Canon-MPC, A System for Casual Non-Interactive Secure
Multi-Party Computation Using Native Client

Ayman Jarrous
University of Haifa
ayman@jarrous.net

ABSTRACT

This work intends to bring secure multi-party computation
to the masses by designing and implementing a browser-
based system that enables non-interactive secure computa-
tion. The system, denoted Canon-MPC for “CAsual NON-
interactive secure Multi-Party Computation”, is casual in
the sense that participants do not need to install any soft-
ware and do not need to agree on a time in which they all
have to be online in order to run the computation. Rather,
each participant can use a web browser to participate in the
secure computation. The protocol is executed in a single
pass between the participants. Each participant connects
to a server once, without requiring other participants to be
connected to the server at the same time. The system is
appropriate for use by laypersons, since there is no need to
install or configure any software except for a web browser.

The system is based on a protocol of Halevi et al. (Crypto
2011) for secure computation of symmetric binary functions,
that is secure against malicious adversaries. We optimized
the protocol using a batching technique for zero-knowledge
proofs that greatly reduces their overhead.

We implemented a web site and client software for running
the protocol, where the client was implemented using Native
Client technology for running native code in a sandbox from
within a web browser. We demonstrate that this technology
is ideal for cryptographic applications. We describe experi-
ments measuring the performance of the system. Lastly, we
describe a variant of the protocol that can handle absentee
parties, who were invited to participate in the protocol but
did not show up.

Categories and Subject Descriptors

D.4.6 [Software]: Operating systems—Security and protec-
tion

*Research supported by the SFEROT project funded by the
European Research Council (ERC), and by an infrastructure
grant of the Israeli Ministry of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

WPES’13, November 4, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2485-4/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517840.2517845.

Benny Pinkas
Bar llan University

benny@pinkas.net

Keywords

Secure multi-party computation, cryptography, native client

1. INTRODUCTION

Secure multi-party protocols were originally designed for a
set of parties with symmetric capabilities, each with its own
private input. The protocols enable the parties to compute
any function of their inputs while hiding from each other
everything but the final output of the function (and infor-
mation that can deduced from it). The protocols require the
parties to exchange multiple rounds of messages, where typ-
ically each party exchanges messages with all other parties.

The focus of our work is on enabling secure computation
as a privacy tool for the masses. Namely, enabling casual
users to easily use secure computation. In order to achieve
this goal we had to overcome two major obstacles:

e Secure multi-party protocols require multiple rounds
of interaction, and can be considerably slowed down if
not all users are simultaneously online. Therefore, a
protocol with a non-interactive communication pattern
must be used.

e Casual users are typically uninterested in, or incapable
of, installing and setting-up complex applications. We
therefore implemented a web-based system where all
interaction is done via a browser. This required imple-
menting advanced cryptographic algorithms in a code
that is downloaded and run in the browser.

The communication infrastructure of secure multi-party
protocols, of multiple parties that are all exchanging mes-
sages with one another over multiple rounds, is different than
the common communication pattern used on the web. Web
communication is usually exchanged between clients and
web servers, and exhibits a star-like communication pattern.
Users often do not directly interact with each other. Rather,
the common example is of users who communicate by post-
ing messages on Facebook walls, or in bulletin boards.

Consider, for instance, a group of users who want to de-
cide which of a few movies they should watch together, or
want decide on a time for a meeting. If no privacy is needed
then each user could post his or her preference on a wall or
a bulletin board, and the users could count the votes after
the last user has posted his or her message. If users wish to
hide their preferences from each other but trust some other
party, say Facebook or Doodle.com, with their inputs, then
the personal preferences can be sent to this party, which

then tallies the votes and declares the final outcome.? If,
on the other hand, the users wish to hide their preferences
from each other as well as from any other third party, they
could run a secure multi-party protocol for computing the
preferred movie or the time for the meeting. A big obsta-
cle towards implementing this computation is that most se-
cure multi-party protocols require multiple communication
rounds [11, 3], and ask each participant to send messages to
all other participants, wait until responses are received from
all participants, and then send additional messages (and re-
peat this for several rounds). This is in great contrast to the
convenient non-interactive way in which users can use today
non-private sites like Doodle.com.

Interactive vs. non-interactive computation.

There is a qualitative difference between non-interactive
protocols, like the simple sharing of preferences when no pri-
vacy is needed, and interactive multi-party protocols. The
former enable users to “send and forget” their inputs, while
the latter require each user to wait until all other users send
their messages, compute a message based on these messages,
and repeat this process all over again multiple times. Each
round ends only when the last user has replied, and there-
fore a single slow user can considerably affect the latency of
the protocol. This is particularly true if some of the users
are offline most of the time. (Assume, for instance, that one
of the users is only online from 9 to 5, while another user
is a night owl and is only available at night. Even a simple
multi-round computation can then take days to complete.)
It therefore seems that most multi-party protocols are in-
compatible with web based communication patterns. These
MPC protocols assume that all parties are on-line through-
out the computation and are able to communicate directly
with each other. These assumptions are definitely not true
for all potential participants of MPC protocols.

Our work is based the work of Halevi et al. [13], that ini-
tiated the study of secure non-interactive computation, pro-
vided appropriate (non-trivial) secure definitions, and de-
signed corresponding protocols. These protocols included
very efficient protocols for computing symmetric functions,
and efficient but less practical protocols for computing any
function. Protocols were presented for both the semi-honest
and malicious settings. A review of this work, and of subse-
quent work (such as [12]) appears in Section 1.3.)

Fully homomorphic encryption is insufficient.
We note that even if the usage of fully homomorphic en-
cryption ([9] and subsequent work) had been efficient in

practice, it would not have immediately enabled non-interactive

multi-party computation. Homomorphic encryption enables
each party to encrypt its input, and enables the server to
compute an encryption of the output of the function that
needs to be computed. However, the private key that is re-
quired for the decryption of the output value must be shared
between several parties, to prevent the server from decrypt-
ing the inputs of each party. Therefore, the decryption of the
output value requires an additional round of communication
involving the parties that share the decryption key.

!These sites do not currently support this private compu-
tation, where users’ preferences are kept hidden from their
peers. It will be rather easy to implement this functional-
ity. Note, however, that this would not prevent the sites
themselves from learning all inputs.

1.1 Our Results — MPC for the Masses

Our main goal in this project was to implement a system
that enables casual non-interactive multi-party computation
(Canon-MPC, for CAsual NON-interactive MPC). That is,
the system should enable its users to run secure computation
without complicated setup phases, and without download-
ing, compiling and setting-up any software. Any user of
the system should be able to initiate a secure computation
among his or her friends, or among any other subset of the
registered users. In this respect this is the first MPC system
that is suitable for wide usage by laypersons. Essentially,
all that is needed in order to use the system is to access a
web site and run a computation in the browser. It is also
worthwhile to mention early on that the computation should
provide a high standard of security, namely security against
malicious (also known as active) adversaries.

It is instructive to compare the usage of Canon-MPC to
that of previous systems for secure MPC. With former sys-
tems, such as, e.g., [2, 17], users have to download software
and compile it. Then they have to setup the local copy of
the software by entering the ip addresses of the other partic-
ipants in the computation. Finally, all participants have to
agree to be online at the same time in order to run the com-
putation between themselves. In contrast, users of Canon-
MPC have to register once at a web site. After registra-
tion, any user can initiate a secure computation by entering
a function description and a list of user identifiers (essen-
tially, email addresses). The web site notifies the invited
users. Each of these users can then visit the site whenever
it wishes, independently of the other users. After all users
accessed the site, the output of the function is revealed to
the users who participated in the computation.

A major observation that soon becomes clear is that an
obstacle to the practical usage of the non-interactive mpc
protocols of [13] is that a protocol that was initiated for
a specific set of parties can only be completed if all these
parties take part in the computation. Even a single party
that fails to participate in the protocol prevents the other
parties from recovering any output (even an output that is
defined using some default input value for parties that did
not show up for the computation). We address this issue in
our work.

Our work contains the following contributions:

e Canon-MPC, a system for casual non-interactive se-
cure multi-party computation. The system is browser
based. Users only need to register once on a web site
by providing an email address and a public key. After-
wards, each registered user can initiate a secure com-
putation with any subset of the registered users.

The system is available for usage at a web site, canon-mpc.

org. The current implementation supports the com-
putation of symmetric binary functions. That is, bi-
nary functions whose output does not depend on the
identity of the those who provide inputs. Symmet-
ric functions are particularly suitable for implement-
ing decision making. The canon-mpc system is secure
against malicious adversaries. The canon-mpc server,
of course, does learn anything except for the output
of the function, according to the security properties
defined in [13]. The system provides an excellent per-
formance in terms of the latency of the computation.

e Batching zero-knowledge proofs. The Canon-MPC
system provides security against malicious adversaries
(unlike many prior MPC implementations, such as Fair-
playMP [2], that are only secure against semi-honest
adversaries). This level of security is based on the us-
age of zero-knowledge proofs. We improve the proto-
cols presented in [13] with a batching technique that re-
duces the overhead of proving a set of n Diffie-Hellman
statements to be only weakly dependent of n. This
greatly improves the overhead of the protocol, as is
later observed in the performance measurements that
we provide.

e Using Native Client for MPC. Secure multi-party
computation requires each participant to run code lo-
cally. We found that Native Client technology is far
superior for this purpose than installing applications,
running Java applications, or using Javascript (see Sec-
tion 1.2). Native Client enables building web applica-
tions which interact with downloaded code that is run
inside the browser [20, 19, 1]. The downloaded code is
a compiled C/C++ code, and as such can be very effi-
cient. The user experience is very smooth, as the user
only needs to access the canon-mpc web site and is not
explicitly requested to download any code. We believe
that Native Client is an ideal way for implementing
secure computation, or other advanced cryptographic
functionalities for web applications.

e Handling absentee participants. The system is
typically initiated to run a computation between a cer-
tain set of parties. However, not all of these parties
might actually contact the web server in order to par-
ticipate in the computation. The basic protocols of [13]
do not handle this case, since they require data from
all the participants in order to decrypt the result of
the computation. Otherwise the computation is left
in limbo and cannot be completed. We address these
issue by presenting a modified protocol that handles
the case of absentee participants by running a limited
second round of the computation. We also present ar-
guments explaining why non-interactive computation
is impossible in this case.

1.2 Tools

Our work is based on two major tools, the one-pass MPC
protocols of [13], and Native Client technology.

1.2.1 Computing without simultaneous interaction

Halevi et al. [13] initiated the study of secure computation
in a client-server model, where each client has only a single
interaction with the server, independently of other clients.
The basic setting consists of a server and n parties, denoted
Pi,..., P,, with respective inputs x1,...,z,. The parties
wish to jointly compute a function f(z1,...,x,). The server
learns the output value. It is assumed that no two parties
connect to the server at the same time, but the order in
which the parties connect to the server can be arbitrary and
does not have to be decided in advance. To simplify the
notation we assume that Pi, ..., P, connect to the server in
this order.

It was observed in [13] that a protocol in this model cannot
provide the standard notion of security, even in the semi-
honest model. This follows since a collusion of the last n —

¢ parties with the server is able to compute the residual
function f(x1,...,Ti, Zi+1,---,2n), Where x1,...,x; are the
input values that were already set by the first ¢ parties, and
Zi+1, .- -, 2n are variables that can be set multiple times by
the colluding parties and take any value. In other words,
after the first ¢ parties complete their participation in the
protocol, a collusion of the last n — i parties and the server
can simulate the continuation of the protocol any number of
times, where in each time they can provide different inputs
Zi+1,--.,2n and observe the output. This feature of one-
pass protocols is inevitable, since the protocol must allow
the last n — i and the server to complete the computation of
the function without any intervention of the first i parties,
and therefore a collusion of these n —i parties and the server
cannot be detected.

One-pass decompositions.

Security is formalized in [13] in the following way. First, a
one-pass decomposition of f is defined to be a vector of func-
tions {fi(yi—1,2:) | ¢ = 1,...,n}, where y;—1 is the inter-
mediate value of the computation after taking the inputs of
the first ¢+ — 1 parties. A minimum-disclosure decomposition
is one where the intermediate value y; contains no more in-
formation than the truth-table of the residual function that
is defined by the inputs of the first 7 parties. (That infor-
mation, the truth-table, is inherently leaked to a collusion
of the last n — ¢ parties, since they can compute the residual
function as many times as they want. A decomposition is
minimum-disclosure if it leaks no additional data.)

As an example, consider the sum function, which has the
decomposition yo = 0, fi(yi—1,%:) = yi—1 + x;. In this case
Yi = 23:1 x;. This decomposition is minimum-disclosure
since y; can be computed by setting the inputs of parties
Pi+1, .. .,Pn to be all 0.

Binary symmetric functions.

Another example is the case of n-input binary symmetric
functions, where the input contains n bits, and the output
depends only on the number of 1’s in the input. Namely, the
output of the function does not depend on the identity of the
parties who have the different inputs. This family of func-
tions includes many important functions, such as the AND,
OR, PARITY, and MAJORITY functions. The truth table
of a binary symmetric function is efficiently represented as
a table of length n + 1, that for j = 0,...,n specifies the
output of f on inputs with Hamming-weight j. A one-pass
decomposition of a symmetric binary function can be de-
fined by setting y; to be the truth table of the function that
is defined after the first ¢ parties have provided their inputs.
The truth table is of length n + 1 — 4. This decomposition
is trivially minimum-disclosure.

An important property of this decomposition of binary
symmetric functions, is that P;, when given y;_1, can effi-
ciently compute y;. Namely, let yi—1 = f(x1,...,%i-1, 2i, - . .
be the residual truth-table after the first i—1 inputs 1, . .
have been set. (The final output of the function depends on
the values of the variables z;, ..., z, which haven’t yet been
set.) P; knows the input z; and based on it is can com-
pute y;, the truth table after the first ¢ inputs are set. This
is done by P; removing the first entry of the table y;,—; if
z; = 1, or removing the the last entry of y;,_1 if z; = 0.

As an example, consider the MAJORITY function over 3
inputs. The truth table of this function is (0,0,1,1). Sup-

) Zn)

s XLj—1

pose that Pi, P>, P;3 have inputs 0,1, 0, respectively. Then
yo = (0,0,1,1), and subsequently y1 = (0,0,1), y2 = (0,1),
and y3 = (0). This last value is also the output of the func-
tion.

In [13] these observations about the decompositions of bi-
nary symmetric functions were also extended to symmetric
functions over arbitrary domains. The size of the truth-
tables of the latter functions is larger, and is ("Jrf;l) for a
domain of size c.

Secure computation of function decompositions.

A protocol is said to securely compute a given decompo-
sition of f if the only partial information that it leaks is the
value of the decomposition after the last honest party pro-
vided its input. Namely, the view of any set of adversarial
parties can be simulated knowing only the value y; = fi(...),
where 7 is the index of the last honest party. Furthermore,
if the server is honest, then nothing but the final output of
f is revealed. This means that as long as there is an honest
party that has not yet provided its input to the computa-
tion, the current intermediate value y; of the function can
be hidden from the adversaries.

In [13], this notion of security is defined according to the
ideal/real paradigm. The ideal model is defined for a spe-
cific function decomposition. The trusted party receives the
inputs of all parties. If the set of corrupt parties does not
include the server then they learn nothing. Otherwise, the
trusted party gives to the corrupted server the output of
the function as well as the value y;, where ¢ is the index
of the last honest party. Security is defined by requiring
that the execution in the real model can be simulated given
this information that is given in the ideal model to the cor-
rupt server. Security is defined in both the semi-honest and
malicious settings.

Protocols based on this security definition were designed
in [13]. We describe them in Section 2.1.

1.2.2 Implementing cyrpto in the browser: Native
Client technology

Native Client is an open-source technology that supports
building web applications that seamlessly execute native
compiled code inside the browser. Google implemented Na-
tive Client in the Chrome browser for running a subset of
Intel x86 or ARM native code using software-based fault
isolation. The goal is to maintain the OS portability and
safety that people expect from web apps, while enjoying the
performance of native code. Some of the techniques used by
NaCl for sandboxing include restricting the memory range
that the sandboxed code can access, using a code verifier
to prevent unsafe instructions, in particular system calls,
and requiring that all indirect jumps are to the start of 32-
byte-aligned blocks. C code can be compiled to run under
these constraints, using a compiler that is provided by the
NaCl project. See more details in [20, 19, 1] and at https:
//developers.google.com/native-client/overview.

NaCl enables browsers to run code provided by web appli-
cations, at a speed that is only slightly slower than running
native code. It currently supports C and C++ code, and is
implemented in the Chrome browser. NaCl has been used
for high-performance web based gaming, but it also seems
ideal for MPC applications since these applications are com-
putation intensive and need all the cpu power that they can
get.

Native Client compared to other alternatives.

There are several options for providing web clients with
code to run. They include (1) providing the client with a
downloadable application, that the client must then install
and run; (2) providing a Java applet that a browser can
download in the form of bytecode and execute within the
Java Virtual Machine (JVM); (3) providing javascript code
that is run within the browser; and (4) providing NaCl code
that is run in the browser.

We compare these alternatives and discuss our choice of
NaCl technology in Section 3.1, where we also present mea-
surements of the performance of these different alternatives.
The conclusion is that NaCl technology provides the best
mixture of usability, security, and performance, and should
be the preferred choice for implementing complex crypto-
graphic functionalities in the browser.

Code verifiability.

We note that it is straightforward to let users verify the
correctness of the NaCl executable that they receive. All
that is required is to make the C/C++ source code avail-
able for download. Interested users can then download the
source code, inspect it to verify that it computes the right
functionality, compile it using the standard NaCl compiler,
and compare the result to the executable provided by the
NaCl web server. This verification process is possible for
other programming languages as well, but is particularly
easy for NaCl, since the executable must be compiled using
a single specific NaCl compiler, regardless of the architecture
and operating system that the user uses.

Google Native Client vs. other technologies.

At this time Native Client technology is only supported by
the Chrome browser. While this support is multi-platform,
it does not seem that other browsers are about to embrace
NaCl in the near future. In fact, Mozilla has a new alter-
native technology called OdinMonkey, which is an asm.js
optimizer that lets developers compile C++ code using the
Emscripten compiler and result in code that runs as effi-
ciently as native code. We remark that our work does not
depend specifically on NaCl. Rather, it demonstrates that
the deployment and usage of MPC can greatly benefit if
web applications are able to provide code that is run na-
tively in clients. The specific technology that is used is of
lesser importance. Moreover, future versions of Canon-MPC
can compile its MPC client software using NaCl, OdinMon-
key, or any other technology that will exist for this purpose.
Each browser will be served the code that it supports best.
The different client-side versions of the software can all in-
teract, and enable participants who use different browsers
to execute MPC protocols together.

1.3 Related Work

Our work is based on the work of Halevi et al. [13] which
initiated the study of web based one-pass protocols, intro-
duced the basic definitions, and described very efficient con-
structions for specific classes of functions, as well as generic
constructions for arbitrary functions. The latter construc-
tion are less practical at this time as they use re-randomizable
garbled circuits that were introduced by Gentry et al. for
the purpose of multi-Hop homomorphic encryption [10]. An
earlier related work is that of Choi et al. [6] that considered a
setting where the parties can interact before receiving their

inputs, and then have to minimize online communication
while maintaining full security.

The work of [13] was extended in [12], where very efficient
one-pass protocols are described for more general classes
of functions, such as branching programs and multivariate
polynomials.

Finally, we mention the non-interactive two-party secure
computation protocols of [15]. These protocols operate in a
two-party, rather than a multi-party, setting. They enable
a computation of any functionality in just a single round
between the two parties.

2. THE PROTOCOL

We describe here the basic protocol presented in [13] for
computing binary symmetric functions, as well as its modi-
fication to be secure against malicious adversaries. We also
present a new improvement, of batching the zero-knowledge
proofs in the malicious case. This change greatly improves
the efficiency of the protocol in that setting, as is evident by
our performance measurements in Section 3.3.

2.1 The HLP Protocol

We describe here the protocol of [13] that we implemented,
which supports the secure computation of symmetric binary
functions. This protocol was extended in [13] to support
symmetric functions over arbitrary domains. That extension
can be easily added to our implementation (but we have not
coded it yet).

The protocol is run in the PKI model. Namely, before the
protocol is run each party chooses a private-public key pair
according to a known algorithm, and publishes the public
key (i.e., registers it with the system web site). The parties
are denoted Pi,..., P,, and have inputs 1, ..., T, respec-
tively. In addition, the server has a public key which we
denote as hny1.

The protocol is based on the usage of El Gamal encryp-
tion over a group G of prime order ¢ with generator G. In
our work we implemented the group G using operations in a
subgroup of prime order of Z;, namely using multiplication
modulo a prime number p. The implementation could have
also been based on arithmetic in an elliptic curve group, us-
ing known groups used for elliptic curve cryptography. This
would have resulted in a more efficient implementation, in
terms of both computation and the length of messages that
have to be communicated. We leave this (simple) change to
future work.

El Gamal encryption with multiple keys.

The protocol is based on the usage of El Gamal encryp-
tion. Let G be a group of prime order ¢ with generator
G. Each user P; has a private key «o; € [1,¢] and a pub-
lic key h; = G“*. Normally, encryption with a public key
h is done as Epi(z) = (G",h" -). We define encryp-
tion under public keys hi,...,Ant1 as (G7, (Hin+1)" - @),
where Hin41 = H?ill h; = GZiNi e 1n general, define

n+1l

1 !
Hiniy1 = H;ZL h; = G¥i=i %

Gradual decryption and rerandomization.

In the protocol, each user P; needs to decrypt the part of
the encryption that is based on its key h;, and rerandom-
ize the result. The encrypted plaintext is revealed after all

users perform this task. This gradual decryption and reran-
domization is performed in the following way. P; is given
(u,v) where u = G" and v = (Hjnt+1)" - . It decrypts by
computing

W=u and v =v-u"*

The result (u',v") is a valid encryption of z with random-
ness r, under public key H;11 n+1. This ciphertext is then
rerandomized by P; computing v’ = u' - G* and v =
v+ (Hit1,n+1)°. The result is an encryption of the same
plaintext =, under the key Hji1,n+1, and using fresh ran-
domness (r + s).

The protocol.

The description of the protocol and its proof of security
appear in [13]. We describe here a version of the protocol
that is slightly modified to our setting.

In the initialization step, the server constructs the truth-
table of f. The table has n + 1 entries. The server encrypts
each entry using the El Gamal encryption scheme and the
key Hi n+1 and fresh randomness. (Of course, the El Gamal
scheme only encrypts values in the group G. Therefore there
must be some agreed representation for 0 by a value in G.)

In Step i, party P; interacts with the server and receives
from it a table with n — i 4+ 2 entries, each encrypted with
the key H; n41. P; then performs the following operations

e If z; = 0 it removes the last entry of the table. Other-
wise (z; = 1) it removes the first entry of the table.

e It decrypts all remaining entries of the table using its
private key «;.

e It rerandomizes the encryption each entry of the table,
and sends the resulting table to the server.?

The server receives from P; a table of length n — i + 1,
where each entry is encrypted with the key H;t1,n41. Note
that after the last step, performed by P,, the server receives
a table with a single entry that is encrypted with the key
Hyt1n+1 = hny1. The server decrypts the table using its
private key and reveals the output of the function.

The protocol works correctly regardless of the order in
which the parties interact with the server, as long as all par-
ties interact with the server. We discuss in Section 4 the
case of absentee parties, namely parties whose keys were
used for encrypting the table but who do not perform the
step in which they should interact with the server and de-
crypt their layer of the encryption.

2.2 The Malicious Case

The basic protocol is secure only against semi-honest ad-
versaries. It is vulnerable to malicious adversaries that can
behave arbitrarily. For example, a malicious server can gen-
erate a truth table of a function different than f. Malicious
participants can completely change the truth table, instead

2Rerandomization is needed in order to randomize the de-
cryption process. Otherwise the server could learn the input
of, say, Pi: The server generates the encryptions and can
therefore identify the results of P; decrypting the table en-
tries with its key. The server also receives these decrypted
table entries from P;. It can therefore identity which entry
of the table was removed by P;. Rerandomization prevents
this attack.

of just removing one of its entries. We describe here a proto-
col from [13] that we implemented with some modifications,
and which is secure against malicious adversaries.

The basic idea of the protocol is for the server and ev-
ery participant to prove in zero-knowledge that they op-
erated according to the rules of the semi-honest protocol.
These proofs must be non-interactive, and are therefore im-
plemented using the Fiat-Shamir heuristic. Furthermore,
the proof generated by P; must be forwarded by the server
to all parties P; with index j > ¢ when they interact with
the server. For this purpose each party must have a digital
signature key pair, and each proof must be signed by the
party that generated it.

Computing and verifying these zero-knowledge proofs seems
at first as a computationally expensive task. However, per-
formance can be greatly improved, and be quite reasonable,
based on two observations:

e Since all encryptions are based on the El Gamal scheme,
all proofs can be translated to proofs that a certain tu-
ple is a Diffie-Hellman tuple. (In short, to prove that
a pair (u,v) is an encryption of z under public-key h,
namely that (u,v) = (G",h" -), one can prove that
the tuple (G, h,u,v/x) is a Diffie-Hellman tuple. It is
possible to prove in a similar way that a certain en-
cryption is a rerandomization of another encryption.)

There are known and efficient techniques, based on
Sigma protocols, for proving that a tuple is Diffie-
Hellman. Generating a proof requires two exponen-
tiations, and verification takes four exponentiations.
See [14], Chapter 6 for details.

e Each participant needs to prove that multiple tuples
are all Diffie-Hellman. To speed up our implementa-
tion we introduced a batching technique that enables
to prove all these statements together, with an over-
head that is greatly improved compared to providing
an individual proof for each statement. See details be-
low.

The protocol.

The modified protocol operates in the following way. In
the initialization step, the server also computes and signs a
proof that each entry in the encrypted truth table encrypts
a representation of the same 0 or 1 value as in the original
truth table of f. (As noted above, this statement reduces to
a statement that a tuple is Diffie-Hellman.)

In Step 4, P; receives from the server the signed proofs
generated by the server and all previous participants, and
verifies these proofs. Then, P; removes either the first or
last table of the truth table, based on its input. It decrypts
with its key the remaining table entries and rerandomizes
them. Note that if P; removes the first entry of the table
then it must prove that each entry j in the new table is a
rerandomized decryption of entry j+1 in the previous table.
This statement translates to a Diffie-Hellman proof for each
table entry. Similarly, if P; removes the last entry of the
table it must prove that each entry j in the new table is
a rerandomized decryption of entry j in the previous table.
Overall, P; must therefore prove the OR of two sets of Diffie-
Hellman proofs. This proof of a compound statement can
be done using the techniques of Cramer et al. [7], at a cost

similar to that of proving both set of statements. P; signs
the proof and sends it to the server.

All proofs are computed using the Fiat-Shamir paradigm.
Namely, the random challenge that is needed in the second
step of the Sigma protocol is computed as a SHA1 hash of
the message computed in the first step. The usage of the
Fiat-Shamir paradigm means that the random oracle model
must be used in the analysis. In [13] it was shown that this
modified protocol is secure against malicious adversaries.

2.2.1 Batching proofs to improve efficiency

The straightforward way of proving that multiple tuples
are all Diffie-Hellman tuples is to provide an independent
proof for each tuple. We present here an alternative proof
method that batches all statements to a single Diffie-Hellman
proof.

The batching works the following way: Let the tuples be

{(97 h> ui7vi)}?:1.

Let 71,...,vn» be random L-bit values (that are chosen by
the verifier, or, as in our system, are chosen by a hash func-
tion in the Fiat-Shamir heuristic). Then instead of proving
each tuple separately it is possible to the prove that the
tuple

(g, b, L=y (wa) ™, Ty (02) ™)

is a Diffie-Hellman tuple.

If all tuples are Diffie-Hellman then the new tuple is also
Diffie-Hellman, regardless of the choice of the v values. There-
fore completeness holds for the new proof. As for soundness,
it is based on the following claim that was also stated in [18],
Claim B.5:

CLAM 2.1. If there exists an inder 1 < i < n such that
(g, h,ui,v;) is not a Diffie-Hellman tuple, then for every
choice of y1, ..., Yi—1,Yi+1,-- -, Vn there exists at most a sin-
gle value ; such that (g, h, TIj—1 (u;), 1, (v;)7) is a Diffie-
Hellman tuple.

Proof sketch: Without loss of generality, assume that
the nth tuple is not Diffie-Hellman,and assume also that
Yi,...,7" " were already chosen, and now =y, is chosen at
random. Then there is some value a defined by the values
Y1, -..,Yn—1 such that

i () = TS () - () = g g0,
Similarly, there is a value b such that
Ty (0) " = 5 (0) " - (v) ™ = g - g%,
For the tuple to be Diffie-Hellman it must hold that
a +log, (un)yn = b+ log,(vn)ys mod |G,
namely that
Y = (a = b)/ (108, (va) — log, (un)) mod |G].

(This division is always possible since the tuple is not Diffie-
Hellman and therefore log, (vn) # log, (un).)

The probability of setting =, to the right value is at most
27t O

As a corollary, the soundness error of the protocol is at
most 27 plus the soundness error of a single Diffie-Hellman
proof.

Efficiency improvement.

The efficiency improvement is immense. The cost of prov-
ing and verifying n proofs is reduced from 6n full exponenti-
ations (due to a cost of 6 exponentiations per Diffie-Hellman
proof), to computing one Diffie-Hellman proof and comput-
ing 4n exponentiations with the +; exponents (due to each
of the prover and verifier computing 2n exponentiations).

The parameter L, namely the length of the ; exponents,
can be set to be only 40 or 64 bits long (in our experiments
we used L = 64). Therefore, the cost of exponentiations by
the 7; exponents is about 40 or 64 divided by the order of
the group in which the computations are done. The result
is that batching a Diffie-Hellman statement is faster by an
estimated factor between 3 or 4 (for |L| = 64 and the group
being an elliptic curve group, to about 50 (for |L| = 40 and
the group being Z, with |p| = 2048). An additional speedup
comes from the fact only 4n, rather than 6n exponentiations
have to be computed. This is expected to reduce the over-
head by an additional estimated factor of 2/3.

In our implementation we only implemented batched proofs,
and therefore we do not have explicit measurements of the
speedup from using batching compared to doing n indepen-
dent proofs. (See Section 3.3.) However, we observe there
that due to the effect of batching the overhead of generating
zero-knowledge proofs for the correctness of table manipu-
lation is almost independent of the size of the table. See
Tables 3 and 4 in Section 3.3.

3. THE SYSTEM

The system was developed as a web application, and is
available for experimentation at http://canon-mpc.org.As
is common with academic prototypes, the current code is
suitable for experimentation and for measurements but not
for running computations with sensitive data. We did not
use TLS encryption, did not use secure coding, and the code
might be vulnerable to SQL injections and other attacks. We
describe here the major design choices, the system architec-
ture, and the results of performance experiments that we
conducted.

3.1 Design Choices

3.1.1 Providing the application to the user

As was stated earlier in the text, we chose to implement
the client-side part of the system in Native Client. We de-
scribe here a comparison of the main alternatives for im-
plementing the client side. The conclusion is that NaCl
provides the best balance of properties for computation-
intensive applications such as secure computation, and should
therefore be used.

There are several options for providing web clients with
the code that they are required to run. These options include
(1) providing the client with a downloadable application,
that the client must then install and run; (2) having the
client launch a Java applet that is downloaded from a web
page in the form of bytecode and executed within the Java
Virtual Machine (JVM); (3) providing javascript code that
is run within the browser; and (4) providing NaCl code that
is run in the browser. We describe below the main properties
of each of these options in terms of usability, security, and
performance, and summarize these properties in Table 1.

Downloadable native applications offer bad usability, since
users must manually download and install them. Further-

| Technology

| Usability | Security | Performance |

Native applications bad bad optimal
Java applets mediocre | not good mediocre
Javascript best good bad
Native Client good good almost optimal

Table 1: Comparison of different client side tech-
nologies

more, any update of the application requires all clients to
download and install the most up to date version of the ap-
plication. Another disadvantage is that the development of
a multi-platform application is quite complicated, as it must
be tailored to each specific architecture on which the appli-
cation might be run. Applications are also a security night-
mare, since they run natively on the client machine with
system access, and are not isolated in any sandbox. On the
other hand, native applications can use optimized code for
the target machine and can provide the best performance.

Java applets that are downloaded by the browser from a
web site offer mediocre usability, since Java has to be en-
abled in the browser, and the interaction between the ap-
plet and the web application is often not smooth. As for
security, many security vulnerabilites were found in Java,
and a recent CERT recommendation is “Unless it is abso-
lutely necessary to run Java in web browsers, disable it”
(http://wuw.kb.cert.org/vuls/id/625617). In terms of
performance, native Java provides pretty good but not opti-
mal performance for bignum operations. Better performance
can be obtained by using the Java Native Interface (JNI),
which enables the Java virtual machine to call native appli-
cations. However, it is not trivial to use JNI within applets.

Javascript offers great usability and seamless interaction
with web applications. To ensure security, Javascript scripts
are run in a sandbox in which they can only perform web-
related actions, and are constrained by the same origin pol-
icy. Javascript vulnerabilites do exist, but are fewer than
when using applets or downloaded applications. The per-
formance of Javascript bignum operations is pretty bad, as
is evident from Table 2. A main limiting factor for perfor-
mance is memory management in a dynamic programming
language.

Native Client technology has good usability. It offers seam-
less integration with web apps, but it is currently supported
only in the Chrome browser. Its sandboxing security mea-
sures have proven so far to be pretty solid. In terms of
performance, it is only slightly slower than running native
applications (available data suggests a slowdown of between
5% to 30%).

We performed a comparison of the run time of public
key operations in each of these technologies.®> The results
are summarized in Table 2. They include the run time of
El Gamal encryption and decryption over Z; with |p| =
1024, and of the Damgard-Jurik additively homomorphic
encryption scheme with a public key of length 2048 bits, as
an example of an advanced crypto primitive [8]. The imple-
mentation in the native desktop application and in NaCl was
done using C and the NTL bignum library. The Java imple-

30f course, browsers also use cryptographic functions as part
of the TLS protocol. However, it is impossible for web pages
or web apps to access this functionality except for securing
TLS traffic.

mentation used the Java Biglnteger library. The Javascript
implementation used the popular jsbn bignum library (at
http://www-cs-students.stanford.edu/~tjw/jsbn). The
Javascript versions that were used were SpiderMonkey ver-
sion 17 for Firefox, and V8 version 3.9 for Chrome. All
the measurements were performed on MacBook Pro, OS X
10.8.3, 2.5GHz Intel Core i5, 4GB memory.

Each result in the table is the average of 100 invocations
of the function, where all random numbers used in the mea-
surements were chosen in a preprocessing phase (to not in-
terfere with the measurements). The results clearly demon-
strate the performance advantage in using the native appli-
cations or NaCl, over the usage of Java or Javascript.

Firefox
Native Chrome | Spider Java
Operation app NaCl V8 Monkey 1.6
EG enc 1.2ms 1.5ms 65ms 726ms 7.4ms
EG dec 0.5ms | 0.71ms 37ms 782ms | 4.1ms
DJ enc 5.8ms | 7.4ms Not 93ms
DJ dec 9.5ms | 10.3ms Implemented 180ms

Table 2: Performance of cryptographic functions

3.1.2 Cryptographic library

The current phase of the canon-mpc project is imple-
mented using El Gamal encryption over Z;. The intention
is to change to encryption over elliptic curves in order to
support larger computations (in particular, support compu-
tation of symmetric functions over arbitrary domains, which
result in larger truth tables). We considered the usage of the
following cryptographic libraries.

e NaCl — Networking and Cryptography Library (with
no relation to the sandboxing technology of NaCl —
Native Client), http://nacl.cr.yp.to [4]. This li-
brary is written in C++ and has excellent performance
and great features, but is less flexible. It does not al-
low cryptographic primitives breakable in substantially
fewer than 2'?® operations, such as RSA-2048. It also
takes advantage of low-level system architecture fea-
tures and therefore cannot be exported to an ARM
environment.

e SCAPI is an open-source Java library for implementing
secure computation http://crypto.biu.ac.il/scapi.
It uses JNI to encapsulate efficient big number imple-
mentations in other languages. However, due to the
use of Java, it is close to impossible to use this library
with Native Client.

e Crypto++ is a popular cryptographic library written
in C++ http://wuw.cryptopp.com. However, it is
non-trivial to compile crypto++ to non x86 architec-
tures such as ARM, and in that case performance is
affected since assembler usage must be disabled.

e NTL is a portable library for number theory http:
//www.shoup.net/ntl/. It is platform independent,
reliable, and written entirely in C++4. This library is
therefore ideal for a NaCl application that will be used
in different architectures.

MySQL database

PHP server

javascript

3
epper API

Crypto class

NaCIE

- [NTLZzp class

Figure 1: System architecture.

We chose to use the NTL library, and in particular its ZZ),
class for integer computation modulo p. The cryptographic
operations were implemented in Z; with a modulus of length
|[p| = 1024 bits, to achieve a reasonable level of security.
Better security can be achieved by using a longer modulus
of length |p| = 2048 or more, or, better still, using elliptic
curves that offer comparable security with better efficiency.

3.2 Architecture

The architecture of the system is described in Figure 1.

The client side.

The client is implemented in javascript, which calls NaCl
functions using the Pepper API (Pepper is an API for cre-
ating Native Client modules). It interacts with the crypto
class, which is an API that we wrote for calling the different
cryptographic functions that are implemented in NaCl. The
crypto class interacts with the numbers class, which cur-
rently translates all calls to calls to the NTL library. When
future lower level cryptographic libraries will be added to
the system (say, the MIRACL library for elliptic curve math,
or the Crypto++ class), the numbers class alone should be
changed to support calls to these libraries. At the bottom
level is the NTL ZZ, library, for performing integer compu-
tation modulo arbitrary integer numbers.

In our current implementation the NTL library was com-
piled without any optimizations, to achieve better portabil-
ity and simplify the work with the NaCl compiler. It is pos-
sible to optimize performance by compiling for the x64 and
x32 architectures, and enabling the use of gmp (the GNU
Multi-Precision library), which uses assembly routines for
a wide variety of architectures. Using these optimizations
with the NaCl compiler is left for future work.

The server side.

The server side application was built using PHP. All data
is stored in a MySQL server. The main page provides links
to the following pages:

e A page where the user can experiment with running
the different cryptographic primitives that were im-
plemented in NaCl, and measure their performance.

e A “public parameters” page, which presents the public
parameters used by the system for encryption. Cur-
rently it presents the modulus p, and a generator g of
zZ.

»

e A registration page. Registration is required before
users can participate in the computation (recall that
the protocol is in the PKI model). During registration
users provide information that is stored in the server’s
database, and includes an email address, a hash of the
user’s password, a public key and an encrypted private
key.

The actual registration process works by the client
loading NaCl code which generates a key pair at the
client machine. The private key is then encrypted us-
ing the password, and then the public key and the
encrypted private key are sent to the server.

e A login page, where users are able to login to the sys-
tem using their email address and password.

e A page where a user can initiate a protocol or partici-
pate in a protocol after receiving an invitation for that
protocol. This page is described next.

The Protocols page.

The Protocols page supports running secure multi-party
computation of symmetric binary functions as in [13]. The
implemented protocols are secure against malicious adver-
saries.

A registered user can create and participate in any num-
ber of protocols. The user is shown a list of protocols in
which he or she is invited to participate. Upon choosing a
protocol to participate in, the user receives the current sta-
tus of the protocol. Namely, the user is given the current
encrypted truth-table and the proofs that were generated by
the previous participants in the protocol. The user then ver-
ifies the proofs and is able to choose an input of either 0 or
1. The truth-table is updated, decrypted and rerandomized,
according to the protocol that we described. In addition, the
client generates a batched ZK proof proving that it operated
according to the protocol. All computation is done in the
client side and the results are sent to the server.

The page also enables any registered user to initiate a
new protocol. The user must choose the registered users
that will be invited to participate in the protocol. As a
result, the public keys of these users are recovered from the
database that is stored at the server and are sent to the
user. The user then defines the function to be computed
by entering a truth-table of appropriate length. Each row
of the table is encrypted on the client side according to the
protocol, using the public keys retrieved from the server.
In addition, the client generates a ZK proof proving that it
operated according to the protocol. The resulting encrypted
truth-table and the proof are sent to the server. The server
then emails the users who were invited to participate in the
protocol and notifies them about the invitation.

3.3 Performance

This section describes the results of measurements of the
running time of the different components of the client. All
measurements were performed on MacBook Pro, OS X 10.8.3,
2.5GHz Intel Core i5, 4GB memory.

The code that was measured implemented the version of
the protocol that is secure against malicious adversaries.
(The running time for the semi-honest case can be easily ex-
tracted from the measurements, as is described below.) The
code used El Gamal encryption, with a modulus of length
1024 bits that should provide reasonable security. The code
implemented batching of the zero-knowledge proofs of Diffie-
Hellman tuples, using exponents of length 64 bits.

We report the results of measurements of two instantia-
tions of the protocol, the first with 5 participants and the
second with 10 participants. All measurements were done
to the NaCl code alone, since javascript measurements were
less predictable due the asynchronous communication be-
tween javascript and NaCl. The reported results are the
average of five runs.

Receiving the NaCl code.

Before the client can begin the computation, it must down-
load the compiled NaCl code. The code turned out to be
pretty large, at about 6MB, and therefore the download time
was noticeable. We note however that Chrome caches NaCl
code that it downloads, and therefore there is no need to
download the code again if the protocol is run more than a
single time.

Generating keys.
Generating a key pair at the client when registering to the
system took only 5msec.

Creating the truth-table.

The initiator of the protocol generates an encrypted truth-
table and proves its correctness. Creating a table for a com-
putation of five participants took 125 msec. Generating a
ZK proof of the correctness of this table took 530 msec.
When instantiating the protocol for ten participants, the
table generation took 400 msec, and the ZK proof took 802
msec.

Participating in the protocol.

Each participant in the protocol performs four tasks: (1)
verifying the ZK proofs that it received; (2) randomizing
and decrypting the table (after removing one entry from it);
(3) proving in zero-knowledge that the randomization was
correct; (4) proving in zero-knowledge that the decryption
was correct.

We describe in Table 3 the run times of each of these steps
for a computation with five participants, and describe in Ta-
ble 4 the run times for a computation with ten participants.
An immediate observation from the tables is that the to-
tal run time is good in terms of the user experience, and
is less than one second for all users. The main components
of the run time are the verification of ZK proofs, and the
randomization and decryption of the tables.

The verification of the proofs received by the client takes
longer for later participants, since they have to check the
proofs generated by all previous participants. On the other
hand, decrypting and rerandomizing the table becomes more
efficient, since the size of the table shrinks.

The generation of new proofs takes considerably less time
than the other tasks. It is interesting to note that the time it
takes to generate proofs changes very little with the identity
of the user, i.e. with the size of the table that the user has

ZK Randomize | ZK proof | ZK proof
User | verifi- | & decrypt | of rando- | of Total
cation mization | decryption
1 33 164 57 35 289
2 112 127 53 32 324
3 225 97 48 30 400
4 300 63 44 28 435
5 383 27 410

Table 3: Running times in msec of the different tasks
of a participant in a computation with 5 partici-
pants.

ZK Randomize | ZK proof | ZK proof
User | verifi- | & decrypt | of rando- | of Total
cation mization | decryption
1 43 301 66 42 452
2 141 284 63 39 527
3 262 249 59 37 607
4 346 220 58 35 659
5 456 193 58 33 740
6 547 155 57 32 791
7 648 130 56 31 865
8 766 93 53 30 942
9 852 65 51 30 998
10 | 911 27 938

Table 4: Running times in msec of the different tasks
of a participant in a computation with 10 partici-
pants.

to process. The size of the table affects the number of Diffie-
Hellman statements that are included in the proof, but this
is not noticeable due to the effect of batching.

The overhead in the semi-honest case.

If the protocol only needs to be secure against semi-honest
adversaries, then there is no need to generate or verify proofs.
Therefore the overhead consists only of randomizing and de-
crypting the tables, i.e. of the third column in Tables 3 and
4. The resulting latency is much smaller than for the mali-
cious case (e.g., less than 0.3sec in the ten participants case).

Improvements.

The run time of the clients can be improved by using el-
liptic curve based El Gamal encryption. Doing this should
provide improved security comparable or better than a 2048
bit modulus, at a smaller computation overhead. In addi-
tion, the size of the encrypted tables and of the proofs will
also be reduced. The runtime can also be improved by turn-
ing on optimization options in the bignum library, and being
able to use these compilation options within NaCl.

Summary and extensions.

The run time that is reported here for the initial im-
plementation of the system is quite good. The latency of
the cryptographic operations is barely noticeable in terms
of user experience, even for security against malicious ad-
versaries. This is mainly due to the use of batching, which
reduces the overhead of the ZK proofs to be almost inde-
pendent of the table size.

The computation time might become too large if the num-
ber of participants is much bigger, or if we implement secure
computation of symmetric functions over arbitrary domains.
(The size of the table for that case is ("7<7!) for a domain
of size ¢, based on a protocol presented in [13].) For these
usage scenarios it will be required to optimize the perfor-
mance of the cryptographic primitives and use elliptic curve
based encryption, as suggested above.

4. HANDLING ABSENTEE PARTICIPANTS

One practical obstacle to the deployment of the proto-
cols of Halevi et al. [13] is that all users who are invited to
participate in a computation must show up in order for the
protocol to complete.

Suppose that you run a survey and invite ten of your
friends to participate in it. Suppose also that one of the in-
vitees cannot participate in the survey, or just doesn’t care
about it. After all other nine individuals have participated
in the protocol you are left with a truth-table of size two,
encrypted with the key of the absentee participant. It is
possible to decide which default value to give to the miss-
ing input, and therefore know which entry to remove from
the truth-table, but there is no way to decrypt the encryp-
tion that was performed with the public key of the missing
participant.

It is preferable, of course, to have a one-pass protocol that
can tolerate a number of absentee participants. Namely, let
the initiator of the protocol define some deadline so that if
not all invited participants actively participate in the pro-
tocol until that deadline, the server (or some other defined
party) can recover the output of the function, where the in-
puts of all absentee participants are set to a default value,
say to 0.* In that case the protocol must not, of course,
reveal anything more than the output of the function. In
addition, if all the invitees do participate in the protocol,
then the normal security definitions should hold.

We show, however, that it is unlikely that such a protocol
can be constructed without special assumptions about the
setting in which it is run. We then show protocols that
tolerate absentee participants and run in a single pass if all
participants arrive, and otherwise run in two passes, where
the second pass imposes minimal overhead on the parties.

4.1 The Unlikelihood of One-Pass Protocols

Suppose that there exists a one-pass protocol for com-
puting a function f(z1,...,x,) of the inputs of n parties
P, ..., P,, and that the protocol satisfies the following two
limited requirements:

e If all parties participate in the protocol and none of
these parties colludes with the server, then the value
of f(x1,...,xn) is computed, and no other information
is revealed to any party.

e If not all parties show up until some deadline, then the
protocol computes the output of f where the inputs z;
of all absentee parties are set to 0. If no party colludes

4Setting the inputs of absentee participants to a default
value seems natural. Indeed, many functions of n inputs
can be reduced to functions of n’ < n inputs by setting val-
ues to n—n’ inputs. For example, the majority function can
be reduced in this way by setting half of the n — n’ missing
inputs to 0 and setting the other half to 1.

with the server then no information except for this
value of f is revealed.

Note that the fact that the protocol is one-pass implies that
the computation that satisfies the second requirement must
be performed by the server, given the information that it
already received and without contacting any of the par-
ties that have already participated in the protocol (and, of
course, without being able to contact the absentee parties).

Consider a setting where no party colludes with the server.
The computation begins, and until some time before the
deadline all parties except for P, participate in the protocol.
Therefore the following two options must hold:

e If P, participates in the protocol before the deadline,
then the server must compute f(z1,...,%») and noth-
ing else.

e If P, does not participate in the protocol until the
deadline, then the server must be able to compute
f(z1,...,2n-1,0) and nothing else.

Suppose that P, participates in the protocol before the dead-
line. The server therefore learns f(z1,...,z,). But a cor-
rupt server, even if it behaves in a semi-honest manner, can
also use the information it learned from the other parties to
compute by itself the value f(z1,...,2n—1,0) and check if
f(x1,...,zn) = f(z1,...,2n-1,0). If these two values are
different, it deduces that x, = 1. The server learns in this
way more information than is allowed by the security def-
inition. (This argument can extended to the case of more
absentee participants.)

The above argument shows that a one-pass protocol toler-
ating absentees must use a different setting with a different
set of assumptions. It is unclear to us how to construct such
a protocol.

4.2 Optimistic Two-Pass Protocols Tolerating
Absentees

This section describes an optimistic two-pass protocol tol-
erating absentees. The protocol is optimistic in the sense
that if all invited parties participate in the protocol then
the computation is completed in a single pass. Otherwise,
the computation requires a second pass by some of the par-
ties.

4.2.1 A solution based on threshold decryption

The problem with absentee participants is that the other
participants are left with truth-table entries that are en-
crypted with the keys of these absentee participants and
cannot be decrypted. The most straightforward solution is,
therefore, to enable other parties to perform the decryption
task, instead of each invited participant that does not show
up for the computation. An existing tool for this purpose is
threshold decryption: the private key of each party is divided
to n shares, such that any combination of ¢ of these shares
enables decryption, and any usage of less than ¢ shares re-
veals no information about the ciphertext. Luckily, there are
well known and tested threshold solutions, based on Shamir
secret sharing, for E]1 Gamal encryption [5].

The system is based on the Halevi et al. scheme that is
implemented in Canon-MPC, and operates in the following
way:

e Each party shares its private key among a set of semi-
trusted parties, using a threshold scheme suitable for

the El-Gamal encryption, with some predefined thresh-
old ¢. One option is to share the key among the n par-
ticipants using a t-out-of-n sharing. Another option is
to share the key among a different set of designated
parties or servers. The correctness of the sharing can
be proven in zero-knowledge, or using verifiable secret
sharing (vss) by the key owner, see, .e.g., [16, 5].

e If all parties show up for the computation then the
protocol is carried out as usual.

e If some parties do not show up for the computation
then a second round is executed. This round involves
t of the parties among which the shares were shared.
These parties first identify the absentee parties by ex-
amining the signatures posted by the participants in
the protocol. They then remove from the truth-table
the rows that correspond to the default inputs set
for the absentee participants. Finally, they use their
shares to decrypt of the remaining encrypted row, re-
sulting in the plaintext output of the protocol.

This second phase of the protocol is also one-pass. The
first party participating in it identifies the absentee
parties, removes the relevant rows from the matrix,
and performs its part of the decryption. Each other
participant in this protocol phase, first verifies the op-
erations performed by the previous participants and
then performs its part of the decryption.

Security.
If an adversary controls less than ¢ of the parties that share
the key, the protocol is as secure as the one-pass protocol.

THEOREM 4.1. Let f be a symmetric function and let the
encryption scheme be layer rerandomizable. In addition, all
the keys of the honest parties are generated and shared cor-
rectly between all n parties, using t-out-of-n secret sharing.
Then, as long as at most t — 1 parties collude, the proto-
col described here achieves the same privacy as the one-pass
protocol of [13] described in Section 1.2.1.

PROOF. (informal) Unlike the protocol of [13], each pri-
vate key is shared using t-out-of-n sharing. Any set of t — 1
corrupt parties, receives shares that are truly random, and
therefore these shares unconditionally reveal no information
about the private key of any other participant.

We separate the remainder of the proof into two cases, (i)
all parties participate in the first pass of the protocol; (ii) at
least one party does not participate in the first pass of the
protocol.

In the first case there is no need for the second round of
the protocol. Namely, in this case the parties run the one-
pass protocol of [13], which is proven to be secure as long
as no information about the the keys is leaked (which is the
case if at most ¢ — 1 parties collude).

In the second case, at least one party does not take part
in computing f, and therefore ¢ parties run a second pass
where they remove the remaining layers of encryption. If we
assume the threshold decryption scheme to be secure, then
this round simply implements the decryption that should
have been performed in the first round, and is therefore se-
cure. []

5.
1]

REFERENCES

J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor,

B. Chen, D. L. Schuff, D. Sehr, C. L. Biffle, and

B. Yee. Language-independent sandboxing of
just-in-time compilation and self-modifying code.
SIGPLAN Not., 47(6):355-366, June 2011.

A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a
system for secure multi-party computation. In
Proceedings of the 15th ACM conference on Computer
and communications security, CCS ’08, pages 257—-266.
ACM, 2008.

M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended
abstract). In J. Simon, editor, STOC, pages 1-10.
ACM, 1988.

D. J. Bernstein, T. Lange, and P. Schwabe. The
security impact of a new cryptographic library. In

A. Hevia and G. Neven, editors, Progress in
Cryptology — LATINCRYPT 2012, volume 7533 of
Lecture Notes in Computer Science, pages 159-176.
Springer-Verlag Berlin Heidelberg, 2012.

R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and
T. Rabin. Adaptive security for threshold
cryptosystems. In M. J. Wiener, editor, CRYPTO,
volume 1666 of Lecture Notes in Computer Science,
pages 98-115. Springer, 1999.

S. G. Choi, A. Elbaz, T. Malkin, and M. Yung. Secure
Multi-party Computation Minimizing Online Rounds.
In M. Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, volume 5912 of Lecture Notes in
Computer Science, pages 268-286. Springer, 2009.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs
of Partial Knowledge and Simplified Design of Witness
Hiding Protocols. In Advances in Cryptology -
CRYPTO 1994, volume 839 of Lecture Notes in
Computer Science, pages 174-187. Springer, 1994.

I. Damgard and M. Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In K. Kim, editor,
Public Key Cryptography, volume 1992 of Lecture
Notes in Computer Science, pages 119-136. Springer,
2001.

C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the 41st ACM Symposium
on Theory of Computing — STOC 2009, pages
169-178. ACM, 2009.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

C. Gentry, S. Halevi, and V. Vaikuntanathan. i-Hop
Homomorphic Encryption and Rerandomizable Yao
Circuits. In Advances in Cryptology - CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science,
pages 155-172. Springer, 2010. Full version available
on-line from http://eprint.iacr.org/2010/145.

O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or a completeness theorem for
protocols with honest majority. In A. V. Aho, editor,
STOC, pages 218-229. ACM, 1987.

D. Gordon, T. Malkin, M. Rosulek, and H. Wee.
Multi-party computation of polynomials and
branching programs without simultaneous interaction.
In FEurocrypt, 2013.

S. Halevi, Y. Lindell, and B. Pinkas. Secure
computation on the web: Computing without
simultaneous interaction. In P. Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 132-150. Springer, 2011.

C. Hazay and Y. Lindell. Efficient Secure Two-Party
Protocols: Techniques and Constructions. Springer,
November 2010.

Y. Ishai, E. Kushilevitz, R. Ostrovsky,

M. Prabhakaran, and A. Sahai. Efficient
non-interactive secure computation. In K. G. Paterson,
editor, FEUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 406—-425. Springer, 2011.
S. Jarecki. Efficient Threshold Cryptosystems. PhD
thesis, MIT, 2001.

M. Keller, P. Scholl, and N. P. Smart. An architecture
for practical actively secure mpc with dishonest
majority. IACR Cryptology ePrint Archive, 2013:143,
2013.

Y. Lindell and B. Pinkas. Secure two-party
computation via cut-and-choose oblivious transfer. In
Y. Ishai, editor, TCC, volume 6597 of Lecture Notes in
Computer Science, pages 329-346. Springer, 2011.

D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software
fault isolation to contemporary cpu architectures. In
Proceedings of the 19th USENIX conference on
Security, USENIX Security’10, pages 1-1, Berkeley,
CA, USA, 2010. USENIX Association.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: a sandbox for portable, untrusted x86
native code. Commun. ACM, 53(1):91-99, Jan. 2010.

