
ACM SIGSOFT Software Engineering Notes vol 22 no 1 J anua ry 1997 Page 57

Reverse Engineering and System
Renovation

An Annotated Bibliography
M . G . J . v a n d e n B r a n d 1, P. Kl int L2 a n d C. V e r h o e f t

1 Programming Research Group, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

2 Depar tment of Software Technology
Centre for Mathemat ics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlemd~

Rarkvdbqkfwi.uva.nl , paulk@cwi.nl , ch r i s@fwi .uva .n l

A b s t r a c t

To facilitate research in the field of reverse engineering and
system renovation we 5 have compiled an annotated bibliog-
raphy. We put the contributions not only in alphabetical
order but also grouped by topic so that readers focusing on
a certain topic can read their annotations in the alphabeti-
cal listing. We also compiled an annotated list of pointers to
information about reverse engineering and system renovation
that can be reached via Internet. For the sake of ease we also
incorporated a brief introduction to the field of reverse engi-
neering.

Key Words & Phrases: Reverse engineer/ng, Annotated bib-
liography, System renowtion
I991 CR Categories: A.2, D.2.2, D.2.7, D.2.m, K.6.3

1. I n t r o d u c t i o n

There is a constant need for updat ing and renovating
business-criticai software systems for many and divers rea-
sons: business requirements change, technological infrastruc-
ture is modernized, the government changes laws, or the third
millennium approaches, to mention a few. Therefore, that in
the area of software engineering the subjects of reverse en-
gineering and system renovation become more and more im-
portant . The interest in such subjects originates from the
difficulties tha t one encounters when a t tempt ing to main-
tain extremely large software systems. Such software systems
are often called legacy systems, since it is a legacy of many
different people that have developed and maintained them.
It is not hard to understand that it is very difficult--if not
impossible to maintain them.

To make the problems a bit more concrete we will compare
such software renovation projects to the renovation of a house.
The problem that software engineers encounter could very
well be stated in house renovation terms as the query: "How

5The authors were an in part sponsored by bank ABN AMRO, soft-
ware house DPFinance, and the Dutch Minlstery of Economical Aff~drs
via the Senter Project ~ITU95017 "SOS Resolver". The last author was
also supported by the Netherlands Computer Science Research Founda-
tion (SION) with financial support from the Netherlands Org~nlsatlon
for Scientific Research (NWO), project Inte~etive toolm/o~ p~og~'~m un-
dermtQnding, 012-33-002.

to renovate your house with the additional constraint tha t
you want to use all the facilities of it during this renovation?"
For many business-critical systems the same situation holds:
how to renovate your software system while at the same time
business continues as usual. An often heard (naive) solution
is to throw away the software as soon as a totally new system
is finished (this is sometimes called shadowing). In house
renovation terminology this would mean that you would have
to build a completely new house and when this is finished
you have to move the furniture f~om the old house to the
new house before you can start using the new one. Then you
can tear down the old one. It will be clear tha t this will be
too expensive and that the shipping of the furniture will take
too much time to meet the additional constraint. In software
renovation terms the option of building a totally new system
and throwing away the old one is for the same reasons as
with a house renovation project usually too expensive and
often even impossible since the shipping of the "furniture"
(say, databases) from the old system to the new system will
take weeks. So a more sophisticated renovation strategy seems
necessary.

Before the actual renovation can s tar t it will be necessary to
make an inventory of the specification and the documenta-
tion of the system to be renovated. Also at this point there
i s a challenge for software engineers since the old systems
lack mostly these sources of information. It is our experience
that either there is no documentat ion at all, or the original
programmers that could possibly explain the functionality of
parts of the system have left, or both. The only documen-
tation that is left is the source code itself. Thus, since the
vital information of the software is solely accessible via the
source code it will be necessary to develop tools to facilitate
the renovat ion--a task for software engineers.

We hope to have elucidated that there is a need for sophisti-
cated analysis of software to be used in renowt ion method-
ologies for large software systems, and tha t research on this
issue is useful and important . A step towaxds a sound analy-
sis of software renovation research is to s tudy and analyze the
literature on this subject, hence, this annota ted bibliography.

We want to stress that the bibliography is intended to be
useful for people who want to know more about reverse en-
gineering and system renovation. More precicely, many of
the entries in our bibliography are of a techical nature so re-
searchers, practicioners and students interested in reverse en-
gineering will hopefully benefit from them. We also included
pointers to management issues and legal sides of reverse en-
gineering and system renovation meant for people interested
in those aspects.

It is not complete but instead gives pointers for further read-
ing.

1.1 Related work

In [4] contains another annota ted bibliography. We discuss
some on-line bibliographies in section 4.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F251759.251849&domain=pdf&date_stamp=1997-01-01

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 58

1.2 O r g a n i z a t i o n o f t h e p a p e r

In section 2 we give a brief impression of terminology in re-
verse engineering where we follow [25]. In the next section
(section 3) we sort the selected references by topic. In sec-
tion 4 we give pointers to other sources of information: we
provide a list of so-called universal resource locators. We give
a short description of what can be expected when connect-
ing to them. Finally, in section 5 we provide the annotated
bibliography.

A c k n o w l e d g e m e n t s We thank Arie van Deursen for dis-
cussions and comments on an earlier version of this paper.

listing generators. In design recovery domain knowledge and
external information is used to make an equivalent descrip-
tion of a system at a higher level of abstraction. So, more
information than the source code of the system is used. The
notion restructuring amounts to transforming a system from
one representation to another one at the same level of ab-
straction. An essential aspect of restructuring is that the
semantic behaviour of the original system and the new one
should remain the same; no modifications of the functional-
ity is involved. The purpose of reengineering or renovation
is to study the system, by making a specification at a higher
abstraction level, adding new functionality to this specifica-
tion and develop a completely new system on the basis of the
original one by using forward engineering techniques.

2 Reverse engineering and sys tem renovation
in a nutshell

The term reverse engineering finds its origins in hardware
technology and denotes the process of obtaining the specifi-
cation of complex hardware systems. Now the meaning of this
notion has shifted to software. As far as we know there is not
(yet) a standard definition of what reverse engineering is but
in [25] we can read:

"Reverse engineering is the process of analyzing
a subject system to identify the system's compo-
nents and their inter-relationships, and to create
representations of the system in another form at
higher levels of abstraction."

According to [25] the following six terms characterize system
renovation:

• forward engineering,
• reverse engineering,
• zedocumentation,
• design recovery,
• restructuring,
• zeengineering (or renovation).

Forxvard engineering moves from a high-level abstraction and
design to a low-level implementation. Reverse engineering
can be seen as the inverse process. It Can be characterized as
analysing a software system in order to, firstly, identify the
system components and their interactions, and to, secondly,
make representations of the system on a different, possible
higher, level of abstraction.

Reverse engineering restricts itself to investigating a system.
Adaptation of a system is beyond reverse engineering but
within the scope of system renovation. Redocumentation fo-
cuses on making a semantically equivalent description at the
same level of abstraction. It is in fact a simple form of reverse
engineering. Tools for redocumentation include, among oth-
ers, pretty printers, diagram generators, and cross-reference

3 C l a s s i f i c a t i o n

Papers addressing reverse engineering and system recovery
can be classified in various categories. The classification that
we propose is based on the material that we found. First,
we list some introductory contributions and mention confer-
ences dedicated to reverse engineering. Then we will proceed
with program understanding and design recovery, reusability,
maintainability, and program slicing. Then we list contribu-
tions that deal with the reverse engineering of more specific
topics: data and data bases, user interfaces, and reverse en-
gineering for a number of languages. Then we list formal
techniques, tools and their implementation issues, restructur-
ing and regeneration, testing, management, and miscellaneous
contributions.

I n t r o d u c t i o n a n d g e n e r a l top ics Articles that give an
introduction to the field of reverse engineering and that define
the relevant notions are [14, 19, 25, 71]. Books that put the
subject in context and contain a lot of introductory material
are: [4, 18, 58, 110]. A book that is possibly interesting is
[92], but since it is in Japanese we are not able to give more
information. A recent overview of research questions is given
in [90]. A tutorial on reverse engineering is [80].

Several conferences and workshops exist in this field, such as
Conference on Software Maintenance (e.g., [53]) and Working
Conference on Reverse Engineering (e.g., [102]).

P r o g r a m u n d e r s t a n d i n g a n d des ign r e c o v e r y There
are many recent papers on this subject. We provide an ex-
tensive list: [12, 85, 9, 16, 13, 14, 30, 28, 23, 29, 31, 26, 24,
32, 33, 41, 42, 48, 44, 50, 67, 69, 68, 70, 74, 78, 86, 84, 83, 51,
98, 108, 102, 105, 110].

R e u s e In these papers the focus is on how to prevent the
situation of legacy systems, that is, make the software eas-
ier to maintain by programming in replaceable and reusable
components. [36, 40, 54, 64, 104],

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 59

M a i n t a i n a b i l i t y To give an impression of the status of
maintainability as a research field we give 2 quotations.
Schneidewind [88] wrote in 1987 in his introduction to a
special section on software maintenance that this "subject
has received relatively little attention from the research com-
munity." Gallagher and Lyle write in [35] "While some
may view software maintenance as a less intellectually de-
manding activity than development, the central premise of
this work is that software maintenance is m o r e demand-
ing." Here are some pointers to the maintainability subject:
[6, 11, 34, 35, 45, 89, 53, 75, 73, 43],

P r o g r a m slicing A survey of program slicing techniques is
given in [96]. Other references are: [9, 67, 31, 35, 68, 15, 41,
103, 38].

Reve r se e n g i n e e r i n g o f d a t a a n d d a t a b a s e s One the
first books on data reverse engineering is [1]. Other references
arc: [2, 77, 39, 84, 18, 94, 93].

Reve r s e e n g i n e e r i n g of u se r i n t e r f aces [63].

Reve r s e e n g i n e e r i n g o f specific l anguages Many
business-critical systems are written in COBOL. So a num-
ber of papers geared towards this language are available. For
other languages there are also contributions.

C O B O L [57, 33, 33, 37, 67, 31, 39, 84, 66, 110, 91]

Pascal [23]

C [27, 68, 105],

Lisp [108].

A d a [21, 30, 37].

F o r t r a n [20]

C H I L L [99].

F o r m a l t e c h n i q u e s In the following list formal techniques
are used in which CCS, Denotational semantics, Petri nets, Z,
and Z + + are applied to approach certain problems in reverse
engineering. [17, 8, 7, 47, 52, 57, 63, 100, 110, 11]

Tools a n d i m p l e m e n t a t i o n t e c h n i q u e s Many tools have
been implemented to aid in various reverse engineering tasks.
For an elaborate hypertext page on CASE tool vendors we
refer to section 5.2, where a pointer to an electronically avail-
able index is given. [8, 7, 81, 67, 22, 23, 31, 52, 65, 62, 68, 30,
82, 81, 108, 100, 106, 66, 110, 11, 50, 29, 73, 61, 95, 83]

R e s t r u c t u r i n g , t r a n s f o r m a t i o n , a n d r e g e n e r a t i o n In
this category, methods and tools are described to perform
actual reverse engineering tasks. [11, 27, 55, 49, 65, 66, 72,
76, 51, 97, 101, 107, 100, 79, 110, 26]

Tes t ing After modification of software systems it is neces-
sary to test the new system. Some pointers are [56, 15, 59,
38, 43]

M a n a g e m e n t Many reverse engineering projects are huge.
The management of such projects is not at all trivial and gets
attention in: [2, 4, 100, 110]

Misce l l aneous Certain issues that are important, but do
not fit our classification in a natural way axe [3, 46, 60, 10,
5, 87, 109]. We mention that the subjects go from go to
elimination to legal aspects of reverse engineering.

4 O t h e r s o u r c e s o f i n f o r m a t i o n

In [4] another annotated bibliography can be found. Note-
worthy, perhaps, is that this annotated bilbiography mainly
contains other references than ours.

Nowadays, much information is not only available via books
and journals but also via Internet. In this section we listed
some universal resource locators (URLs) that are related to re-
verse engineering and system renovation, including some that
contain an on-line bibliography. Of course, we have made
ourselves a page that contains the URLs below. Contact
h t t p : / /adam. fw~..uva . n l / * x / r e v e r s e .h tml for both a dvi
file of this bibliography and an hypertext version of the list
below.

• h t t p : / / w w w . c c . g a t e c h . e d u / r e v e r s e / i s a site where
the Georgia tech reverse engineering group presents
their papers, tools and members. Moreover, pointers
to other groups are given.

• h t t p : / /www. e r g . abdn. ac . u k / u s e r s / b r a n t / s r e / is a
site that gives information like who is who in reverse
engineering. Hyperlinks to research institutes, univer-
sities, and other sites are grouped together in a num-
ber of interest areas. Furthermore, some introductory
information is available. Researchers in the field are
encouraged to contribute to this W W W site under con-
struction.

• h t t p : / /www. y e a r 2 0 0 0 , c o m / c g i - b J . u / c l o c k , c g £ /
This is a site of a firm specialized in the year 2000 prob-
lem. It contains information on how to join a mailing
list on this subject.

• h t t p ://www. s o f t w a r * , ibm. ©om/y ,a r2000 / ind , x . h t m l T h i s is a

URL also dedicated to the year 2000 problem. A com-
prehensive set of services, tools and support is available
to help customers prepare for the Year 2000 transition.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 60

f t p : / / l s c f t p . kKn. ibm. c OnJlmb/yoa~2OOO/y2kpaper. ps is a

URL from which a manual can be obtained dedicated
to the year 2000 problem.

h t t p : / / vvv . q~cis , quoonsu, ca/So~t v ~ * -Kngi~eoring/vendor .html

is a URL to a CASE tool vendor index. This is useful
for tools that can be used in reverse engineering.

• h t ~ p : / / w w w . c s c . t n t e c h . e d u / * l i n o s / is a page d~
scribing research activities related to program com-
prehension and reengineering performed at the CARE
(Computer-Aided Reengineering) Laboratory in the
Computer Science Department of Tennessee Technolog-
ical University.

• h t t p : / / s t o u t . l ov t och. com/lovtoch-markot i a~ /papors .h tml

this is a bibliography of reengineering papers based on
software refinery.

• h t t p : / / r u g - c a , opon.a©.uk/ ' jonrob/bibXiog.htm.l t h i s is a n

online bibliography on software and reuse. At the time
of writing this paper contained 114 items.

• h t t p : / / g g g , scism, sbu . ac .uk /©ios / i s l am/ l eusoBib . t x t This
URL is a bibliography of software reuse papers written
after 1990.

• ht tp:/ /wwwAnformatik.unl-stut tgart .de/ifi/ps/reenglneerlng

/reengineerlng.html is an on-line bibliography on reverse
engineering. It contains also the abstracts of the pa-
pers.

• h t t p : / / 128 .172 .188 .1 / i sydop t /~acu l t y /pa iken / c l r eb i b , htm is

a pointer to a reengineering bibliography that can be
obtained on a floppy disk. For more details please con-
tact the owner of the page.

R e f e r e n c e s

[1] P. Aiken. Data Reverse Engineering: Slaying the Legacy
Dragon. McGraw-Hill, 1995. This is the first book de-
scribing the process of recovering data architectures from
ezisting information systems and using it to develop a
foundation for enterprise integration and other reengi-
neering efforts.

[2] P. Aiken, A. Muntz, and R. Richards. A framework for
reverse engineering DoD legacy information systems. In
[10~], pages 180-191, 1993. Gives an overview of the
reverse engineering methodology used inside the DoD
for the reengineering of information systems.

[3] Z. Ammarguellat. A control-flow normalization algo-
rithm and its complexity. IEEE Transactions on Soft-
ware Engineering, 18(3):237-251, 1992. A simple
method is presented for normalizing the control-flow of
programs to facilitate program transformations, program
analysis, and automatic parallelization. This method
does not make use of code replication. The normaliza-
tion results in a restructuring of the code that obviates
the need for control dependency relations.

[4] R.S. Arnold. Software Reengineering. IEEE Computer
Society Press, 1993. In this book an introduction to
software reengineering is provided. Contezt and defini-
tions of key notions are included. Then various subjects
are treated in the form of a collection of papers that
are reprinted from other sources. Subjects that we can
find are: business process reengineering, the connection
with economics, ezperiences with real-life reengineering
projects, evaluation of tools used in such projects, the
technological aspects of reengineering, data reengineer-
ing and its migration problems, source code analysis,
restructuring and translation, the annotation and docu-
mentation of ezisting programs, reusability aspects, de-
sign recovery, the object oriented approach to recovery,
program understanding, and knowledge based program
analysis. This book contains an annotated bibliography.

[5] E. Ashcroft and Z. Manna. The translation of goto pro-
grams into while programs. In C.V. Freiman, J.E. Grif-
fith, and J.L. Rosenfeld, editors, Proceedings of IFIP
Congress 71, volume 1, pages 250-255. North-Holland,
1972. It is shown that every flowchart program can be
written without go to statements by using while state-
ments. The transformation does not give rise to less
efficient programs and, moreover, the structure of the
original flowchart program is preserved.

[6] V. Basili. Viewing maintenance as reuse oriented soft-
ware development. IEEE Software, 7(1):19-25, 1990.
In this paper the maintenance process is incorporated in
the life-cycle perspective geared towards the reusability
of the various components.

[7] P. Baumann, J. F~ssler, M. Kiser, and Z. 6zt6rk.
Beauty and the Beast or A Formal Description of the
Control Constructs of Cobol and its Implementation.
Technical Report 93.39, Department of Computer Sci-
ence, University of Zurich, Switzerland, 1993. A formal
semantics for a subset of COBOL is presented wflh the
aid of denotational semantics. The subset consists of the
control constructs of COBOL. In [8] it is argued that
precisely this subset is relevant for reverse engineering.

[8] P. Baumann, J. F~ssler, M. Kiser, Z. ()ztfirk, and
L. Richter. Semantics-based reverse engineering. Tech-
nical Report 94.08, Department of Computer Science,
University of Zurich, Switzerland, 1994. Denotational
semantics is advocated as a formal foundation for pro-
gram understanding. The ideas are implemented in a
tool for reverse engineering called AEMES. This tool is
geared towards COBOL- 7~.

[9] J. Beck and D. Eichmann. Program and interface slic-
ing for reverse engineering. In [10~], pages 54-63, 1993.
Describes the use of program slicing for the reverse en-
gineering of Ads packages.

[10] L. Belady and C. Evangelisti. System partitioning and
its measure. Journal of Systems and Software, 2:23-
29, 1981. A method to perform automatic clustering

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 61

of data structures and calls is described. A metric to [18]
quantify the complezity of the resulting partitioning is
given.

[11] K. Bennet, T. Bull, and H. Yang. A transformation
system for maintenance: turning theory into practice.
In [53], pages 146-155, 1992. Describes the architecture
of the Maintainer's Assistant, a reverse engineering tool
based on program transformations. Discusses the role of
metrics in selecting appropriate transformations. Also
see [100].

[12] K. Bertels, Ph. Vanneste, and C. de Backer. A cognitive
approach to program understanding. In [102], pages 1-
7, 1993. Presents a method of program understanding
based on a cognitive model of programming knowledge.
The approach involves the generation of a high level,
abstract, description that is robust with respect to con-
ceptual errors and syntactic variations.

[13] T. Biggerstaff, B. Mitbander, and D. Webster. The con-
cept assignment problem in program understanding. In
[lO~J, pages 27-43, 1993. The problem of discovering [19]
abstract human oriented concepts and relating them to
their implementation oriented counterparts is called the
concept assignment problem. Describes various heuris-
tic clues, as supported by the DESIRE system, that can
be used for concept eztraction.

[14] T.J. Biggerstaff. Design recovery for maintenance and
reuse. IEEE Computer, 22(7):36-49, 1989. Design [20]
recovery uses the source code of a system as well as
ezternal information, such as documentation, personal
ezperience, and knowledge of problem and application
domain, to make a higher level abstraction. The key
property is the formalization of informal information
and domain knowledge.

[15] V. Binkley. Using semantic differencing to reduce the [21]
cost of regression testing. In [53], pages 41-50, 1992.
Gives an algorithm using dependence graphs and pro-
gram slicing to partition a modified program in parts
with affected program behaviour and parts with unaf-
fected behaviour. Only the parts with affected behaviour
have to be re-tested.

[16] S. Blazy and P. Facon. Partial evaluation for the under-
standing of FORTRAN programs. International Jour- [22]
nal of Software Engineering and Knowledge Engineer-
ing, 4(4):535-559, 1994. A technique and a tool are de-
scribed supporting the partial evaluation of FORTRAN
programs in order to understand old programs that have
become very complez due to numerous alterations.

[17] J. Bowen, V. Breuer, and K. Lano. A compendium of [23]
formal techniques for software maintenance. Software
Engineering Journal, 8(5):253-262, 1993. An overview
of formal techniques developed recently to aid the soft-
ware maintenance process and particularly reverse en-
gineering is given.

M.L. Brodie and M. Stonebraker. Migrating Legacy Sys-
tems -- Gateways, Interfaces ~ The Incremental Ap-
proach. Morgan Kaufmann Publishers, Inc., 1995. This
book gives a detailed description of strategies for mi-
grating legacy systems. It advocates an incremental ap-
proach for the migration instead of doing it in one step.
The legacy system is analyzed and the components to be
updated are identified. The legacy system and the new
system work in parallel and are connected via gateways.
Migrated components are removed from the legacy sys-
tem and added to the new system. The crucial steps
in this process are establishing the right ordering of the
components to be migrated and the use of powerful gate-
ways. It is preferable not to develop these gateways your-
self but to obtain them from third party software pro-
ducers. A number of case-studies is presented and these
case-studies demonstrate that these gateways are crucial
even if all the code of the legacy system becomes obso-
lete. The book concludes with an eztensive list of third
party software producers which produce gateways.

E. Byrne. A conceptual foundation for software re-
engineering. In [53], pages 226-235, 1992. A concep-
tual foundation for software reengineering is presented
yielding a general model of software reengineering. This
model is described and is shown to be useful for ezamin-
ing reengineering issues such as the reengineering pro-
cess and strategies for reengineering.

E.J. Byrne. Software reverse engineering: A case study.
Software--Practice and Ezperience, 21(12):1349-1364,
1991. Ezperience report describing the problem of reim-
plementing a Fortran program in Ads. Instead of a one-
to-one translation, the original Fortran program is ana-
lyzed and design information is eztracted which is then
used to reimplement the program in Ads.

G. Canfora, A. Cimitile, and U. De Carlini. A reverse
engineering process for design level document produc-
tion from ads code. Information and Software Technol-
ogy, 35(1):23-34, 1993. A reverse engineering process
for producing design level documents by static analysis
of ADA code is described. This is achieved via concur-
rent data flow diagrams describing the task structure
and the data flow between tasks.

G. Canfora, A. Cimitile, and U. de Carlini. A logic-
based approach to reverse engineering tools produc-
tion. IEEE Transactions on Software Engineering,
18(12):1053-1064, 1992. Di~culties arising during the
use of documents produced by reverse engineering tools
are discussed and analyzed.

G. Canfora, A. Cimitile, and M. Munro. A reverse en-
gineering method for identifying reusable abstract data
types. In [I0~], pages 73-82, 1993. Describes a method-
ology and ezperimental Prolog-based tool for the eztrac-
tion of reusable data type declarations from source code.
Illustrated for a medium-size Pascal program.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 62

[24] Y-F. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy.
The C information abstraction system. IEEE Trans-
actions on Software Engineering, 16(3):325-334, 1990.
A system for analyzing program structures is described.
The applications of this system include: generation of
graphical views, subsystem eztraction, program layering,
dead code elimination, and binding analysis.

[25] E.J. Chikofsky and J.H. Cross. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1):13-
17, 1990. Definitions of a number of key notions in the
field of reverse engineering are proposed. Forward and
reverse engineering, redocumentation, design recovery,
restructuring, and reengineering are described.

[26] S.C. Choi and W. Seacehi. Extracting and restructuring
the design of large systems. IEEE Software, 7(1):66-71,
1990. An algorithm is described that for a given initial
design description the system-reconstruction algorithm
constructs a hierarchy of the system's modules and sub-
systems.

[27] W Chu and S. Patel. Software restructuring by en-
forcing localization and information hiding. In [53],
pages 165-172, 1992. Starting with information de-
scribing function calls and global variable usage, this pa-
per presents a clustering technique that generates Ada-
like packages describing the structure of a given software
system. Has been applied to several ezisting systems im-
plemented in C.

[28] W.W. Cohen. Inductive specification recovety: Under-
standing software by learning from example behaviors.
Automated Software Engineering, 2:107-129, 1995. A
method for program understanding that does not rely
on parse-and-recognize techniques (as advocated in, for
ezample, [8~.]) is presented. After the code has been an-
notated the system is run on a number of representative
test cases, generating from the annotations ezamples of
the behaviour. Finally, inductive learning techniques are
used to generahze the crumples, thus forming an ab-
stract, general description of the behaviour of the anno-
tated code.

[29] J.R. Cordy, N.L. Eliot, and M.G. Robertson. Turing-
tool: A user interface to aid in the software mainte-
nance task. IEEE Transactions on Software Engineer-
ing, 16(3):294-301, 1990. In this paper the approach
of viewing a program in a structured way is advocated.
With the aid of queries the user can influence the view
of the program and can, therefore, get a better idea of
what the program is doing. Things that are not impor-
tant for a certain view are elided, but can be accessed
by clicking on them--the elided tezt becomes visual. The
program can also be edited with this tool.

[30] J. Cross. Reverse engineering of control structure di-
agrams. In [10~], pages 107-116, 1993. Describes
a tool for the automatic generation of a new graphi-
cal representation for Ada software (Control Structure

Diagrams). These diagrams aim at improving the com-
prehension of Ada programs and can potentially replace
the original source code.

[31] F. Cutillo, P. Fiore, and G. Visaggio. Identification
and extraction of "domain independent" components in
large programs. In [I0~], pages 83-92, 1993. Uses pro-
gram slicing to eztract components from COBOL pro-
grams by means of Viasoft's tools INSIGHT, SMART-
DOC and RENAISSANCE.

[32] P. Devanbu, R.J. Baehman, P.G. Selfridge, and B.W.
Ballard. LASSIE: A knowledge-based software informa-
tion system. Communications of the A CM, 34(5):35-49,
1991. A system called LASSIE (Large Software System
Information Environment) is presented. It incorporates
a large knowledge base, a semantic retrieval algorithm
based on formal inference, and a powerful user inter-
face incorporating a graphical browser and a natural
language parser. The system is intended to help pro-
grammers find useful information about large software
systems.

[33] H. Edwards and M. Munro. RECAST: reverse engineer-
ing from COBOL to SSADM specifications. In [10~],
pages 44-53, 1993. Describes methodology and tooling
for the eztraction of SSADM diagrams from COBOL
programs.

[34] M.J. Freeman and P.J. Layzell. A meta-model of infor-
mation systems to support reverse engineering. Infor-
mation and Software Technology, 36(5):283-294, 1994.
A method is discussed to help software maintainers to
gain a richer understanding of a software system and its
components. This is achieved by enhancing traditional
reverse-engineering tools and prevents the loss of knowl-
edge durin 9 forward engineering.

[35] K. Gallagher and J. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software
Engineering, 17(8):751-761, 1991. In this paper the
technique of program slicing is used to facilitate main-
tenance of software systems by eztending the notion of
program slice to a so-called decomposition slice (a slice
that captures all computation on a given variable).

[36] H. Gomaa. A reuse-oriented approach for structuring
and configuring distributed applications. Software En-
gineering Journal, 8(2):61-71, 1993. For the design of
configurable distributed applications it is advocated to
develop reusable specifications and architectures. Then
targets can be generated by tailoring the reusable speci-
fications and architectures. The method is elucidated by
way of an crumple.

[37] R. Gray, T. Bickmore, and S. Williams. Reengineer-
ing cobol systems to ada. Technical report, InVision
Software Reengineering, Software Technology Center,
Lockheed Pals Alto Laboratories, 1995. This paper de-
scribes the reengineering of 50,000 lines of Cobol code

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 63

and the translation to Ads. The goal was to do it as au-
tomatically as possible. An inferential method was used
to obtain all needed information from the Cobol code it-
self, no ezternal information from users or programmers
was needed. The authors claim that inferential methods [45]
will be the basis of the reengineering technology of the
~lth century.

[38] R. Gupta, M. Harrold, and M. Sofia. An approach to
regression testing using slicing. In [53], pages 299-308,
1992. A new approach to data flow based regression test- [46]
ing is described that uses program slicing algorithms to
detect definition-use pairs that are affected by a program
change. The advantage of this approach is that neither [47]
the data flow history nor a recomputation of data flow
is necessary.

[39] J.-L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris.
Contribution to a theory of database reverse engineer-
ing. In [I0~], pages 161-170, 1993. Gives a methodology
for recovering the conceptual schema of databases. Illus-
trated with various COBOL ezamples.

[40] P.A.V. Hall. Overview of reverse engineering and
reuse research. Information and Software Technology,
34(4):239-249, April 1992. It is argued in this paper
that reuse of steps taken in forward engineering--such [48]
as ideas, prototypes, temporary solutions, ere--should
be stored somehow so that new systems do not need to
be developed from scratch. This is indeed useful when a
system that is developed while saving such information
needs reverse engineering but for legacy systems this is [49]
too late.

[41] R.J. Hall. Automatic extraction of executable program
subsets by simultaneous dynamic program slicing. Au-
tomated Software Engineering, 2:33-53, 1995. An al-
gorithm to automatically eztract a correctly functioning
subset of the code of a system is presented. The reck- [50]
nique is based on computing a simultaneous dynamic
program slice of the code for a set of representative in-
puts. Ezperiments show that the algorithm produces sig-
nificantly smaller subsets than with ezisting methods.

[42] M.T. Harandi and J.Q. Ning. Knowledge-based pro-
gram analysis. IEEE Software, 7(1):74-81, 1990. Au-
tomatic program analysis with a tool called PAT is used
to understand programs on a high level. The applications [51]
are maintenance for large complez programs.

[43] J. Hartmann and D.J. Robson. Techniques for selec-
tive revalidation. IEEE Software, 7(1):31-36, 1990. A
systematic and automated approach is discussed to ef-
fectively revalidate modified software while minimizing
the time and cost involved in maintenance testing.

[44] P.A. Hausler, M.G. Pleszkoch, R.C. Linger, and A.R. [52]
Hevner. Using function abstraction to understand pro-
gram behavior. IEEE Software, 7(1):55-63, 1990. In
this paper it is avocated to improve the understanding of

programs by structuring them. The authors think that
the potential ezists for an automated tool to take un-
structured code and derive its functionality.

M. JCrgensen. Experience with the accuracy of soft-
ware maintenance task effort prediction models. IEEE
Transactions on Software Engineering, 21(8):674-681,
1995. Eleven software maintenance effort prediction
models are discussed.

M. Hecht. Flow analysis of computer programs. Elsevier
North-Holland, 1977. A classical book on the theroy and
implementation of algorithms for data flow analysis.

S. Horwitz, T. Reps, and J. Prins. Integrating non-
interfering versions of programs. ACM Transactions
on Programming Languages and Systems, 11(3):345-
387, 1989. In this paper the program-integration prob-
lem is formalized. An algorithm is given that produces
an intergrated program from two variations of a base
program. The algorithm is semantics-based rather than
tezt-based. The algorithm assumes a programming lan-
guage containing only simple programming constructs,
like assignment statements, conditional statements, and
iterative statements.

W. Howden and S. Pak. Problem domain, structural
and logical abstractions in reverse engineering. In [53],
pages 214-224, 1992. Introduces a formal notation for
documenting various aspects of ezisting software. Has
been applied, manually, to sample COBOL programs.

D. Hutchens and V. Basili. System structure analysis:
clustering with data bindings. IEEE Transactions on
Software Engineering, SE-11(8):749-757, 1985. The use
of cluster analysis as a tool for system modularization is
ezamined. It appears that the clustering of data bindings
provides a meaningful view of system modularization.

B. Johnson, S. Ornburn, and S. Rugaber. A quick
tools approach to program analysis and software main-
tenance. In [53], 1992. Describes the use of standard
Uniz tools like (Awk, Lee, Yacc) for eztracting informa-
tion from PL/M code. The information is then visual-
ized using a commercial CASE tool (Software Through
Pictures).

W. Johnson and E. Soloway. PROUST: knowledge-
based program understanding. IEEE Transactions on
Software Engineering, SE-11(3):267-275, 1985. This
paper describes a tool to help novice programmers to
learn how to program. It is based on a knowledge base
and has also a tutoring aspect. The tool is not intended
for large scale program understanding but the ideas un-
derlying this paper may very well be applicable to it.

R.K. Keller, X. Shen, R. Lajoie, M. Ozkan, and T. Tao.
Environment support for business reengineerin8: the
Macrotec approach. Software--Concepts and Tools,
16(1):31-40, 1995. A business reengineering approach

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 64

is developed based on the formalism of coloured Petri-
nets. The Macrotec environment has been engineered for
the support and validation of this approach. Macrotec is
based on Macronets, the latter being a variation of the
Petri net formalism.

[53] M. Kellner, editor. Proceedings Conference on Soft-
ware Maintenance. IEEE Computer Society Press, 1992.
Several papers in these proceedings that are directly re-
lated to reverse engineering are discussed separately in
this bibliography.

[54] S. Khajenoori, D.G. Linton, and C.A. Morris. Enhanc-
ing software reusability through effective use of the es-
sential modelling approach. Information and Software
Technology, 36(8):495-501, 1994. It is advocated to
develop new software systems by reusing design compo-
nents from ezisting ones. With the aid of the so-called
essential modelling approach it is possible to determine
reusable components.

[55] W. Kozaczynski, J. Ning, and A. Engberts. Program
concept recognition and transformation. IEEE Transac-
tions on Software Engineering, 18(12):1065-1075, 1992.
An approach to automated concept recognition and its
application to maintenance-related program transforma-
tions is described. An interesting point here is that
transformation of code can be ezpressed as transforma-
tion of abstract concepts.

[56] C. Kung, JH. Gas, P. Hsia, J. Lin, and Y. Toyoshima.
Design recovery for software testing of object-oriented
programs. In [102], pages 202-211, 1993. Describes a
methodology for testing O0 software.

[57] K. Lano and H. Haughton. Integrating formal and struc-
tured methods in reverse engineering. In [I0~], pages
17-26, 1993. Describes the integration of formal (Z-I-+)
and structured (SSADM) methods in reverse engineer-
ing as prototyped in the REDO project.

[58] K. Lano and H. Haughton. Reverse Engineering
and Software Maintenance -- A Practical Approach.
McGraw-Hill, 1994. This book describes a funda-
mental approach to reverse engineering and software
maintenance. After an introduction in software main-
tenance and reverse engineering a number of tools and
approaches are discussed to tackle various problems
in these areas. An elaborate introduction in logic and
program semantics is given. One method (the process
model) to address maintenance and reverse engineer-
ing is discussed in more detail. The book concludes with
a number of case-studies which use a formal approach
based on logic and program semantics.

[59] J. Laski and W. Sterner. Identification of program mod-
ifications and its applications in software maintenance.
In [53], pages 282-290, 1992. One of the problems
in software maintenance is the revalidation of modified
code. Such a process should preferably be restricted only

to those parts of the program that are affected by the
modifications. In this paper a formal method is described
to identify modifications made in a program.

[60] Marlowe and Ryder. Properties of data flow frame-
works. A unified model. Acta Infurmatica, 28:121-163,
1990. An overview of data flow frameworks and their
characterizing properties is given. Contains many ref-
erences to the field of data flow analysis.

[61] S. McGinnes. CASE support for collaborative mod-
elling: re-engineering conceptual modelling techniques
to exploit the potential of CASE tools. Software En-
gineering Journal, 9(4):183-189, 1994. It is advocated
that more benefit would be obtained if both analysis and
design techniques were reengineered so as to make the
best possible use of CASE tools. Ways on how to achieve
this are given in the paper using ezamples from a pro-
totype CASE tool.

[62] A. Mendelzon and J. Sametinger. Reverse engineering
by visualizing and querying. Software--Concepts and
Tools, 16(4):170-182, 1995. A tool called Hy-t- is de-
scribed that can be used for reverse engineering. Hy-I- is
a general-purpose data visualization system for querying
and visualizing information about object-oriented soft-
ware systems. Hy-t- supports this for arbitrary graph-like
databases. The use is demonstrated with the evaluation
of software metrics, verifying constraints and identify-
ing design patterns.

[63] E. Merlo, J. Girard, K. Kontogiannis, P. Panangaden,
and It. De Mort. Reverse engineering of user interfaces.
In [10~], pages 171-179, 1993. Eztracts user interface
descriptions from COBOL/CICS source code and trans-
lates them to abstract behaviour descriptions based on
process algebra (CCS). Part of the analysis is done us-
ing Refine~COBOL. The translation itself is done man-
ually.

[64] N. Mii and T. Takeshita. Software re-engineering and
reuse from a Japanese point of view. Information and
Software Technology, 35(1):45-53, 1993. The use of
the concept of reusable pieces of software as parts in the
Japanese situation is reviewed. It is more geared towards
preventive forward engineering than to reverse engineer-
ing.

[65] J. Miller and B. Strans III. Implications of automatic
restructuring cobol. A CM Sigplan Notices, 22(6):76-82,
1987. The question whether or not mechanical trans-
formations of unstructured program code to a structured
equivalent can provide an improvement in the under-
standing of that program is addressed. As an ezample
the language COBOL is ezamined. The paper also dis-
cusses a tool (called Structured Retrofit) that performs
such transformations for COBOL mechanically.

[66] Ph. Newcomb and L. Markosian. Automating the mod-
ularization of large COBOL programs: application of an

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 65

enabling technology for reengineering. In [10~], pages
222-230, 1993. Ezperience report using the Software
Refinery to build a modularization tool for COBOL.

[67] J. Ning, A. Engberts, and W. Kozaczynski. Recover-
ing reusable components from legacy systems. In [102],
pages 64-72, 1993. Gives an overview of the pro-
gram segmentation facilities of the COBOL/SRE sys-
tem, which are based on various forms of program slic-
ing.

[68] D. Olshefski and A. Cole. A prototype system for static
and dynamic program understanding. In [10~], pages
93-106, 1993. Describes the ezperimental PUNDIT sys-
tem that combines static and dynamic information for
program understanding. It comprises a static analyzer
for C source code and a, mostly language-independent,
graphical user interface. Gives various ezamples of pro-
gram views.

[69] P.W. Oman and C.R. Cook. The book paradigm for im-
proved maintenance. IEEE Software, 7(1):39-45, 1990.
It is shown that traditional typographical formats used
in books work very well to aid program understanding.

[70] S. Ornburn and S. Rugaber. Reverse engineering: re-
solving conflicts between expected and actual software
designs. In [53], pages 32-40, 1992. Ezperienee report
describing the application of the Synchronized Refine-
ment method [86] to a real-time embedded system.

[71] W. Osborne and E. Chikofsky, editors. Special issue on
Maintenance, reverse engineering and design recovery.
IEEE Software, 7(1):11-105. 1990. In this special is-
sue a number of papers dealing with various aspects of
reverse engineering are collected. Most of the individual
papers are discussed in this annotated bibliography.

[72] G. Oulsnam. Unraveling unstructured programs. The
Computer Journal, 25(3):379-387, 1982. A method
for transforming unstructured program flowcharts into
structured ones is presented. The form of the derived
structured programs is such that the original unstruc-
tured programs can be easily recovered, thus revealing
what overheads in space and time are inherent in the
structured forms.

[73] S. Paul and A. Prakash. A framework for source code
search using program patterns. IEEE Transactions on
Software Engineering, 20(6):463-475, 1994. It is ar-
gued that ezisting solutions to locating source code frag-
ments that match certain patterns are insu2~cient. A
framework in which pattern languages are used to spec-
ify interesting code features is presented. These are ob-
tained by eztending the source programming language
with patteru-matching symbols. This is implemented in
a tool called SCRUPLE.

[74] S. Paul and A. Prakash. Supporting queries on source
code: A formal framework. International Journal

[75]

[77]

[78]

of Software Engineering and Knowledge Engineering,
4(3):325-348, 1994. A source code query system is a
powerful mechanism to obtain crucial information nec-
essary to successfully performing a reverse engineering
task. A source code algebra (SCA) is developed which
is strongly based on relational algebras as well as on
many sorted algebras. Two types of data types are dis-
tinguished in the source code algebra model:

• atomic data types, such as integer, float, etc.

• composite data types (so-called objects}:

- s i n g u l a r objects, such as while-statement,
identifier, etc.

- collective objects, such as statement-list, etc.

The objects are eztended with four kinds of attributes,
namely, components, references, annotations, and
methods. An eztensive set of source code algebra opera-
tors are defined, such operators defined for atomic data
types, individual objects, and collections, i.e., sets and
sequences. The operators for the collections are strongly
influenced by the operators from the relational algebra
domain.

M.M. Pickard and B.D. Carter. A field study of the
relationship of information flow and maintainability of
cobol programs. Information and Software Technology,
37(4):195-202, 1995. The results of a field study of the
relationship of information flow to the maintainability
of COBOL modules in a data processing environment
are presented. There is a significant correlation between
maintainability and information flow and with (infor-
mation flow} metrics it is possible to identify poorly
maintained modules.

M. Pleszkoch, R. Linger, and A. Hevner. Eliminat-
ing non-traversable paths from structured programs.
In [53] , pages 156-164, 1992. Considers the problem
of control variables (i.e., ranging over the Booleans or
some small enumeration type) that obscure the structure
of otherwise structured programs. Control flow is repre-
sented by regular ezpressions which are further processed
(subset construction} to find a version of the program
without redundant control paths.

W. Premerlani and M. Blaha. An approach for reverse
engineering of relational databases. In [IOY.], pages 151-
160, 1993. Ezperience report describing the reverse en-
gineering of several relational databases to OMT (Object
Modeling Technique) diagrams. The process is partly au-
tomated using a variety of tools.

A. Quilici. A hybrid approach to recognizing program-
ming plans. In [10~], pages 126-133, 1993. Based on an
ezperiment regarding human understanding of a given C
program, a new organization for a plan library is pre-
sented. It consists of a plan definition, a plan recogni-
tion rule, and specialized constraints. Eztends the plan
library developed by Andersen Consulting.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 66

[79] L. Ramshaw. Eliminating goto's while preserving pro-
gram structure. Journal of the ACM, 35(4):893-920,
1988. A method is described to eliminate GO-TO
statements from a program while the program's original
structure is being preserved.

[80] M. Rekoff. On reverse engineering. IEEE Transactions
on Systems, Man and Cybernetics, 3/4:244-252, 1985.
This paper is a tutorial on reverse engineering that de-
fines some key notions.

[81] H. Reubenstein, R. Piazza, and S. Roberts. Separat-
ing parsing and analysis in reverse engineering tools.
In [10~], pages 117-125, 1993. Ezperience report de-
scribing the eztension of an ezisting analysis tool with
a new syntactic front-end. Concludes that language-
independence as well separation of parsing and analysis
are essential for eztensibility.

[82] C. Rich and R.C. Waters. The Programmer's Appren-
tice. Addison-Wesley, 1990. This book, named after the
project it reports on, is intended both to serve as an ez-
ample of a general method to the builders of many and
diverse computer-aided design tools and to study how
software is analyzed, modified, verified, and documented
with the goal to automate such typically software engi-
neering tasks. A demonstration system has been com-
pleted within the Programmer's Apprentice project that
illustrates most of the key capabilities of it, albeit that
this system is restricted to the task of program imple-
mentation.

[83] C. Rich and L.M. Wills. Recognizing a program's
design: A graph-parsing approach. IEEE Software,
7(1):82-89, 1990. In this paper it is assumed that most
programmers use similar structures to program. Such
so-called cliches can be recognized automatically and can
then be used to generate the documentation of the pro-
gram.

[84] H. Ritsch and H. Sneed. Reverse engineering programs
via dynamic analysis. In [10~], pages 192-201, 1993.
Describes a dynamic analysis of COBOL programs. By
inspection of transaction files assertions are generated
capturing the input and output requirements of each
database operation.

[85] S. Rugaber and R. Clayton. The representation prob-
lem in reverse engineering. In [I02], pages 8-16, 1993.
Choosing the proper representation to build models de-
scribing software entities during reverse engineering is
the representation problem. This paper ezamines the
representation problem by presenting a tazonomy of
models and representations.

[86] S. Rugaber, S.B. Ornburn, and R.J. LeBlane. Recog-
nizing design decisions in programs. IEEE Software,
7(1):46-54, 1990. In this paper it is advocated that
in order to effectively maintain an ezisting system, the

maintenance programmer must be able to sustain deci-
sions made earlier in the design process. To accomplish
this, she/he must be able to recognize and understand
this decisions. A way is given to characterize such de-
cisions.

[87] P. Samuelson. Reverse-engineering someone e]se's soft-
ware: is it legal? IEEE Software, 7(1):90-96, 1990.
The legal issues concerning reverse engineering are
discussed: does reverse engineering software infringe
intellectual.property law f.

[88] N. Schneidewind. Introduction to the special section on
software maintenance. IEEE Transactions on Software
Engineering, SE-13(3):301, 1987. This preface intro-
duces a special section on software maintenance.

[89] N. Sehneidewind. The state of software mainte-
nance. IEEE Transactions on Software Engineering,
SE-13(3):303-310, 1987. An overview of the state of
the art in software maintenance and criticizes the ap-
parent disinterest in the research field is provided.

[90] P. Selfridge, R. Waters, and E. Chikofsky. Challenges
for the field of reverse engineering. In [lOPJ, pages 144-
150, 1993. This position paper presents ten challenges
for improvement of reverse engineering research in three
areas: (a} avoiding artificial data; (b) focusing on con-
crete economic and technical impact; and (c} facilitating
researcher communication by establishing standard ter-
minology and selecting standard data sets.

[91] H. Sneed. Migration of procedurally oriented COBOL
programs in an object-oriented architecture. In [53],
pages 105-116, 1992. The subject of this paper is to de-
scribe the migration of procedurally structured COBOL
into functionally equivalent object-oriented programs.
Their major differences are described together with an
approach to bridge the gap between the two.

[92] T. Takeshita. Software Maintenance/Re-engineering
and Reuse, Kyoritsu Shuppan, Tokyo, 1992. (In
Japanese).

[93] H.B.T. Tan and T.W. Ling. Recovery of object-oriented
design from existing data-intensive business programs.
Information and Software Technology, 37(2):67-77,
1995. A method is given for the recovery of a specifi-
cation from an ezisting data-intensive business program
using an augmented model that is proposed in the paper.

[94] F. Tangorra and D. Chiarolla. A methodology for re-
verse engineering hierarchical databases. Information
and Software Technology, 37(4):225-231, 1995. The
steps of a reverse engineering process for translating a
hierarchical data scheme into a conceptual description
in the eztended entity-relationship model are described.
Contains a case study.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 67

[95] S.R. Tilley, K. Wong, M-A.D. Storey, and H.A. M/iller.
Programmable reverse engineering. International Jour-
nal of Software Engineering and Knowledge Engineer-
ing, 4(4):501-520, 1994. This paper argues that most re- [100]
verse engineering environments are not flezible enough.
They are directed towards the tool builders instead of
the users of the environments. Besides a number of ba-
sic facilities, such as parsing, the reverse engineering
tool should allow a high level of eztensibility. The au-
thors present an ezisting scripting language, Tel, to en-
able users to develop their own routines for graph lay-
out, metrics and analysis. Most generic reverse engi-
neering environments break down if they have to deal
with millions of lines of code. The constructed abstract
syntaz trees contain too much information. The reverse
engineering environment should allow a flezible gath- [101]
ering of information, not only based on abstract syn-
tar trees. The way the information is gathered should
be programmable. The reverse engineering environments
should be reusable in various application domains. The
user of the environment should be able to program the
the environment to make it suited for a specific applica-
tion domain.

[96] F. Tip. A survey of program slicing techniques. Journal [102]
of programming languages, 3:121-189, 1995. Surveys
the state-of-the-art in program slicing and gives many
references to the literature.

[97] G. Urschler. The automatic restructuring of programs. [103]
IBM Journal of Research and Development, 19:181-194,
1975. A method is described that allows the translation
of an unstructured program into a set of top-down struc-
tured, semantically founded, go-to-free modules. This
method leads to a certain amount of code replication.

[98] J.C. van Vliet. Automatisehe design recovery: een il- [104]
lusie? Informatie, 35(6):384-389, 1993. (In Dutch.)
The definition of reverse engineering by Chikofski and
Cross [~5] is used to ezplain some reverse engineering
terminology. The author demonstrates by some ezam-
ples that domain specific knowledge is essential for suc-
cessful design recovery. R is therefore essential that tools
for design recovery contain a model of the application
domain, in which concepts of the underlying domain
with their relations and dependencies are modeled. It is [105]
not possible to have automatic design recovery because
the concepts of the application domain can only be de-
scribed by means of informal semantics.

[99] H.H. Vogt and P.R.H. Hendriks. Code-analyse in de
praktijk. Informatie, 36(12):764-770, 1994. (In Dutch.)
Describes the RECALL-project aiming at the analysis
of the complez software of telephone ezehanges to iden- [106]
tify the components and the interaction between these
components. The RECALL reverse engineering proto-
type tool consists of a code browser and a CHILL parser,
and it offers the following functionality: (a) holophrast-

ing; (b) call graph view; (c) call sequence view; (d) all
calls of a procedure view; and (e) jump history.

M. Ward and K. Bennett. A practical program transfor-
mation system for reverse engineering. In [10~], pages
212-221, 1993. Uses program transformation tech-
niques as a basis for reverse engineering. Source files
are first translated into WSL (wide-spectrum language).
By means of a large collection of WSL transformation
and user guidance, the WSL program is simplified. Nezt
it can be translated back into the original source lan-
guage or into the specification language Z. The process
is supported by the ReForm tool which contains parsers
for IBM assembly language and for a Basic subset. Also
see [11].

R.C. Waters. Program translation via abstraction and
reimplementation. IEEE Transactions on Software En-
gineering, 14(8), 1988. The translation paradigm of
abstraction and reimplementation, which is one of the
goals of the Programmer's Apprentice project [SY~] is pre-
sented. A translator has been constructed which trans-
lates Cobol programs into Hibol (a very high level, busi-
ness data processing language).

R.C. Waters and E.J. Chikofsky, editors. Proceedings
of Working Conference on Reverse Engineering. IEEE
Computer Society Press, 1993. All papers in these pro-
ceedings are discussed separately in this bibliography.

M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352-357, 1984. In this pa-
per some properties of slices are presented. It is shown
that the use of data-flow analysis is suj~icient to find
approzimate shoes of the generally unsolvable problem
of finding statement-minimal slices.

B. Whittle and M. Rateliffe. Software component inter-
face description for reuse. Software Engineering Jour-
nal, 8(6):307-318, 1993. The development of a lan-
guage CIDER, which stands for Component Interface
Descriptor is described. It is an object-oriented language
in which it is feasible to integrate and reuse compo-
nent interfaces based on a model of the reusable software
component.

N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locat-
ing user functionality in old code. In [53], pages 200-
205, 1992. Proposes a probabilistic technique to match
ezpected functionality with the actual functions as im-
plemented in ezisting code. An ezperiment reveals that
the method works reasonable but cannot replace human
ezperts.

N. Wilde and It. HuRt. A reusable toolset for software
dependency analysis. Journal of Systems and Software,
14(2):97-102, 1991. A general purpose tool set that has
been developed to capture and analyse software depen-
dencies is described. A prototype of this so-called depen-

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 68

[1o7]

[108]

[109]

[110]

dency analysis tool set has been implemented to analyze
C code.

M. Williams and H. Ossher. Conversion of unstruc-
tured flow diagrams into structured form. The Com-
puter Journal, 21(2):161-167, 1978. Various already
proposed methods to convert unstructured flow diagrams
into equivalent structured ones are discussed. Moreover
a general method for performing such conversions is dis-
cussed.

L. Wills. Flexible control for program recognition. In
[10~], pages 134-143, 1993. Uses chart parsing (a
graph-based parsing technique) for recognizing program
plans. The GRASPR tool implements this technique and
can be applied to Common Lisp programs (less than
I000 lines).

C. Withrow. Error density and size in Ada software.
IEEE Software, 7(1):26-30, 1990. In this paper we can
find an empirical study of the relation between error
density and the length of an Ads module. The results
show that there is an optimal length and that shorter
modules and larger ones contain more errors. For re-
verse engineering such metrics can give an indication
for the status of the software.

H. van Zuylen, editor. The ReDo compendium: reverse
engineering for software maintenance. Wiley, 1993.
Gives an overview of the results of the REDO project
and covers most aspects of reverse engineering. Various
approaches are discussed: (a) compilation of COBOL
programs to equational specifications, restructuring and
simplification of these specifications, and regeneration
of COBOL code from them; (b) compilation of COBOL
to UNIFORM, an intermediate language supporting all
features of both COBOL and JCL; (c) compilation of
COBOL to COBOL-IF, a simplified syntactic repre-
sentation of COBOL programs; (d) abstraction of the
meaning of COBOL code in the form of Z-t-+ specifica-
tions. Various ezperimental tools providing partial sup-
port for the above techniques are discussed. The results
described in this book should be considered as useful ez-
periments. Since the techniques have not been applied to
a number of large scale projects the method does not yet
constitute a mature reverse engineering methodology.

Integrating Information Requirements
Along Processes: A Survey and Research

Directions

C. Francalanci , A. Fugge t t a
D e p a r t m e n t of Electronics and I n f o r m a t i o n

Poli tecnico di Milano
Piazza Leonardo da Vinci, 32

20133 Milano, I t a ly
e-malh [F R A N C A L A ,

F U G G E T T A] @ELET.P OLIMI . IT
Tel: +39-2-23993540, Pax: +39-2-23993411

Abstract

Information requirements have traditionally been collected
separately for different business functions and then integrated
into an overall specification. The recent orientation to a pro-
cess perspective in managing business activities has empha-
sized early integration, by concurrently analyzing business
processes and information requirements. Accordingly, infor-
mation requirements analysis methodologies should take into
account these new integration needs. In the paper, we dis-
cuss these new integration needs. Traditional methods for
requirements integration from database design are analyzed
and unfulfilled integration needs are highlighted. Then, other
research fields are surveyed that dealt with problems similar
to integration and offer interesting results: Recent develop-
ments in database design, software engineering and require-
ments reuse. Finally, we compare the different contributions
and indicate open research directions.

I . I n t r o d u c t i o n

Information requirements analysis and engineering in infor-
mation systems implementation typically follow the same ori-
entation of business and of its administration. Information
systems projects are broken down into parts that mirror the
main business activities. Historically, information systems
have supported organizations that were organized along func-
tional lines [Mintzberg 1979]. Accordingly, information re-
qnirements have been collected by business function and then
later integrated into an overall specification [Nolan 1973, Ba-
t iniet al. 1986].

The recent emphasis on the process perspective in managing
business activities has raised new demands that necessitate
the streamlined integration of data across organizational func-
tions [Venlmtraman 1994, Hammer and Champy 1993, Dav-
enport and Stoddard 1994]. In order to ensure the alignment
between process ;and information system design, requirements
should now be integrated at the process level from the begin-
ning rather than as an after thought to requirements derived
from a function-based analysis [Cattaneo et al. 1995].

Processes are commonly seen as transformations of resources
into products. Information is included among process inputs

