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ABSTRACT

In this paper, we propose privacy-enhancing technologies
for medical tests and personalized medicine methods that
use patients’ genomic data. Focusing on genetic disease-
susceptibility tests, we develop a new architecture (between
the patient and the medical unit) and propose a “privacy-
preserving disease susceptibility test” (PDS) by using ho-
momorphic encryption and proxy re-encryption. Assuming
the whole genome sequencing to be done by a certified in-
stitution, we propose to store patients’ genomic data en-
crypted by their public keys at a “storage and processing
unit” (SPU). Our proposed solution lets the medical unit
retrieve the encrypted genomic data from the SPU and pro-
cess it for medical tests and personalized medicine methods,
while preserving the privacy of patients’ genomic data. We
also quantify the genomic privacy of a patient (from the
medical unit’s point of view) and show how a patient’s ge-
nomic privacy decreases with the genetic tests he undergoes
due to (i) the nature of the genetic test, and (ii) the char-
acteristics of the genomic data. Furthermore, we show how
basic policies and obfuscation methods help to keep the ge-
nomic privacy of a patient at a high level. We also imple-
ment and show, via a complexity analysis, the practicality
of PDS.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; J.3 [Life and Medical Sci-

ences]: Biology and genetics; K.4.1 [Computer and So-

ciety]: Public Policy Issues—Privacy
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1. INTRODUCTION
As a result of the rapid evolution in genomic research,

substantial progress is expected in terms of improved diag-
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nosis and better preventive medicine. However, the impact
on privacy is unprecedented [7], because (i) the genome car-
ries information about one’s genetic conditions and predis-
position to specific diseases (such as Alzheimer’s) (ii) when
someone voluntarily publishes his genome, important infor-
mation about that person’s relatives can be leaked (possibly
against their will), (iii) complex privacy issues would arise if
DNA analyses were to be used for both criminal investiga-
tions and healthcare purposes, and (iv) the extent of infor-
mation that might be extracted by bioinformatics methods
in the future cannot be foreseen.

Even though at this stage, the field of genomics is gener-
ally free of serious attacks, it is likely that the above threats
will become more serious as the number of “sequenced” in-
dividuals becomes larger. Therefore, the need to adapt
privacy-enhancing technologies (PETs) [16] to personal ge-
nomic data will continue to grow with time, as they are key
tools for preventing an adversary from linking particular ge-
nomic data to a specific person or from inferring privacy-
sensitive genomic data about a person.

Currently, the companies and hospitals that perform DNA
sequencing store the genomic data of their customers and pa-
tients. Of course, tight legislation regulates their activities,
but it is extremely difficult for them to protect themselves
against the misdeeds of a hacker or a disgruntled employee.
Therefore, new architectures and protocols are needed to
store and process this privacy-sensitive genomic data, while
still enabling its utilization by the medical units.

In this work, our goal is to protect the privacy of users’
genomic data while enabling medical units to access the ge-
nomic data in order to conduct medical tests or develop
personalized medicine methods. In a medical test, a medical
unit checks for different health risks (e.g., disease suscepti-
bilities) of a user by using specific parts of his genome. Sim-
ilarly, to provide personalized medicine, a pharmaceutical
company tests the compatibility of a user with a particular
medicine. It is important to note that these genetic tests
are currently done by different types of medical units, and
the tools we propose in this paper aim to protect the ge-
nomic privacy of the patients in such tests. In both medical
tests and personalized medicine methods, in order to pre-
serve his privacy, the user does not want to reveal his com-
plete genome to the medical unit or to the pharmaceutical
company. In addition, in some scenarios, it is the pharma-
ceutical companies who do not want to reveal the genetic
properties of their drugs. To achieve these goals, we intro-
duce the privacy-preserving disease susceptibility test (PDS).



The main contributions of our work are summarized in the
following.

1) We develop a new architecture between the patient and
the medical unit. In particular, we propose to store the
genomic data of the patients at a storage and processing
unit (SPU) and conduct the computations on genomic data
by using homomorphic encryption and proxy re-encryption
to preserve the privacy of the genomic data.

2) The proposed PDS preserves the genomic privacy of a
patient from a curious party at the SPU (who tries to infer
the contents of the patient’s DNA from his stored data).
Furthermore, PDS ensures that a medical unit conducting
genetic tests on a patient can only access the parts of the
patient’s DNA for which it is authorized.

3) The proposed PDS protects the privacy of a medical unit
for the genetic properties of conducted genetic tests (espe-
cially, when the medical unit is a pharmaceutical company
who does not want to reveal the genetic properties of its
future drugs).

4) Using a real DNA profile, real genetic tests, and real val-
ues for the characteristics of the genomic data, we quantify
a patient’s genomic privacy (from a medical unit’s point of
view) as a result of the genetic tests he engages in. Moreover,
we show how simple policies and obfuscation techniques help
to reduce the decrease in the genomic privacy of the patient,
while they still preserve the accuracy of the genetic tests.

5) We implement the proposed PDS and show its practicality
via a complexity analysis.

The rest of the paper is organized as follows. In the next
section, we summarize the related work on genomic privacy.
In Section 3, we describe our proposed scheme for privacy-
preserving medical tests and personalized medicine. In Sec-
tion 4, we quantify the genomic privacy of a patient due to
the genetic tests he undergoes, and we propose simple poli-
cies and obfuscation methods to minimize the privacy loss
due to the genetic tests. In Section 5, we discuss the imple-
mentation of the proposed scheme and present its complexity
and security evaluations. Finally, in Section 6, we conclude
the paper.

2. RELATED WORK
We can put the research on the privacy of genomic data

in three main categories: (i) private string searching and
comparison, (ii) private release of aggregate data, and (iii)
private clinical genomics.

In [32], Troncoso-Pastoriza et al. propose a protocol for
string searching on DNA, which is then re-visited by Blan-
ton and Aliasgari [12]. To compute the similarity of DNA
sequences, in [23], Jha et al. propose using garbled circuits.
In [14], Bruekers et al. propose privacy-enhanced compari-
son of DNA profiles by using homomorphic encryption. In
their seminal work [26], Kantarcioglu et al. propose using
homomorphic encryption to perform scientific investigations
on integrated genomic data. In their scheme, all genomic
data is encrypted by the same public key of the data storage
site, and there is a single key holder site that can decrypt
everything. As opposed to [26], we focus on the personal
use of genomic data (e.g., in medical tests and personalized
medicine methods) and we propose a method in which each
user’s genomic data is encrypted via his own cryptographic
key. In one of the recent works [10], Baldi et al. make use of

both medical and cryptographic tools for privacy-preserving
paternity tests, personalized medicine, and genetic compat-
ibility tests. Instead of utilizing public key encryption pro-
tocols, in [15], Canim et al. propose securing the biomedical
data by using cryptographic hardware. Furthermore, Ay-
day et al. propose techniques for privacy-preserving use of
genomic and non-genomic data in disease risk tests [9].

When releasing databases consisting of aggregate genomic
data, it is shown that known privacy-preserving approaches
(e.g., de-identification) are ineffective on (un-encrypted) ge-
nomic data [21,22,28,33,35]. Recently, using differential pri-
vacy was proposed by Fienberg et al. [20]; they aim to ensure
that two aggregated genomic databases, differing from each
other by only one individual’s data, have indistinguishable
statistical features.

In [17], utilizing a public cloud, Chen et al. propose a se-
cure and efficient algorithm to align short DNA sequences to
a reference (human) DNA sequence. Furthermore, in [34],
Wang et al. propose a privacy-protection framework for im-
portant classes of genomic computations (e.g., search for ho-
mologous genes). Finally, Ayday et al. propose techniques
for privacy-preserving management of raw genomes [8].

As a result of our extensive collaboration with geneticists,
clinicians, and biologists, we concluded that a DNA string
comparison is insufficient in many medical tests (that use
genomic data) [5, 27, 30] and would not be enough to pave
the way to personalized medicine. As it will become clearer
in the next sections, for each genetic test, specific variants
must be considered individually. Thus, as opposed to the
aforementioned techniques, we use the individual variants of
the users to conduct genetic tests. Furthermore, we quantify
the genomic privacy of the users as a result of the genetic
tests they undergo considering the statistical relationship
between the variants, and we show techniques for keeping
users’ genomic privacy at high levels.

3. PETS FOR MEDICAL TESTS AND PER-

SONALIZED MEDICINE METHODS
Most medical tests and personalized medicine methods

(that use genomic data) involve a patient and a medical
unit. In general, the medical unit can be a physician in a
medical center (e.g., hospital), a pharmacist, a pharmaceuti-
cal company, or a medical council. In this study, we consider
the existence of a malicious entity in the medical unit as the
potential attacker. That is, a medical unit might contain
a disgruntled employee or it can be hacked by an intruder
that is trying to obtain private genomic information about
a patient (for which it is not authorized).

In addition, extreme precaution is needed for the stor-
age of genomic data due to its sensitivity. Thus, we believe
that a storage and processing unit (SPU) should be used
to store the genomic data. We assume that the SPU is
more “security-aware” than a medical unit, hence it can pro-
tect the stored genomic data against a hacker better than a
medical unit (yet, attacks against the SPU cannot be ruled
out, as we discuss next). Recent medical data breaches from
various medical units [1] also support this assumption. Fur-
thermore, instead of every medical unit individually storing
the genomic data of the patients (in which case patients need
to be sequenced by several medical units and their genomic
data will be stored at several locations), a medical unit can
retrieve the required genomic data belonging to a patient di-



rectly from the SPU. We note that a private company (e.g.,
cloud storage service), the government, or a non-profit or-
ganization could play the role of the SPU.

We assume that the SPU is an honest organization, but
it might be curious. In other words, the SPU honestly fol-
lows the protocols and provides correct information to the
other parties, however, a curious party at the SPU could
access or infer the stored genomic data. Further, it is pos-
sible to identify a person only from his genomic data via
phenotyping, which determines the observable physical or
biochemical characteristics of an organism from its genetic
makeup and environmental influences. Therefore, genomic
data should be stored at the SPU in encrypted form. Simi-
larly, apart from the possibility of containing a malicious en-
tity, the medical unit honestly follows the protocols. Thus,
we assume that the medical unit does not make malicious
requests from the SPU.1 We consider the following models
for the attacker:

• A curious party at the SPU (or a hacker who breaks into
the SPU), who tries to infer the genomic sequence of a pa-
tient from his stored genomic data. Such an attacker can
infer the variants (i.e., nucleotides that vary between indi-
viduals) of the patient from his stored data.

• A malicious entity in the medical unit, who can be consid-
ered either as an attacker that hacks into the medical unit’s
system or a disgruntled employee who has access the medi-
cal unit’s database. The goal of such an attacker is to obtain
private genomic data of a patient for which it is not autho-
rized. As we will discuss in Section 4, the main resource of
such an attacker is the results of the genetic tests the patient
undergoes.

We note that the attacker can also be a hacker who breaks
into both the SPU and the medical unit at the same time
(i.e., an attacker in the form of both above models). We
will discuss this case in Section 3.4, and propose a solution
against it.

3.1 Genomics Background
The human genome is encoded in double stranded DNA

molecules consisting of two complementary polymer chains.
Each chain consists of simple units called nucleotides
(A,C,G,T). The human genome consists of approximately
three billion letters. Even though more than 99% of these
letters are identical in any two individual, there are differ-
ences between us due to genetic variations. Single nucleotide
polymorphism (SNP) is the most common DNA variation
in human population. A SNP is a position in the genome
holding a nucleotide, which varies between individuals. For
example, in Fig. 1, two sequenced DNA fragments from two
different individuals contain a single different nucleotide at
a particular SNP position (i.e., locus). Recent discoveries
show that the susceptibility of a patient for several diseases
can be computed from his SNPs [2,25].

In general, there are two types of alleles (nucleotides) ob-
served at a given SNP position: (i) the major allele is the
most frequently observed nucleotide, and (ii) the minor al-
lele is the rare nucleotide. Thus, each SNP is assigned a
minor and a major allele frequency, among which the minor
allele frequency is the lesser of the two. For instance, the

1Even if malicious requests by the MC were possible, in-
ference from such requests could be limited by using the
proposed obfuscation technique in Section 4.2.

two alleles for the SNP position in Fig. 1 are C and T (G
and A in the figure are the complementary nucleotides for
C and T, respectively).

Figure 1: Single nu-

cleotide polymorphism

(SNP) with alleles C

and T ( c© David Hall,

License: Creative Com-

mons).

Each SNP position in-
cludes two alleles (i.e., two
nucleotides) and everyone
inherits one allele of ev-
ery SNP position from each
of his parents. If an in-
dividual receives the same
allele from both parents,
he is said to be homozy-
gous for that SNP posi-
tion. If, however, he inher-
its a different allele from
each parent (one minor and
one major), he is called
heterozygous. It is impor-
tant to note that a SNP
becomes a variant when it
carries at least one minor
allele. From here on, to
avoid confusion, for each
patient, we refer to these variants (i.e., SNPs carrying at
least one minor allele) as the real SNPs and the remaining
non-variants (i.e., SNPs carrying no minor alleles) as the po-
tential SNPs of the patient; when we only say “SNPs”, we
mean both the real and potential SNPs. For example, as-
sume that b is the minor allele and B is the major allele for a
SNP position (both b and B are from the set {A, T,C,G}).
Then, in Fig. 2, we illustrate the probable states of this SNP
for an offspring, for different combinations of the father’s
and mother’s alleles. We note that if the state of a SNP is
known (potential, real homozygous or real heterozygous), its
content (i.e., nucleotides residing at the corresponding SNP
position) can be easily determined. Hence, hereafter, when
we refer to the state of a SNP, we also mean its content.

Figure 2: Probable states of

a SNP for an offspring, given

different combinations of his

parents’ alleles for the same

SNP position.

There are approxi-
mately 50 million SNPs
in the human popula-
tion as of now (accord-
ing to the NCBI db-
SNP [3]) and each pa-
tient carries on average
4 million variants (i.e.,
real SNPs carrying at
least one minor allele)
out of this 50 million.
We note that the num-
ber of SNPs in human
population is increas-
ing very rapidly [3], whereas the number of real SNPs per
patient (around 4 million) remains the same. Moreover, this
set of 4 million real SNPs is different for each patient.

3.2 Overview of the Proposed Scheme
For the simplicity of presentation, in the rest of this sec-

tion, we will focus on a particular medical test (namely,
computing genetic disease susceptibility). Similar tech-
niques would apply for other medical tests and personalized
medicine methods. In a typical genetic disease-susceptibility
test, a medical center (MC) wants to check the susceptibility



of a patient (P) for a particular disease X (i.e., the prob-
ability that patient P will develop disease X) by analyzing
particular SNPs of the patient.2

For each patient, we propose to store only the real SNPs
at the SPU. At this point, it can be argued that these 4
million real SNPs (nucleotides) could be easily stored on the
patient’s computer or mobile device, instead of at the SPU.
However, we assert that this should be avoided due to the
following issues. On one hand, types of variations in human
population are not limited to SNPs, and there are other
types of variations such as copy-number variations (CNVs),
rearrangements, or translocations, consequently the required
storage per patient is likely to be considerably more than
only 4 million nucleotides. This high storage cost might
still be affordable (via desktop computers or USB drives),
however, the genomic data of the patient should be available
any time (e.g., for emergencies), thus it should be stored
at a reliable source such as the SPU. On the other hand,
leaving the patient’s genomic data in his own hands and
letting him store it on his computer or mobile device is risky,
because his mobile device can be stolen or his computer can
be hacked. It is true that the patient’s cryptographic keys
(or his authentication material) to access his genomic data
at the SPU can also be stolen, however, in the case of a
stolen cryptographic key, his genomic data (which is stored
at the SPU) will still be safe. This can be considered like a
stolen credit card issue. If the patient does not report that
his keys are compromised as soon as possible, his genomic
data can be accessed by the attacker.

It is important to note that protecting only the states
(contents) of the patient’s real SNPs is not sufficient in terms
of his genomic privacy. As the real SNPs are stored at the
SPU, a curious party at the SPU can infer the nucleotides
corresponding to the real SNPs from their positions and from
the correlation between the patient’s potential SNPs and the
real ones (as discussed in Section 4). That is, by knowing the
positions of the patient’s real SNPs, the curious party at the
SPU will at least know that the patient has one or two minor
alleles at these SNP positions (i.e., it will know that the cor-
responding SNP position includes either a real homozygous
or heterozygous SNP), and it can make its inference stronger
using the correlation between the SNPs. Therefore, we pro-
pose to encrypt both the positions of the real SNPs and their
states. We assume that the patient stores his cryptographic
keys (public-secret key pair for asymmetric encryption, and
symmetric keys between the patient and other parties) on
his smart card (e.g., digital ID card). Alternatively, these
keys can be stored at a cloud-based password manager and
retrieved by the patient when required.

In short, the whole genome sequencing is done by a certi-
fied institution (CI) with the consent of the patient. More-
over, the real SNPs of the patient and their positions on
the DNA sequence (or their unique IDs) are encrypted by
the same CI (using the patient’s public and symmetric key,
respectively) and uploaded to the SPU, so that the SPU
cannot access the real SNPs of the patient (or their posi-
tions). We are aware that the number of discovered SNPs
increases with time. Thus, the patient’s complete DNA se-
quence is also encrypted as a single vector file (via symmetric

2In this study, we only focus on the diseases which can be
analyzed using the SNPs. We admit that there are also
other diseases which depend on other forms of mutations or
environmental factors.

encryption using the patient’s symmetric key) and stored at
the SPU, thus when new SNPs are discovered, these can be
included in the pool of the previously stored SNPs of the
patient. We also assume the SPU not to have access to the
real identities of the patients and data to be stored at the
SPU by using pseudonyms; this way, the SPU cannot asso-
ciate the conducted genetic tests to the real identities of the
patients.

Depending on the access rights of the MC, either (i) the
MC computes Pr(X), the probability that the patient will
develop disease X by checking a subset of the patient’s en-
crypted SNPs via homomorphic encryption techniques [13],
or (ii) the SPU provides the relevant SNPs to the MC (e.g.,
for complex diseases that cannot be interpreted using homo-
morphic operations). These access rights are defined either
jointly by the MC and the patient, or directly by the medical
authorities. We note that homomorphic encryption lets the
MC compute Pr(X) using encrypted SNPs of patient P. In
other words, the MC does not access P’s SNPs to compute
his disease susceptibility. We use a modification of the Pail-
lier cryptosystem [6,13] (described in Section 3.3) to support
the homomorphic operations at the MC.

We describe the proposed privacy-preserving disease sus-
ceptibility test (PDS) in detail in Section 3.4. We also discuss
the computation of genetic disease susceptibility by using
homomorphic operations in Section 3.5.

3.3 Paillier Cryptosystem
Here, we briefly review the modified Paillier cryptosystem

(described in detail in [6, 13]), which we use in this work,
and its homomorphic properties.

The public key of patient P is represented as (n, g, h = gx),
where the strong secret key is the factorization of n = pq (p,
q are safe primes), the secret key is x ∈ [1, n2/2], and g of
order (p − 1)(q − 1)/2. Such a g can be easily found by
selecting a random a ∈ Z

∗
n2 and computing g = −a2n.

Encryption of a message: To encrypt a message m ∈
Zn, we first select a random r ∈ [1, n/4] and generate the
ciphertext pair (T1, T2) as below:

T1 = gr mod n2 and T2 = hr(1 +mn) mod n2. (1)

Re-encryption of a message: An encrypted message
(T1, T2) can be re-encrypted under the same public key, by
using a new random number r1 ∈ [1, n/4] as below:

T̂1 = gr1T1 mod n2 and T̂2 = hr1T2 mod n2. (2)

Decryption of a message: The message m can be recov-
ered as follows:

m = Λ(T2/T
x
1 ), (3)

where Λ(u) = (u−1) mod n2

n
, for all u ∈ {u < n2 | u = 1

mod n}.

Homomorphic properties: The below-mentioned homo-
morphic properties are supported by the modified Paillier
cryptosystem:

• The product of two ciphertexts decrypts to the sum of
their corresponding plaintexts.

• An encrypted plaintext raised to a constant decrypts to
the product of the plaintext and the constant.



Proxy re-encryption: The patient’s secret key x can be
randomly divided into two shares: x(1) and x(2) (such that

x = x(1) + x(2)). Using the above modified Paillier cryp-
tosystem, an encrypted message (T1, T2) (under the patient’s

public key) can be partially decrypted by using x(1) to gen-

erate the ciphertext pair (T̃1, T̃2) as below:

T̃1 = T1 and T̃2 = T2/T
x(1)

1 mod n2. (4)

Now, (T̃1, T̃2) can be decrypted using x(2) to recover the
original message.

3.4 Privacy-Preserving Disease Susceptibility
Test (PDS)

We assume that the state of SNPi (SNP which resides at
position i on the DNA sequence) for patient P is represented
as SNPP

i . Further, SNPP
i = 0, if P does not have a variant

at this position, SNPP
i = 1, if P has a real heterozygous SNP

at this position, and SNPP
i = 2, if P has a real homozygous

SNP at this position. We let ΥP be the set positions (on
the DNA sequence) at which patient P has real SNPs (i.e.,
at which SNPP

i ∈ {1, 2}). We also let ΩP represent the set
of potential SNP positions (at which SNPP

i = 0).
As the MC does the computations on the encrypted SNPs

of the patient, if the MC has the complete secret key (x) of
the patient, it can access the states of the SNPs used to con-
duct the genetic test (even though the MC may not be au-
thorized to access the states of individual SNPs). Therefore,
following a proxy re-encryption protocol that is proposed for
the modified Paillier cryptosystem [6]3, the patient’s secret

key x is randomly divided into two shares: x(1) and x(2)

(such that x = x(1) + x(2)). x(1) is given to the SPU and

x(2) is given to the MC.
However, in some environments, splitting the secret key

of the patient, and distributing the shares of the secret key
to the SPU and MC might not be acceptable when (i) it is
likely that the SPU and MC will collaborate to retrieve the
patient’s secret key, or (ii) neither the SPU nor the MC are
security-aware, hence they can be hacked by the same at-
tacker. Therefore, for the sake of completeness, in the follow-
ing, we present PDS with and without proxy re-encryption.

3.4.1 PDS with Proxy Re-encryption

In some applications, the patient’s involvement in the
genetic test is not desired (except for his consent to the
test). Thus, in this section, we present PDS with proxy re-
encryption, in which the patient is only involved during the
first part of the disease susceptibility test. Below, we sum-
marize the PDS with proxy re-encryption. These steps are
illustrated in Fig. 3.

• Step 0: The cryptographic keys (public and secret keys)
of each patient are generated and distributed to the patients
during the initialization period (public keys of the patients
are also distributed to the CI, the SPU, and to the MC).
Then, symmetric keys are established between the parties
(among which interaction occurs in Fig. 3). By using the
symmetric keys, the positions of P’s real SNPs are encrypted
(as we discuss next) and the communication between the

3We follow the original works [6,13] for the notations of some
cryptographic primitives (e.g., proxy re-encryption, secret
key).
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Figure 3: PDS with proxy re-encryption.

parties is protected from an eavesdropper. The distribution,
update and revocation of cryptographic keys are handled by
a trusted entity.

• Step 1: The patient (P) provides his sample (e.g., his
saliva) to the certified institution (CI) for sequencing.

• Step 2: After sequencing, the CI first determines the
positions of P’s real SNPs and constructs ΥP (set positions
at which P has real SNPs).

After constructing ΥP , the CI encrypts each element
in ΥP with the symmetric key kPC (between patient P
and the CI, established and distributed during Step 0) by
using a secure symmetric encryption function and gener-
ates E(ΥP , kPC) = {E(υi, noncei, kPC) : υi ∈ ΥP }, where
noncei = F(kPC , υi), and F is a pseudorandom function.
The CI also encrypts the states (contents) of the real SNPs
of the patient P using P’s public key to obtain E(SNPP

i , g
x)

and E((SNPP
i )

2, gx) for each real SNP of P.4 Furthermore,
the CI encrypts a “0” value (representing the states of the
potential SNPs with positions in ΩP ) using P’s public key
to obtain E(0, gx) and E(02, gx). Finally, the CI associates
an arbitrary position, υ0, for this “0” value and encrypts υ0

using the symmetric key kPC to obtain E(υ0, nonce0, kPC).

• Step 3: The CI sends the encrypted SNPs and positions
to the SPU. Eventually, for each real SNP of P, the SPU
stores [E(υi, noncei, kPC) | E(SNPP

i , g
x) | E((SNPP

i )
2, gx)]

(SNPP
i ∈ {1, 2} as only the real SNPs of the patient

are stored) and to represent the potential SNPs of P, the
SPU stores only [E(υ0, nonce0, kPC) | E(0, gx) | E(02, gx)].
We let the SPU know that the encrypted position
E(υ0, nonce0, kPC) represents the potential SNPs of P.

• Step 4: The patient provides a part of his secret key (x(1))
to the SPU.

• Step 5: The MC wants to conduct a susceptibility test
on P for a particular disease X, and P provides the other
part of his secret key (x(2)) to the MC. As discussed before,
by distributing the parts of patient’s secret key to the SPU
and MC, we avoid exposing the patient’s secret key (x) to
the MC, thus we prevent the MC from accessing more infor-
mation than it is authorized for.

4The squared value of each real SNP (e.g., (SNPP
i )

2) is also
encrypted and stored in order to realize the homomorphic
operations discussed in Section 3.5.



• Step 6: The MC tells the patient the positions of the SNPs
that are required for the susceptibility test or requested di-
rectly as the relevant SNPs (but not the individual contri-
butions of these SNPs to the test). The positions of the
requested SNPs should be revealed by the MC to determine
(i) whether the MC has sufficient access rights to operate
on the requested SNPs of the patient, and (ii) whether the
patient gives consent to the use of the requested SNPs by
the MC. We note that when the medical unit is embodied
in a pharmaceutical company (who does not want to reveal
the genetic properties of its drugs), the pharmaceutical com-
pany might request additional (i.e., dummy) SNPs from the
patient (along with the actual ones that are used in the test)
in order to hide the precise nature of the request.

• Step 7: The patient encrypts each requested position υj

with the symmetric key kPC to obtain E(υj, noncej , kPC).
We note that this operation can be easily done via the pa-
tient’s smart card (e.g., by scanning the card at the MC as
a consent to the test).

• Step 8: The patient sends the SPU the encrypted posi-
tions of the requested SNPs.

• Step 9: The SPU receives each requested position, υj ,
from the patient in an encrypted form (E(υj, noncej , kPC)).
If the patient has a real SNP at the requested position (i.e.,
E(υj, noncej , kPC) ∈ E(ΥP , kPC)), the SPU retrieves the
encrypted SNP (i.e., the encrypted state of the correspond-
ing SNP) at the corresponding (encrypted) location. Oth-
erwise, if the patient has a potential SNP at the requested
position (i.e., E(υj, noncej , kPC) /∈ E(ΥP , kPC)), the SPU
retrieves the encrypted SNP (i.e., encrypted state) stored at
E(υ0, nonce0, kPC). It is important to note that the SPU
does not know the virtue of the genetic test for which the
patient is being tested, hence it cannot launch an attack to
infer the susceptibility of the patient for the corresponding
disease by counting the number of requested positions at
which the patient has a real SNP.

Then, one of the following two scenarios occur at the SPU:

(a) If the end-result is to be computed (by the MC), the
retrieved SNPs are re-encrypted at the SPU under the pa-
tient’s public key. Following the properties of the modified
Paillier cryptosystem, an encrypted SNP (using a random
r ∈ [1, n/4]) can be re-encrypted under the same public key,
by using a new random number r1 ∈ [1, n/4] (re-encryption
under the same public key is discussed in Section 3.3). As
there is only one value stored at the SPU representing the
states of the potential SNPs at which P does not have a
variant (at position E(υ0, nonce0, kPC)), this value is re-
encrypted for each different request of a non-variant, so that
the MC cannot infer the positions of the non-variants of the
patient.

(b) If relevant SNPs are requested (by the MC), the SPU

partially decrypts the retrieved SNPs by using x(1) follow-
ing a proxy re-encryption protocol (described in detail in
Section 3.3).

• Step 10: Re-encrypted (or partially decrypted) SNPs are
sent to the MC (by the SPU) in the same order as they are
requested in Step 6.

• Step 11: One of the following occurs at the MC:

(a) If the end-result is to be computed (by the MC), the
MC computes P’s total susceptibility for disease X by us-
ing the homomorphic properties (i.e., homomorphic addition

and multiplication with a constant) of the modified Paillier
cryptosystem (as discussed in Section 3.5) under the pa-
tient’s public key.

(b) If relevant SNPs are requested (by the MC), the MC

decrypts the message received from the SPU by using x(2)

and recovers the relevant SNPs.

The remaining steps are executed only if the end-result of
the test is computed by the MC; if the relevant SNPs are
requested, Step 11 is the last step of the protocol.

• Step 12: The MC sends the encrypted end-result to the
SPU.

• Step 13: The SPU partially decrypts the end-result using
x(1) by following a proxy re-encryption protocol and sends
it back to the MC.

• Step 14: The MC decrypts the message received from the
SPU by using x(2) and recovers the end-result.

3.4.2 PDS without Proxy Re-encryption

In this approach, the shares of P’s secret key are not dis-
tributed to the SPU or MC. Most of this approach is the
same as PDS with proxy re-encryption. The only difference
(other than the fact that the parts of P’s secret key are not
distributed to the other parties) is the transfer of the end-
result or the relevant SNPs to the MC as follows:

• If the relevant SNPs are requested by the MC, the SPU
sends the encrypted SNPs (by P’s public key) to P. P de-
crypts these SNPs (using his secret key) and sends them to
the MC.

• If the end-result of the susceptibility test is requested by
the MC, the disease-susceptibility test is done (via homo-
morphic operations) at the MC and the encrypted end-result
is sent to P. Then, P decrypts the end-result and sends it
back to the MC.

The above operations put more burden on the patient
during the protocol. However, we emphasize that these op-
erations can be smoothly done on the patient’s smart card
without requiring a substantial effort from the patient him-
self.

3.5 Computing Disease Susceptibility via Ho-
momorphic Operations

The MC uses a proper function to compute P’s predicted
disease susceptibility via homomorphic encryption. There
are different functions for computing the predicted suscepti-
bility. In [27], Kathiresan et al. propose to count the number
of unfavorable alleles carried by the patient for each SNP re-
lated to a particular disease. Similarly, in [5], Ashley et al.
propose to multiply the likelihood ratios (LRs) of the most
important SNPs for a particular disease. Furthermore, a
weighted averaging function can also be used, which com-
putes the predicted susceptibility by weighting the SNPs by
their contributions. It is important to note that these func-
tions are currently used by geneticists to check patients’ sus-
ceptibilities for a wide variety of diseases. In the following,
we discuss how to compute the predicted disease suscepti-
bility at the MC by using weighted averaging (which is an
advanced version of the function proposed in [27]) from the
encrypted SNPs (the function proposed in [5] can be also
computed similarly).



Again, we let SNPP
i represent the state of SNPi for pa-

tient P, where SNPP
i ∈ {0, 1, 2}. Assume that the suscepti-

bility for disease X is determined by the set of SNPs, whose
positions (on the DNA sequence) are in set ϕX .5 The con-
tributions of different states of SNPP

i (for i ∈ ϕX) to the
susceptibility for disease X are computed via previous stud-
ies (on case and control populations) and they are already

known by the MC. That is, pi
0(X) , Pr(X|SNPP

i = 0),

pi
1(X) , Pr(X|SNPP

i = 1), and pi
2(X) , Pr(X|SNPP

i = 2)
(i ∈ ϕX) are determined and known by the MC. Further,
the contribution of SNPi to the susceptibility for disease X
is denoted by CX

i . Note that these contributions are also
computed by previous studies on case and control groups
and they are known by the MC.

As we have discussed before (in Section 3.4.1), the SPU
stores the states of P’s SNPs along with their squared val-
ues, encrypted by P’s public key (n, g, h = gx). The squared
values of the SNPs’ states are stored in order to realize the
genetic disease susceptibility test via homomorphic opera-
tions as discussed next. Thus, the MC uses E(SNPP

i , g
x) and

E((SNPP
i )

2, gx) (i ∈ ϕX) for the computation of predicted
susceptibility of P for disease X. Furthermore, the MC uses
the following data for the disease susceptibility test: (i) the
markers for disease X (whose positions are in ϕX), (ii) cor-
responding probabilities (pi

j(X), i ∈ ϕX and j ∈ {0, 1, 2}),

and (iii) the contributions of each SNP (CX
i ).

Next, the MC computes the predicted susceptibility of
patient P for disease X, SX

P , by using weighted averaging.
This can be computed in plaintext as below:

S
X
P =

1
∑

i∈ϕX

CX
i

∑

i∈ϕX

CX
i × pi

SNPP
i
(X)× SNPP

i

=
1

∑

i∈ϕX

CX
i

×
∑

i∈ϕX

CX
i

{

pi
0(X)

(0− 1)(0− 2)

[

SNPP
i − 1

]

×

[

SNPP
i − 2

]

+
pi
1(X)

(1− 0)(1− 2)

[

SNPP
i − 0

] [

SNPP
i − 2

]

+

pi
2(X)

(2− 0)(2− 1)

[

SNPP
i − 0

] [

SNPP
i − 1

]

}

. (5)

In short, (5) takes all SNPs that are associated with dis-
ease X (in ϕX), determines the contribution of each SNP
to the disease based on its state ({0, 1, 2}), multiplies this
value with the general contribution of the SNP (CX

i ), and
sums up for all SNPs in ϕX . The computation in (5) can be
realized by using the encrypted SNPs of the patient (and by
utilizing the homomorphic properties of the modified Pail-
lier cryptosystem) to compute the encrypted susceptibility,
E(SX

P , gx) as below:

E(SX
P , gx) =

{

∏

i∈ϕX

{[

E((SNPP
i )

2, gx)
](ã+b̃+c̃)

×
[

E(SNPP
i , g

x)
](−3ã−2b̃−c̃)

× [E(2ã, gx)]
}CX

i

} 1
∑

i∈ϕX

CX
i

,

(6)

5SNPs whose positions are in ϕX are not necessarily among
the real SNPs of patient P (i.e., P does not need to have a
real homozygous or heterozygous SNP at those positions).

where ã = pi
0(X)/2, b̃ = −pi

1(X), and c̃ = pi
2(X)/2. We

note that E(2ã, gx) can be computed using P’s public key,
as ã is known by the MC. Furthermore, as the modified Pail-
lier cryptosystem requires to work on integer values, for the
implementation, the MC multiplies each non-integer value
ã, b̃, c̃, CX

i , and (
∑

i∈ϕX

CX
i )−1 with a large constant (as will

be discussed in Section 5.1). Next, the MC sends E(SX
P , gx)

to the SPU. Then, the SPU partially decrypts the end-result
E(SX

P , gx) using its share (x(1)) of P’s secret key (x), as dis-

cussed before, to obtain E(SX
P , gx

(2)

) and sends it back to the

MC. Finally, the MC decrypts E(SX
P , gx

(2)

) using its share

(x(2)) of P’s secret key to recover the end-result SX
P .

4. QUANTIFICATION OF GENOMIC PRI-

VACY AT THE MEDICAL CENTER
From the results of genetic tests, the MC can learn more

information than it is authorized by using (i) the charac-
teristics of the exposed SNPs, and (ii) disease markers and
their contributions. Therefore, in this section, we will quan-
tify the genomic privacy of the patient from the MC’s point
of view as a result of the genetic tests he encounters. We
assume that the MC tries to infer the states of particular
SNPs of the patient (regardless whether they are real or po-
tential SNPs) from the results of genetic tests. As a result,
the genomic privacy of the patient changes over time (as he
has more genetic tests). Consequently, our goals are to (i)
compute the decrease in the genomic privacy of patient P
as a result of the genetic tests he undergoes, and (ii) show
how simple policies and obfuscation methods help to keep
the genomic privacy of the patient at high levels.

An important issue to consider in this evaluation is the
linkage disequilibrium (LD) between SNPs [19]. LD occurs
when SNPs at two loci (SNP positions) are not independent
of each other. For example, assume that SNPi and SNPj

(SNPs which reside at positions i and j on the DNA se-
quence, respectively) are in LD. Let (A1, A2) and (B1, B2)
be the potential alleles for these two SNP positions (i.e.,
loci) i and j. Further, let (p1, p2) and (q1, q2) be the allele
probabilities of (A1, A2) and (B1, B2), respectively. That
is, the probability that an individual will have A1 as the
first allele6 of SNPi is p1, and so on. If there were no LD
(i.e., if SNPi and SNPj were independent), the probability
that an individual will have both A1 and B1 as the first
alleles of SNPi and SNPj would be p1q1. However, due
to the LD, this probability is equal to p1q1 + D, where
D represents the LD between these two SNP positions.

A1
Pr(A1)=p1

A2
Pr(A2)=p2

B1
Pr(B1)=q1

Pr(A1B1)=p1q1 + D Pr(A2B1)=p2q1 - D

B2
Pr(B2)=q2

Pr(A1B2)=p1q2 - D Pr(A2B2)=p2q2 + D

Figure 4: Linkage disequi-

librium (LD) between two

SNP positions with potential

alleles (A1, A2) and (B1, B2),

respectively.

In Fig. 4, we illustrate
this LD relationship for
all possible combina-
tions of (A1, A2) and
(B1, B2). We note that
D can be either neg-
ative or positive, de-
pending on the LD be-
tween two loci. The
strength of the LD be-
tween two SNP posi-
tions is usually repre-

6As we discussed before, each SNP position includes two
alleles (i.e., two nucleotides).



sented as r2 = D2

p1p2q1q2
, where r2 = 1 represents the

strongest LD relationship. In Fig. 5, we illustrate the r2

values between a set of SNP pairs (which are used in this
study).

As in Fig. 5, r2 values are symmetric between the SNP
pairs. However, when the LD is represented as a conditional
probability (e.g., probability that the first allele of SNPi is
A1, given the first allele of SNPj is B1), the probabilities
become asymmetric between the SNP pairs. We computed
the conditional probabilities between the SNP pairs (which
are in LD) using their D and r2 values from [24] and [11]
(r2 value, along with other genetic information, which is out
of the scope of this paper, is required to determine the sign
of D). For this study, we use these conditional probabilities
for the inference of the MC.

As we have discussed before, the MC can obtain the result
of a genetic test in two different ways:

Test 1: MC obtains a subset of P’s SNPs (e.g., for com-
plex diseases for which the disease susceptibility cannot be
computed using homomorphic operations).

Test 2: MC obtains the end-result of a genetic test, which
is conducted using homomorphic operations as discussed in
Section 3.5. We assume that weighted averaging is used in
Test 2, to conduct the disease susceptibility test at the MC
(as described in Section 3.5).

In Test 2, even though the MC does not have access to the
patient’s SNPs, the following information is known by the
MC and it helps the MC infer the patient’s un-exposed SNPs
more accurately: (i) the markers of diseases and their con-
tributions (Cj

i values), (ii) the contributions of the different
alleles of a SNP for a particular disease (i.e., contributions
of different states of a SNP for a particular disease), and (iii)
the LD values between the SNPs.

We use asymmetric entropy [29] to compute the genomic
privacy of the patient (from the MC’s view point) due to the
genetic tests he undergoes. Asymmetric entropy is defined
as

h(pi) =
pi(1− pi)

(−2w + 1)pi + w2
, (7)

where pi is the probability of correctly inferring the state
(content) of SNPi for patient P (i.e., SNPP

i ), and w is the
point at which the entropy is maximum. We do not use the
traditional entropy metric [31] to quantify privacy, as the
initial probability for correctly inferring the state of a SNP
position (with no information about the patient) depends on
known statistics, hence the maximum value of the entropy
is different for each SNP position, while the range of pi is
always the same. Consider a SNPi with minor allele proba-
bility of pa and major allele probability of pA. Then, (i) if
SNPP

i = 0, w = p2A, (ii) if SNPP
i = 1, w = 2pApa, and (iii)

if SNPP
i = 2, w = p2a.

Assume that the set W includes the SNPs over which we
compute the genomic privacy of patient P. Further, let DW

represent the set of diseases whose risk factors (i.e., patients’
susceptibilities for these diseases) are computed using differ-
ent subsets of SNPs in W. To compute the genomic privacy
of patient P, we add the entropies of all of P’s SNPs, over
which we compute his genomic privacy as

∑

i∈W h(pi). Pa-
tient P has the highest genomic privacy when the MC does
not have any information about the patient’s DNA sequence,
hence the entropies of his SNPs are at maximum (from the

Figure 5: r2 values, which are a measure of the LD

strength between two SNP positions, between a set

of SNP pairs (which are used in this study) using

the Haploview software [11]. Darker squares represent

higher r2 values, hence stronger LD between the SNPs.

MC’s point of view). As the patient undergoes Test 1 or
Test 2, his genomic privacy starts decreasing due to his re-
vealed or inferred SNPs.

For the simplicity of the presentation, we consider slot-
ted time and we assume that, at each time slot, the MC
conducts a test (either Test 1 or Test 2) to the patient. For
Test 1, we let the number of exposed SNPs be integer values,
randomly chosen from the set [10, 15]. Once the SNPs are
revealed, the MC updates its inference on the non-exposed
SNPs by using the LD relationships between the exposed
SNPs and those non-exposed. For Test 2, the MC conducts
the disease susceptibility test on patient P for a disease in
DW and obtains only the end-result of the test. However,
the MC can compute the potential end-results of such a test
using the information it possesses (markers, contributions,
allele probabilities, etc.) for every possible combination of
the SNPs for that disease. Considering that the patient is
being tested for disease Di and the markers (SNPs) reveal-

ing Di are from the set ϕi, there are 3|ϕi| potential values
for the end-result of the susceptibility test (since each SNP
can be in 3 different states). If only one of these potential
end-results matches the actual end-result of the test, the MC
automatically learns the states (contents) of all the SNPs of
P in ϕi. If however, multiple potential end-results match the
actual end-result, the inferred probabilities on the SNPs are
updated proportionally to the occurrence probabilities of the
matching potential end-results. To save time, the MC can
compute the potential end-results of the susceptibility tests
offline. As a result of Test 2, if any SNP is completely re-
vealed, its LD relationships with the non-exposed SNPs are
also used for further inference (of the non-exposed SNPs).

For the evaluation of privacy loss on a real example, we
constructed W from the markers of 40 diseases in DW (such
as Alzheimer’s, Parkinson’s, etc.) from [25] and [2]. Eventu-
ally, we computed the genomic privacy of the patient using
around 500 SNPs (among which the patient has both poten-
tial and real SNPs). For the patient’s DNA profile, we used
a real human DNA profile from [4]. As we discussed before,
we computed the conditional probabilities due to the LD
between the SNPs (in W) from [24] and [11]. We note that
each disease in DW has at least 1, and at most 15 markers.
Further, we observed that there are 12 SNPs that are the
markers of more than one disease.

In Fig. 6, we illustrate the decrease in the genomic privacy
of patient P during 40 occurrences of a random combination
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Figure 6: Genomic privacy of patient P (computed using

(7)) from MC’s point of view during 40 occurrences of a

random combination of Test 1 and Test 2, when (i) the

LD relationships between the SNPs are ignored, and (ii)

the LD relationships are also used for the inference.

of Test 1 and Test 2. To observe the effect of the LD to
the inference of the SNPs in W, we illustrate the decrease
in the genomic privacy of the patient both by ignoring and
considering the LD between the SNPs in W. As we illus-
trate in the figure, genomic privacy drops rapidly, especially
when the LD values are utilized (we observed about 8% more
decrease in the genomic privacy when the LD values are
utilized), hence after each test, the MC infers increasingly
more about the states (contents) of the SNPs in W. It is
important to note that the research on the LD relationships
between the SNPs is still ongoing, and as the field of ge-
nomics becomes more mature, we expect stronger inference
of the SNPs due to the LD relationships. Due to this rapid
decrease in the genomic privacy, we argue that either some
policies should be enforced to the MC (for Test 1) or some
obfuscation methods should be used at the SPU before pro-
viding the end-result to the MC (for Test 2). In the following
subsections, we discuss some basic potential policies and ob-
fuscation methods and show how such basic techniques can
help to keep the genomic privacy of the patient at high levels.
We emphasize that the purpose of the next two subsections
is not to introduce novel policies and obfuscation methods;
it is to show how simple precautions would help to reduce
the decrease in the genomic privacy of the patient.

4.1 Enforcing Policies
Here, we propose a basic policy on the MC, in which the

MC has to delete the exposed SNPs (as a result of Test 1)
from its database after a definite time. Let Σ be the set
of SNPs that are exposed to the MC as a result of Test 1
at time t. With this proposed policy, the MC can keep
these SNPs in its database only until time t+ τ . That is, an
attacker (who hacks into the MC’s database) or a disgruntled
employee, who happens to access MC’s database sometime
between time t and t + τ , can use the SNPs in Σ to infer
other non-exposed SNPs (via the LD relationships) of the
patient. However, an attacker or disgruntled employee who
accesses to MC’s database after time t + τ cannot see the
states of the SNPs in Σ, thus cannot use them to infer other
SNPs.
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Figure 7: Genomic privacy of the patient (computed us-

ing (7)) from MC’s point of view during 20 occurrences

of Test 1, when (i) there is no policy and the LD rela-

tionships between the SNPs are ignored, (ii) there is no

policy and the LD relationships are also used for the in-

ference, (iii) τ = 5 while considering the LD relationships,

and (iv) τ = 3 while considering the LD relationships.

In short, even though the MC is not a malicious unit it-
self, deleting the exposed SNPs from MC’s database after a
definite time would allow less information to be revealed to
a potential attacker. In Fig. 7, we show the change in the
genomic privacy of the patient for 20 occurrences of Test 1
when there is no policy (first ignoring and then considering
the LD to show the effect of the LD) and for two different
values of τ (τ = 3 and 5 while considering the LD). We ob-
serve that the patient can re-gain his lost genomic privacy,
up to some level, when his exposed SNPs (in Test 1) are
deleted from the MC’s database. As opposed to Test 1, we
do not foresee that the MC would delete the results of Test 2
from its database because, Test 2 directly reports the sus-
ceptibility of the patient for a particular disease, hence the
MC would keep this result in the medical file of the patient
for future use.

4.2 Obfuscation Methods
For most genetic tests (e.g., genetic disease susceptibil-

ity tests), it is sufficient (for the MC) to obtain the range
that the end-result falls in. Thus, as a simple obfuscation
method, we propose to provide the end-result of Test 2 to
the MC as a range. However, as the end-result of Test 2
is encrypted at the SPU, SPU cannot apply an obfuscation
method to the end-result itself. Thus, for the practicality
of this obfuscation method, we propose either (i) sending
the encrypted end-result (from the SPU) to another entity
called obfuscation unit (OU) (which does not know patient’s
real identity or the nature of the genetic test), or (ii) using
a privacy-preserving comparison protocol [18] between the
SPU and the MC (to compare two encrypted values).

In the former approach, we assume that the OU possesses
the same part of P’s secret key as the MC (x(2)). The OU

decrypts the end-result using x(2), applies the obfuscation
method, re-encrypts the obfuscated result using patient’s
public key (gx), and sends it back to the SPU. Then, once
again the SPU partially decrypts the obfuscated end-result
by using its share of patient’s secret key (x(1)) and sends
it to the MC.7 We also assume that the OU and the MC

7In the case of PDS without proxy re-encryption, obfus-
cation can be handled by the patient’s smart card, as the



do not collude. In the latter approach, through a message
exchange with the MC, the SPU compares the (encrypted)
end-result of the genetic test with some pre-defined bound-
aries to determine the range that the end-result falls in (refer
to [18] for details). It is important to note that during this
process, neither the SPU nor the MC learns the end-result
of the genetic test or the outcome of the comparison pro-
tocol. Once the SPU obtains the encrypted result of the
comparison protocol, it can compute the (encrypted) range
that the end-result of the genetic test falls in, and send this
encrypted range to the MC. In the following, we briefly dis-
cuss this simple obfuscation method and its impact on the
patient’s genomic privacy.

Let the entire result range, [0, 1], be divided into a smaller
ranges of equal size. Then, the SPU determines (via the OU,
or a private comparison protocol) which range the end-result
of the test maps to and reports the corresponding range to
the MC. For example, assume that the entire result range
is divided into a = 4 smaller ranges [0, 0.25), [0.25, 0.50),
[0.50, 0.75), and [0.75, 1]. Then, if the end-result of the ge-
netic test is 0.3241, MC will only learn that the end-result
is in the range [0.25, 0.50). If a private comparison proto-
col [18] is preferred for obfuscation, the SPU asks the MC
for a − 1 comparisons (i.e., to compare the encrypted end-
result with a− 1 pre-defined boundaries). In this case, as a
increases, the number of required comparisons also increases
(we discuss the complexity of the private comparison proto-
col in Section 5.1). In Fig. 8, we illustrate the change in the
genomic privacy of the patient for 20 occurrences of Test 2
and for different values of a. Obviously, as a decreases, the
utility (i.e., accuracy of the genetic test result) at the MC
also decreases, but the genomic privacy of the patient de-
creases slower. We note that there is no universal value for
a in today’s genetic tests, and the optimal value of a (for
maximum utility) might change based on the type of the
test. For example, a recent study on cardiovascular disease
shows that a = 4 is sufficient to determine a patient’s sus-
ceptibility to this disease [30]. Comparing Figs. 7 and 8, we
also notice that the contribution of the LD to the inference
is higher for Test 1.

Finally, in Fig. 9, we show the decrease in the genomic
privacy of the patient during 40 occurrences of a random
combination of Test 1 and Test 2, for different policy and
obfuscation parameters (τ and a). We observe that we can
obtain significantly higher genomic privacy by using both
policies and obfuscation methods at the same time (with
τ = 3 and a = 10) compared to the case with no precautions.

5. EVALUATION AND IMPLEMENTA-

TION OF PDS

5.1 Implementation and Complexity Evalua-
tion

To evaluate the practicality of the proposed privacy-
preserving algorithm, we implemented it and assessed its
storage requirement and computational complexity on In-
tel Core i7-2620M CPU with 2.70 GHz processor under
Windows 7. We computed the disease susceptibility using
weighted averaging (at the MC, see Section 3.5) and a real

patient already decrypts the end-result before sending it to
the MC.
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Figure 8: Genomic privacy of the patient (computed

using (7)) from MC’s point of view during 20 occurrences

of Test 2, when (i) there is no obfuscation and the LD

relationships between the SNPs are ignored, (ii) there is

no obfuscation and the LD relationships are also used for

the inference, (iii) the entire result range, [0, 1], is divided

into a smaller ranges of equal size (a = 4, 10, 20, 100), while

considering the LD relationships.

DNA profile from [4]. Further, we computed the disease sus-
ceptibility for real diseases using their corresponding mark-
ers from [25] and [2].8 Our implementation is in Java and it
relies on the MySQL 5.5 database.

In Table I, we summarize the computational and storage
complexities of the proposed method at (i) certified insti-
tution (CI), (ii) SPU, (iii) MC, and (iv) P, with and with-
out proxy re-encryption, and when the size of the security
parameter (n in the modified Paillier cryptosystem) is set
to 2048 (2K) and 4096 (4K) bits. We evaluate the pro-
posed methods considering the following costs: (i) encryp-
tion of patient’s real SNPs, (ii) disease-susceptibility test at
the MC via homomorphic operations (using 10 SNPs), (iii)
decryption of the end-result (or relevant SNPs), (iv) proxy
re-encryption, (v) re-encryption under the same public key,
and (vi) storage cost.9 We used the CCM mode of AES to
encrypt the positions of the SNPs (Step 2 in Section 3.4.1).
We do not illustrate the computational cost of this opera-
tion in Table I as it is negligible compared to Paillier encryp-
tion/decryption and homomorphic operations. Finally, if a
private comparison protocol [18] is preferred for obfuscation,
a single comparison takes around 450 ms. when n = 2K, and
1 sec. when n = 4K.

We emphasize that the encryption of the SNPs at the CI
is a one-time operation and is significantly faster than the
sequencing and analysis of the sequence (which takes days).
Further, this encryption (along with the re-encryption under
the same public key) can be conducted much more efficiently
by computing some parameters, such as (gr, hr) pairs, offline
for various r values, for each patient. Indeed, by computing
(gr, hr) pairs offline, we observe that the encryption takes
only 0.049 ms per SNP (when n = 2K) and 0.168 ms per
SNP (when n = 4K) at the CI. Similarly, using offline com-
putations, re-encryption under the same public key takes
0.182 ms per SNP (when n = 2K) and 0.658 ms per SNP

8As the Paillier cryptosystem requires to work on integer
values, we multiplied each SNP contribution and allele prob-
ability by 103.
9We conducted each operation in Table I for at least 1000
times and got an average.
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Figure 9: Genomic privacy of the patient (computed

using (7)) from MC’s point of view during 40 occurrences

of a random combination of Test 1 and Test 2, when (i)

there is no precautions and the LD relationships are used

for the inference, and (ii) different policy and obfuscation

parameters (τ and a) are applied, while considering the

LD relationships.

PDS with proxy re-encryp!on

@CI @SPU @MC

Paillier Encryp on
Proxy 

Re-encryp on

Re-encryp on 

under the Same 

Public Key

Storage
Homomorphic

Opera ons

Paillier

Decryp on

Key Size=2K
97 ms./SNP

(offline:0.049 ms./SNP)
30 ms.

140 ms./SNP

(offline:0.182 

ms./SNP)

2.1 

GB/pa ent

25 sec. 

(10 SNPs)
200 ms.

Key Size=4K
380 ms./SNP

(offline:0.168 ms./SNP)
42 ms.

387 ms./SNP

(offline:0.658 

ms./SNP)

4.1 

GB/pa ent

100 sec. 

(10 SNPs)
1.4 sec.

PDS without proxy re-encryp!on

@CI @SPU @MC @P

Paillier Encryp on
Re-encryp on under the 

Same Public Key
Storage

Homomorphic

Opera ons

Paillier

Decryp on

Key Size=2K
97 ms./SNP 

(offline:0.049 ms./SNP)

140 ms./SNP

(offline:0.182 ms./SNP)
2.1 GB/pa ent 25 sec. (10 SNPs) 200 ms.

Key Size=4K
380 ms./SNP 

(offline:0.168 ms./SNP)

387 ms./SNP

(offline:0.658 ms./SNP)
4.1 GB/pa ent 100 sec. (10 SNPs) 1.4 sec.

Table 1: Computational and Storage Complexities of

the Proposed Method.

(when n = 4K) at the SPU. In summary, all these numbers
show the practicality of our privacy-preserving algorithm.

5.2 Security Evaluation
The proposed scheme preserves the privacy of patients’

genomic data relying on the security strength of the modi-
fied Paillier cryptosystem. The extensive security evaluation
of the modified Paillier cryptosystem can be found in [13].
Below we summarize two important security features of this
cryptosystem.

• One-wayness: No efficient adversary has any significant
chance of finding a pre-image to the ciphertext when he sees
only the ciphertext and the public key of the patient. It
is shown in [13] that the one-wayness of the modified Pail-
lier cryptosystem can be related to the lift Diffie-Hellman
problem which is shown to be as hard as the partial discrete
logarithm problem.

• Semantic security: An adversary will be unable to distin-
guish pairs of ciphertexts based on the message they encrypt.
It is shown in [13] that if decisional Diffie-Hellman assump-
tion in Z

∗
n2 holds, then the modified Paillier cryptosystem

is semantically secure.

If the secret key of the patient, x, is randomly divided
and distributed to the storage and processing unit (SPU)
and medical center (MC) as in Section 3.4.1, this secret key
could be revealed if the MC colludes with the SPU (or the
same attacker hacks into both the SPU and the MC), but
the factors n, p, and q remain secret. In Section 3.4.2, we
present an alternative approach that avoids the distribution
of the patient’s secret key to other parties and is thus robust
against such a collusion.

Overall, the proposed scheme (with or without proxy re-
encryption) provides a high level of privacy for the patients’
genomic data because, from the view point of a curious party
at the SPU, inferring the states of the patient’s real SNPs
(i.e., homozygous or heterozygous) with the stored infor-
mation is equivalent to inferring them with no information
about the patient. Furthermore, as the positions of the real
SNPs are also encrypted, a curious party at the SPU can-
not infer the states of the real SNPs from their positions.
Another advantage of PDS is that individual contributions
of the genetic variant markers remain secret at the MC, be-
cause the homomorphic operations are conducted at the MC.
This advantage could become more significant when this ap-
proach is used for personalized medicine methods in which a
pharmaceutical company (embodied in this case as the med-
ical unit) does not want to reveal the genetic properties (i.e.,
marker contributions) of its drugs.

6. CONCLUSION
In this paper, we have introduced a privacy-preserving

scheme for the utilization of genomic data in medical tests
and personalized medicine methods. We have shown that
the encrypted genomic data of the patient can be stored at
a storage and processing unit (SPU) and processed at the
medical unit using homomorphic encryption and proxy re-
encryption while preserving the patient’s privacy. Moreover,
we have quantified the genomic privacy of the patient based
on the genetic tests he undergoes and showed how simple
policies and obfuscation methods help to reduce the decrease
in the genomic privacy of the patient. We are confident that
our proposed privacy-preserving scheme will encourage the
use of genomic data by both individuals and medical units.
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