1)
number of GET requests; (2) number of POST requests;
(3) average length of the URLs; (4) average number of
parameters in the request; (5) average amount of data
sent by POST requests; and (6) average length of the
response. We exclude the seventh feature, i.e., the total
number of HTTP requests, as it is redundant with respect
to the first and the second feature. All feature values are
re-scaled in [0, 1] as in the original work.

(c) We use the single-linkage hierarchical clustering instead
of the BIRCH algorithm [30], since this modification does
not significantly affect the quality of the clustering re-
sults, as the authors demonstrated in [23].

For the purpose of this evaluation, we use a subset of 1,000
samples taken from Dataset 1 of [23]. This dataset consists
of distinct malware samples (no duplicates) collected dur-
ing March 2010 from a number of different malware sources,
including MWCollect [1], Malfease [2], and commercial mal-
ware feeds. As in the previous setting, we repeat the ex-
periments five times, by randomly selecting a subset of 475

samples from the available set of 1, 000 malware data in each
run. The initial set of clusters C, as in [23], is selected as the
partitioning that minimizes the value of the Davies-Bouldin
Index (DBI) [15], a measure that characterizes dispersion
and closeness of clusters. We consider the cuts of the initial
dendrogram that yield from 2 to 25 clusters, and choose the
one corresponding to the minimum DBI. This yields approx-
imately 9 clusters in each run. While the attack proceeds,
the clustering algorithm can choose a number of clusters
ranging from 2 to 50. The attacker can inject up to 25 at-
tack samples, that amounts to controlling up to 5% of the
data. The value of h for the KDE used in Bridge (Soft) is
set as the average distance between pairs of samples, which
turns out to be approximately 0.2 in each run.

Results are shown in Fig. 2 (second column). The effect of
the attack is essentially the same as in the previous experi-
ments on the Banana-shaped data, although here there is a
significant difference among the performances of the bridge-
based methods. In particular, Bridge (Soft) gradually out-
performs the other approaches as the fraction of injected
samples approaches 5%. The reason is that, as qualitatively
discussed in Sect. 4.1, this heuristic approach tends to bridge
clusters which are too far to be bridged with a single attack
point, and are thus disregarded by Bridge (Best) and not al-
ways chosen by Bridge (Hard). It is also worth noting that,
in this case, the Random approach is totally ineffective. In
particular, no change in the objective function is observed
for this method, and the number of clusters increases lin-
early as the attack proceeds. This means simply that the
clustering algorithm produces a new cluster for each newly-
injected attack point, making the attack totally ineffective.
The behavior exhibited by the different attack strategies is
also confirmed by the Split and Merge values reported in Ta-
ble 5.1. Here, the most effective methods, i.e., again Bridge
(Soft) and Bridge (Hard), split the 3 initial clusters each
into 2.7 and 2.4 final clusters, on average, yielding a total
number of clusters of about 20-25 clusters. Similarly to the
previous experiments, Bridge (Best) yields a lower number
of final clusters, as it induces more the clustering algorithm
to cluster together samples that originally belonged to dif-
ferent initial clusters.

5.1.3 Handwritten digits
We finally repeat the experiments described in the previous
sections on the MNIST handwritten digit data [21].5 In
this dataset, each digit is size-normalized and centered, and
represented as a grayscale image of 28×28 pixels. Each pixel
is raster-scan ordered and its value is directly considered as a
feature. The dimensionality of the feature space is thus 784,
a much higher value than that considered in the previous
cases. We further normalize each feature (pixel) in [0, 1] by
dividing its value by 255.

We focus here on a subset of data consisting of the three
digits ‘0’, ‘1’, and ‘6’. To obtain three initial clusters, each
representing one of the considered digits, we first compute
the average digit for each class (i.e., the average ‘0’, ‘1’,
and ‘6’), and then select 700 samples per class, by retaining
the closest samples to the corresponding average digit. We
repeat the experiments five times, each time by randomly
selecting 330 samples per digit from the corresponding set

5This dataset is publicly available in Matlab format at
http://cs.nyu.edu/~roweis/data.html.

8

http://cs.nyu.edu/~roweis/data.html

of 700 pre-selected samples. While the attack proceeds, the
clustering algorithm can choose a number of clusters ranging
from 2 to 100. We assume that the attacker can inject up to
10 attack samples, that amounts to controlling up to 1% of
the data. The value of h for the KDE used in Bridge (Soft)
is set as in the previous case, based on the average distance
between all pairs of samples. For this dataset, it turns out
that h ≈ 1 in each run.

Results are shown in Fig. 2 (third column). With respect to
the previous experiments on the Banana-shaped data, and
on the Malware data, the results here are significantly dif-
ferent. In particular, note how the Random and Random
(Best) approaches are totally ineffective here. Similarly to
the previous case in malware clustering, the clustering algo-
rithm essentially defeats the attack influence by creating a
new cluster for each attack sample. The underlying reason
is that, in this case, the feature space has a very high dimen-
sionality, and, thus, sampling only k−1 points at random is
not enough to find a suitable attack point. In other words,
if an attack sample is not very well crafted, it may be easily
isolated from the rest of the data. Although increasing the
dimensionality may thus seem a suitable countermeasure to
protect clustering against random attacks, this drastically
increases its vulnerability to well designed attack samples.
Note indeed how the clustering is already significantly wors-
ened when the adversary only controls a fraction as small
as of 0.2% of the data. In fact, the number of final clusters
raises immediately to the maximum allowed number of 100.
This is also clarified in Table 5.1, where it can be appreci-
ated how the initial clusters are fragmented into an average
of 33 final clusters for the bridge-based methods. Note how-
ever that, in this case, the final clusters are almost pure, i.e.,
the attack algorithm does not succeed in merging together
samples coming from different initial clusters.

In Fig. 3 we also show some of the attack samples that are
produced by the five attack strategies, at different attack
iterations. The random-based attacks clearly produce very
noisy images which yield a completely ineffective attack, as
already mentioned. Instead, the initial attacks considered
by bridge-based methods (at iteration 1 and 2) resemble
effectively the digits corresponding to the two initial clusters
that they aim to connect (‘0’ and ‘6’, and ‘1’ and‘6’). Since
the attack completely destroys the three initial clusters after
very few attack samples have been added, at later iterations
(e.g., iteration 10), the bridge-based methods tend to enforce
some connection within the cluster belonging to the ‘0’ digit,
probably trying to merge some of the final clusters together.
However, since the maximum number of allowed clusters has
been already reached, no further improvement is observed in
the objective function.

5.2 Experiments on obfuscation attacks
For the obfuscation attack, we present an experiment on
handwritten digits, using again the MNIST digit data de-
scribed in Sect. 5.1.3.

5.2.1 Handwritten digits
We consider the same initial clusters of Sect. 5.1.3, consist-
ing of 330 samples for each of the following digits: ‘0’, ‘1’,
and ‘6’. As in the previous case, we average the results over
five runs, each time selecting the initial 330 samples per clus-
ter from the pre-selected sets of 700 samples per digit. In

0 1 2 3 4 5 6 7 8 9 10
3

3.4
3.8
4.2
4.6

5

N
um

 C
lu

st
er

s
(k

)

d
 max

Figure 4: Results for the obfuscation attack aver-
aged over five runs on the Digit dataset. The top
plots shows the variation of the objective function
for the attacker dc(C

t, f(D ∪ A′)) and for the cluster-
ing algorithm dc(f(D∪A), f(D∪A′)) as the maximum
amount of modifications dmax to the initial attack
samples A increases. The bottom plot reports the
corresponding average number of selected clusters.

✵�✵ ✷�✵ ✸�✵ ✹�✵ ✺�✵ ✼�✵

Figure 5: An example of how a digit ‘3’ is gradually
manipulated to resemble the closest ‘6’, for different
values of dmax.

this case, however, we consider a further initial cluster of
100 samples corresponding to the digit ‘3’ (which are also
randomly sampled from a pre-selected set of 700 samples of
‘3’, chosen with the same criterion used in Sect. 5.1.3 to end
up in the same cluster, initially). These represent the attack
samples A that the attacker aims to obfuscate. We remind
the reader that the attacker’s goal in this case is to manip-
ulate some samples to have them clustered according to a
desired criterion, without affecting significantly the normal
system operation. In particular, we assume here that the
attacker can manipulate samples corresponding to the digit
‘3’ in order to have them clustered together with the cluster
corresponding to the digit ‘6’, while preserving the initial
clusters. In other words, the desired clustering output for
the attacker consists of three clusters: one corresponding to
the ‘0’ digit, one corresponding to the ‘1’ digit, and the latter
corresponding to the digits ‘6’ and ‘3’. These constraints can
be easily encoded as a desired clustering output Ct through
a binary matrix Yt. This reflects exactly Problem 5, where
the attacker aims at minimizing dc(C

t, f(D ∪A′)).

On the other hand, as explained in Sect. 3.2, the clustering
algorithm attempts to keep the attack points correspond-
ing to the digit ‘3’ into a well-separated cluster from the
remaining digits, i.e., it selects the number of clusters that
minimizes dc(C

⋆, f(D ∪A′)), which can thus be regarded as
the objective function for the clustering algorithm. In this
case, C⋆ is the clustering obtained on the initial data and
the non-manipulated attack samples, i.e., C⋆ = f(D ∪A).

9

The results for the above discussed obfuscation attack are
given in Fig. 4, where we report the values of the objective
function for the attacker and for the clustering algorithm,
as well as the number of selected clusters, as a function of
the maximum amount of allowed modifications to the at-
tack samples, given in terms of the maximum Euclidean dis-
tance dmax (see Eq. 4). The results clearly show that the
objective function of the attacker tends to decrease, while
that of the clustering algorithm generally increases. The
reason is that, initially, the clustering algorithm correctly
separates the four clusters associated to the four distinct
digits, whereas as dmax increases, the attack digits ‘3’ are
more and more altered to resemble the closest ‘6’s, and are
then gradually merged to their cluster. The number of clus-
ters does not decrease immediately to 3 as one would expect
since, while manipulating the attack samples, their cluster
is fragmented into smaller ones (typically, two or three clus-
ters). The reason is that, to remain as close as possible to
the ideal C⋆, the clustering algorithm avoids some of the ‘3’s
to immediately join the cluster of ‘6’s by fragmenting the
cluster of ‘3’s.

When dmax takes on values approximately in [3, 4], the clus-
tering algorithm creates only three clusters, corresponding
effectively to the attacker’s goal Ct (this is witnessed by the
fact that the averaged attacker’s objective is almost zero).
Surprisingly, though, as soon as dmax becomes greater than
4, the number of clusters raises again to 4, and some of the
attack samples are again separated from the cluster of ‘6’s,
worsening the adversary’s objective. This is due to the fact
that, when dmax ≈ 3 or 4, some of the attack points work
as bridges and successfully connect the remaining ‘3’s to the
cluster of ‘6’s, whereas when these points are further shifted
towards the cluster of ‘6’s, the algorithm can successfully
split the two clusters again. Based on this observation, a
smarter attacker may even manipulate only a very small
subset of her attack samples to create proper bridges and
connect the remaining non-manipulated samples to the de-
sired cluster. We however left a quantitatively investigation
of this approach to future work.

In Fig. 5 we finally report an example of how a digit ‘3’
is manipulated by our attack to be hidden in the cluster
associated to the digit ‘6’. It is worth noting how, when
dmax ∈ [2, 4], the original attack sample still significantly re-
sembles the initial ‘3’: this shows that the adversary’s goal
can be achieved without altering too much the initial at-
tack samples, which is clearly a strong desideratum for the
attacker in adversarial settings.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of evaluating the
security of clustering algorithms in adversarial settings, by
providing a framework for simulating potential attack sce-
narios. We devised two attacks that can significantly com-
promise availability and integrity of the targeted system.
We demonstrated with real-world experiments that single-
linkage clustering may be significantly vulnerable to delib-
erate attacks, either when the adversary can only control a
very small fraction of the input data, or when she slightly
manipulates her attack samples. This shows that attack-
ing clustering algorithms with tailored strategies can signif-
icantly alter their output to meet the adversary’s goal.

Admittedly, one of the causes of the vulnerability of single-
linkage resides in its inter-cluster distance, which solely de-
pends on the closest points between clusters, and thus al-
lowed for an efficient constructing of bridges. It is reason-
able to assume that algorithms based on computing averages
(e.g., k-means) or density estimation might be more robust
to poisoning, although not necessarily robust to obfuscation
attacks. However, the results of our empirical evaluation can
not be directly generalized to different algorithms, and more
investigation should thus be carried out in this respect.

In general, finding the optimal attack strategy given an ar-
bitrary clustering algorithm is a hard problem and we have
to rely on heuristic algorithms in order to carry out our
analysis. For the sake of efficiency, these heuristics should
be heavily dependent on the targeted clustering algorithm,
as in our case. However, it would be interesting to exploit
more general approaches that ideally treat the clustering al-
gorithm as a black box and find a solution by performing a
stochastic search on the solution space (e.g. by simulated
annealing), or an educated exhaustive search (e.g. by using
branch-and-bound techniques).

In this work we did not address the problem of countering
attacks by designing more secure clustering algorithms. We
only assumed that the clustering algorithm can select a dif-
ferent number of clusters (optimal according to its goal) after
each attack iteration. More generally, though, one can de-
sign a clustering algorithm that explicitly takes into account
the adversary’s presence, and her optimal attack strategy,
e.g., by modeling clustering in adversarial settings as a game
between the clustering algorithm and the attacker. This has
been done in the case of supervised learning, to improve
the security of learning algorithms against evasion attempts
[8], and similarly, in the regression setting [13]. Other ap-
proaches may more directly encode explicit assumptions on
how the data distribution changes under attack, similarly to
[5]. We left this investigation to future work.

Another possible future extension of our work would be to
consider a more realistic setting in which the attacker has
limited knowledge of the attacked system. To this end, the
upper bound on the performance degradation incurred under
attack provided by our worst-case analysis may be exploited
to evaluate the effectiveness of attacks devised under limited
knowledge (i.e., how close they can get to the worst case).

One limitation of our approach may be the so-called inverse
feature-mapping problem [17, 6], i.e., the problem of find-
ing a real attack sample corresponding to a desired feature
vector (as the ones suggested by our attack strategies). In
the reported experiments, this was not a significant problem
since modifications to the given feature values could be di-
rectly mapped to manipulations on the real attack samples.
Although inverting the feature mapping may be a cumber-
some task for more complicated feature representations, this
remains a common problem of optimal attacks in adversarial
learning, and it has to be addressed in an application-specific
manner, depending on the given feature space.

As a further future development, we plan to establish a link
between the evaluation of the security of clustering algo-
rithms and the problem of determining the stability of a
clustering, which has been already addressed in the liter-
ature and used as a device for model selection (see, e.g.,
[29]). Indeed, stable clusterings can be regarded as secure

10

under specific non-targeted attacks like, e.g., perturbation
of points with Gaussian noise.

Understanding robustness of clustering algorithms against
carefully targeted attacks under a more theoretical perspec-
tive (e.g., by devising theoretical bounds that evaluate the
impact of single attack points on the clustering output) may
also be a promising research direction. Some results from
clustering stability may be also exploited to this end.

7. ACKNOWLEDGMENTS
This work has been partly supported by the Regional Ad-
ministration of Sardinia (RAS), Italy, within the projects
“Security of pattern recognition systems in future internet”
(CRP-18293), and “Advanced and secure sharing of mul-
timedia data over social networks in the future Internet”
(CRP-17555). Both projects are funded within the frame-
work of the regional law L.R. 7/2007, Bando 2009. The
opinions, findings and conclusions expressed in this paper
are solely those of the authors and do not necessarily reflect
the opinions of any sponsor.

8. REFERENCES
[1] Collaborative Malware Collection and Sensing.

https://alliance.mwcollect.org.

[2] Project Malfease. http://malfease.oarci.net.

[3] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can machine learning be secure? In
ASIACCS ’06: Proc. 2006 ACM Symposium on
Information, Computer and Communications Security,
pages 16–25, NY, USA, 2006. ACM.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel,
and E. Kirda. Scalable, behavior-based malware
clustering. In NDSS. The Internet Society, 2009.

[5] B. Biggio, G. Fumera, and F. Roli. Design of robust
classifiers for adversarial environments. In IEEE Int’l
Conf. Sys., Man, and Cyber., pages 977–982, 2011.

[6] B. Biggio, G. Fumera, and F. Roli. Security evaluation
of pattern classifiers under attack. IEEE Trans. on
Knowledge and Data Eng., 99(PrePrints):1, 2013.

[7] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. In J. Langford and
J. Pineau, editors, 29th Int’l Conf. on Machine
Learning. Omnipress, 2012.

[8] M. Brückner, C. Kanzow, and T. Scheffer. Static
prediction games for adversarial learning problems. J.
Mach. Learn. Res., 13:2617–2654, 2012.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system
for android. In Proc. 1st ACM workshop on Security
and Privacy in Smartphones and Mobile devices,
SPSM ’11, pages 15–26, NY, USA, 2011. ACM.

[10] C. Castillo and B. D. Davison. Adversarial web search.
Foundations and Trends in Information Retrieval,
4(5):377–486, May 2011.

[11] J. G. Dutrisac and D. Skillicorn. Hiding clusters in
adversarial settings. In IEEE Int’l Conf. on Intell.
Security Informatics (ISI), pages 185–187, 2008.

[12] D. A. Forsyth and J. Ponce. Computer Vision: A
Modern Approach. Prentice Hall, 2011.

[13] M. Großhans, C. Sawade, M. Brückner, and
T. Scheffer. Bayesian games for adversarial regression

problems. In J. Mach. Learn. Res. - Proc. 30th Int’l
Conf. on Machine Learning (ICML), volume 28, 2013.

[14] P. Haider, L. Chiarandini, and U. Brefeld.
Discriminative clustering for market segmentation. In
18th Int’l Conf. Knowl. Disc. Data Mining, KDD ’12,
pages 417–425, NY, USA, 2012. ACM.

[15] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On
clustering validation techniques. Journal of Intelligent
Information Systems, 17(2-3):107–145, Dec. 2001.

[16] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and
D. Song. Juxtapp: a scalable system for detecting
code reuse among android applications. In Proc. 9th
Int’l Conf. on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’12, pages
62–81, Berlin, Heidelberg, 2013. Springer-Verlag.

[17] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein,
and J. D. Tygar. Adversarial machine learning. In 4th
ACM Workshop on Artificial Intelligence and Security
(AISec 2011), pages 43–57, Chicago, IL, USA, 2011.

[18] A. K. Jain and R. C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., NJ, USA, 1988.

[19] M. Kloft and P. Laskov. Online anomaly detection
under adversarial impact. In Proc. 13th Int’l Conf. on
Artificial Intell. and Statistics, pages 405–412, 2010.

[20] A. Kolcz and C. H. Teo. Feature weighting for
improved classifier robustness. In Sixth Conf. on
Email and Anti-Spam (CEAS), CA, USA, 2009.

[21] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes,
J. Denker, H. Drucker, I. Guyon, U. Müller,
E. Säckinger, P. Simard, and V. Vapnik. Comparison
of learning algorithms for handwritten digit
recognition. In Int’l Conf. ANNs, pages 53–60, 1995.

[22] M. Pavan and M. Pelillo. Dominant sets and pairwise
clustering. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 29(1):167–172, 2007.

[23] R. Perdisci, D. Ariu, and G. Giacinto. Scalable
fine-grained behavioral clustering of http-based
malware. Computer Networks, 57(2):487 – 500, 2013.

[24] R. Perdisci, I. Corona, and G. Giacinto. Early
detection of malicious flux networks via large-scale
passive DNS traffic analysis. IEEE Trans. on
Dependable and Secure Comp., 9(5):714–726, 2012.

[25] F. Pouget, M. Dacier, J. Zimmerman, A. Clark, and
G. Mohay. Internet attack knowledge discovery via
clusters and cliques of attack traces. J. Information
Assurance and Security, Vol. 1, Issue 1, March 2006.

[26] G. Punj and D. W. Stewart. Cluster analysis in
marketing research: Review and suggestions for
application. J. Marketing Res., 20(2):134, May 1983.

[27] D. B. Skillicorn. Adversarial knowledge discovery.
IEEE Intelligent Systems, 24:54–61, 2009.

[28] L. Spitzner. Honeypots: Tracking Hackers.
Addison-Wesley Professional, 2002.

[29] U. von Luxburg. Clustering stability: An overview.
Foundations and Trends in ML, 2(3):235–274, 2010.

[30] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an
efficient data clustering method for very large
databases. In Proc. 1996 ACM SIGMOD Int’l Conf.
on Management of data, SIGMOD ’96, pages 103–114,
NY, USA, 1996. ACM.

11

https://alliance.mwcollect.org
http://malfease.oarci.net

	1 Introduction
	2 Attacking Clustering
	2.1 Adversary's goal
	2.2 Adversary's knowledge
	2.3 Adversary's capability
	2.4 Attack strategy

	3 Perfect knowledge attacks
	3.1 Poisoning attacks
	3.2 Obfuscation attacks

	4 A case study on single-linkage hierarchical clustering
	4.1 Poisoning attacks
	4.2 Obfuscation attacks

	5 Experiments
	5.1 Experiments on poisoning attacks
	5.1.1 Artificial data
	5.1.2 Malware clustering
	5.1.3 Handwritten digits

	5.2 Experiments on obfuscation attacks
	5.2.1 Handwritten digits

	6 Conclusions and future work
	7 Acknowledgments
	8 References

