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ABSTRACT
The collection of driving habits data is gaining momentum
as vehicle telematics based solutions become popular in con-
sumer markets such as auto-insurance and driver assistance
services. These solutions rely on driving features such as
time of travel, speed, and braking to assess accident risk
and driver safety. Given the privacy issues surrounding the
geographic tracking of individuals, many solutions explicitly
claim that the customer’s GPS coordinates are not recorded.
Although revealing driving habits can give us access to a
number of innovative products, we believe that the disclo-
sure of this data only o↵ers a false sense of privacy. Using
speed and time data from real world driving trips, we show
that the destinations of trips may also be determined with-
out having to record GPS coordinates. Based on this, we
argue that customer privacy expectations in non-tracking
telematics applications need to be reset, and new policies
need to be implemented to inform customers of possible
risks.

1. INTRODUCTION
Many auto-insurance owners are probably familiar with

the insurance discounts one can get by enrolling in telematics-
based pay-how-you-drive programs. Examples of such pro-
grams in North America and Europe include Progressive’s
Snapshot1, AllState’s Drivewise2, State Farm’s In-Drive3,
National General Insurance’s Low-Mileage Discount4, Trav-
elers’ Intellidrive5, Esurance’s Drivesense6, Safeco’s Rewind7,
Aviva’s Drive8, Amaguiz PAYD9, Insure The Box10, Cover-
box11, Ingenie12, MyDrive13, and others. These programs
rely on the collection of driving habits data (time of driving,

1www.progressive.com/auto/snapshot
2www.allstate.com/drive-wise.aspx
3www.statefarm.com/insurance/auto insurance/drive-safe-
save/inDrive.asp
4www.nationalgeneral.com/auto-insurance/smart-
discounts/low-mileage-discount.asp
5www.travelers.com/personal-insurance/auto-
insurance/discounts-advantages/low-mileage-discount.aspx
6www.esurance.com/discounts/drivesense-discount
7www.rewindprogram.com
8www.aviva.co.uk/drive
9www.amaguiz.com/assurance-auto/comprendre-tarif-
PAYD

10www.insurethebox.com/telematics/how-does-it-work
11www.coverbox.co.uk
12www.ingenie.com
13www.mydrivesolutions.com

speed, mileage, etc.) during a monitoring period, which is
later analyzed to o↵er a customized discount to the enrollee.

Vehicle telematics based programs o↵er many advantages
to insurers and the consumers. Insurers can o↵er more accu-
rate pricing to consumers based on their driving habits. This
increases a↵ordability for safe drivers, and motivates others
to adopt safer driving habits. Given the incentive to drive
less, these programs also help reduce road accidents, traf-
fic congestion, and vehicle emissions. Telematics have also
proven useful in monitoring driver safety (e.g. the OnStar
program), evaluating accident liability, preventing vehicle
theft, tracking fleet movement, and routing tra�c e�ciently.

While few programs disclose that their data collection de-
vices track the driver, most do not (or at least claim not to)
track GPS locations, and imply an expectation of privacy
that the customer’s destinations are not tracked. Privacy
policies clearly state what information is collected, as well
as the possibility of sharing the data with third-parties, us-
ing it for fraud prevention and research, or for compliance
with the law.

A significant body of research has gone into understand-
ing the importance of quasi-identifiers in database privacy
preservation. Quasi-identifiers are attributes of a database
record that are non-identifying by themselves, but can be
used to uniquely identify individuals when used in combina-
tion. A classic example is the re-identification of Governor
William Weld’s health records from an anonymized data set,
based on a combination of gender, postal code and date of
birth [3, 13]. Along similar lines, research has shown how in-
dividuals can be identified by their web searches [2], by their
social network structures [11], by their movie ratings [10], or
by their familial structures [9]. A large fraction of the popu-
lation is also identifiable from their home and work location
pair [4]. While the objective of this work is not to re-identify
an individual in an anonymized data set, we do ask a similar
question in the context of location privacy preservation: can
the di↵erent attributes of a driving habits dataset serve as

quasi-identifiers of the destination of a driving trip?

To answer this question, we develop a location inference
attack that executes on real traces of driving habits data,
and attempts to identify the destinations of the trips during
which the data were collected. Our techniques extract quasi-
identifying information such as tra�c stops, driving speed
and turns from the data, and match them to publicly avail-
able map information to determine potential destinations of
a trip. We describe the implementation of these techniques
and demonstrate that a number of trips can indeed be geo-
graphically matched to their destinations using simple driv-



ing features. Our conclusions are based on a probabilistic
ranking of the possible destinations of a trip. Although not
a foolproof method, our study shows that the destinations
of certain trips can be very easily identified, thereby raising
concerns about current expectations of privacy set by the
data collection agencies. Of greater concern is the relatively
unsophisticated (often common sense) nature of the concepts
underlying our inference algorithm. Once the possibility of
inference is identified, the techniques can probably be con-
ceptualized by a group of undergraduate computer science
students.

1.1 Related work
Location obfuscation is the most extensively researched

method for location privacy. By performing spatial and tem-
poral cloaking of locations, users can be provided location
anonymity in a typical points-of-interest search application
[5]. Cloaking regions can also be created such that the num-
ber of still-objects inside it is limited [1], or a minimum level
of entropy is maintained in the queries originating from the
region [8]. The popularity of public regions can also be used
as the privacy level enforced by a method [14]. Unfortu-
nately, anonymity or entropy based metics give inaccurate
assessments of the privacy level of an algorithm [12].

As mentioned in the introduction, a number of researchers
have shown that privacy cannot be guaranteed simply by
avoiding sharing or avoiding the collection of private data.
The possibility of linking using quasi-identifiers, or other
sophisticated methods, always remain. Large fractions of
the population can be identified by a combination of their
gender, date of birth and place of stay [3]. People may
enter locations, interests, a�liations, etc. in search queries,
which makes them unique in a de-anonymized web search
database [2]. Knowing the ratings assigned to eight movies is
su�cient to identify an individual, even when there is a two
week error in obtaining the dates of the ratings [10]. Half
of the individuals in the U.S. population can be uniquely
determined if their home and work locations are known at
the level of a census block [4]. In GPS logs, people can be
identified based on the last destination of the day and the
most populated cluster of points [6, 7]. It is unfortunate that
there is no method to a priori assess the inferences possible
on a data set. Similar to the cases in database privacy, this
work shows that our places of visit may very well be reflected
in the underlying driving features.

The remainder of the paper is organized as follows. Sec-
tion 2 states the location privacy expectations assumed in
this study. Section 3 details our data collection process, fol-
lowed by an explanation of the inference technique in Section
4. Section 5 presents results of executing the inference algo-
rithm on real world traces of driving habits data. Section 6
concludes the paper.

2. LOCATION PRIVACY MODEL
The advantages of services that rely on the collection of

driving habits data are noteworthy. Nonetheless, the threats
of location tracking are equally concerning. Location track-
ing enables inferences about an individual’s lifestyle and so-
cial circles, most of which may be considered private. Al-
though the decision to share one’s location is a personal one,
such decisions can only be made when the intent to collect
location data is fully disclosed. Therefore, location data col-
lection and sharing practices should be explicitly stated in

Figure 1: Driving habits data collection devices
(OBD-II based) and the GPS tracking device used
in this study (top right). Bottom plot shows driving
habits data viewed in an online portal.

the privacy policies of pertinent businesses. The di�culty
arises when the location information is inferable from other
types of seemingly unrelated data, in which case, either the
possibility of inference is unknown to the business, or the lo-
cation data is inferred and used without consumer consent.
We make the conservative assumption that if inferences are
possible, they will be made.

In our discussion of the related works, we mentioned projects
that studied the threat of re-identification in anonymized lo-
cation data. We study a somewhat di↵erent problem in this
work, namely, the threat of location inference. Location in-
ference is a deduction about the geographic location of an
event from other known facts. We focus on the problem in
the context of driving habits data collected with the consent
of the driver. The collected data has no direct tracking of
the user’s location. Therefore, the o↵ered privacy guaran-
tee is that the data collection agency, or an adversary with
access to the data, is unable to track the driver using this
data. Consequently, we assume that obtaining knowledge of
the destinations of travel is a clear violation of the location
privacy expectations of the driver. This also implies that if
a destination can be reached via more than one route, an
inference of the correct destination is considered a violation
even if the correct route is not inferred. We also assume that
the driver has typical driving habits, such as staying within
reasonable speed limits and taking best possible routes.

3. DRIVING HABITS DATA
Driving habits data includes features such as time of driv-

ing, speed, acceleration/deceleration patterns, distance trav-
eled, braking practices, and others. Unless the associated
service explicitly requires customer tracking, collection of
location data is avoided for privacy concerns. We explain a
typical data collection exercise by using an auto-insurance
discount program as an example. Typical auto-insurance
discount programs (propelled by driving habits data) are



Figure 2: Denver area map (graph) explored during candidate path generation. Map data: Google (2013).

opt-in programs where the driver has to enroll to be eval-
uated for a discount in her insurance premium. Upon en-
rollment, the driver receives a data collection device (Fig.
1) that can be plugged into the on-board diagnostic (OBD)
port of the vehicle. The device collects driving habits data
over a period of several days to few months. Some devices,
such as those used by the Progressive Snapshot program, can
periodically upload the data to a background server using
consumer telecommunication networks. This also enables
the driver to see the data in an online access portal (Fig. 1).
The device is returned to the agency at the completion of
the data collection phase. Based on factors such as distances
driven, time when driven, absence of hard brakes, and oth-
ers, the driver is issued a discount in the insurance premium
for the current and future terms.

3.1 Data collection
The motivation for this study came from observing real

world plots such as that in Fig. 1 when one of the authors
participated in an auto-insurance discount program. Unfor-
tunately, we are not able to access the raw data underlying
these plots. Executing our method on data points extracted
from a graphical plot also fails to produce interesting results,
clearly due to the inaccuracies involved in the extraction.
With the ability to read most of the data from the vehicle’s
on-board computer, the collected raw data is expected to
be precise and frequent. Therefore, we used a commodity
tracking device (LandAirSea GPS Tracking Key14) to collect
the raw data pertinent to this study. This battery powered

14www.landairsea.com/gps-tracker/gps-tracking-key

device logs detailed driving data such as vehicle speed and
GPS position, which can be later extracted into a computer
through a USB connection. Note that a device connected to
the OBD port can easily obtain more than ten samples per
second; our tracking device operates at a much lower resolu-
tion of one sample per second. Although the device collects
the GPS location (useful for validation later), the only data
fields used in the inference process are: time stamp (t), driv-
ing speed (s), and distance traveled (d). We introduce here
the term “trip” to mean a subset of the collected data, sig-
nifying a drive from one point of interest (e.g. home, o�ce,
hospital, store, friend’s home, etc.) to another. Each ht, s, di
tuple of a trip is a data point of the trip.

We kept the devices in our vehicles for a period of 15
days in order to collect data from regular home-o�ce trips,
occasional shopping trips, and visits to infrequent places.
We also collected a few trips between random locations at
varying distances. During these trips, normal driving habits
were maintained.

We use a total of 30 trips in this study. All trips are in the
Denver, Colorado area, and includes home to work and work
to home drives, visits to the airport, the downtown area, lo-
cal grocery stores, school drop-o↵s, social visits, and others.
Length of trips range from 1 mile to 25 miles, and spanned
interstates, state highways, city roads and residential areas.

3.2 Pre-processing
We pre-process each trip to remove data points that may

correspond to driving in tra�c conditions. Our inference al-
gorithms currently do not account for slow or “stop-and-go”
driving resulting from heavy tra�c; removal of data points
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Figure 3: Disabling of shortest path constraint while
exploring highway nodes.

collected during such conditions help infer locations accu-
rately in more number of trips.

Two steps are performed in this process. In the first step,
we identify the data points where the driving speed is zero
(possible stop in tra�c). Thereafter, all data points between
two zero-speed data points (inclusive) are removed if the
total distance traveled between those two points is less than
a threshold (half a mile used in this study). In the next
step, consecutively time stamped zero-speed data points are
removed if they do not span a time interval of at least 3
seconds.

After the tra�c pre-processing, we note the distance (unique)
values corresponding to the remaining data points with a
zero speed value. We refer to these distances as stop-points,
possible distances from the beginning of trip where the driver
had to halt due to tra�c stops at signals and intersections.

4. LOCATION INFERENCE METHOD
Our location inference method works under the hypoth-

esis that the stop-points of a trip can be used as a set of
quasi-identifiers for the destination of the trip. Therefore,
if the start-location of the trip is known, we can search a
map of the area for paths that begin at the start-location,
and have tra�c stops at distances given by the stop-points.
The assumption of a known start-location is not unrealistic,
since the data collectors are typically aware of the street ad-
dress where the vehicle is parked overnight. Start-locations
in subsequent trips can be obtained from the destinations
of previous trips. Unless the roadways in the area are very
regular, it is expected that a relatively smaller number of
paths will satisfy the constraint to match every stop-point.
The end-points of these candidate paths are potential desti-
nations of the trip. We will employ a ranking process when
multiple candidate paths are identified. In the following,
we give a step-by-step account of the inference process as
executed by us.

4.1 Area map as a graph
The first step to identifying candidate paths is to obtain

a reliable map of the area. We obtained the map data avail-
able from the crowd-sourced OpenStreetMap project15. The
map data from the project comes in the form of XML for-
matted .osm files. We processed these files to generate a
graph with 323928 nodes, and 639395 directed edges repre-
senting motorways, trunks, primary/ secondary/ tertiary/

15wiki.openstreetmap.org
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Figure 4: Turns along an explored path.

residential roads, and corresponding link roads. Nodes are
typically placed at intersections. Nodes are also placed be-
tween two intersections if the road in between is curved.
Therefore, the length of a road segment can be accurately
computed by aggregating the distances between successive
nodes placed on the road segment. Each node is labeled
with its latitude and longitude coordinates. Each edge is
labeled with the geodesic distance between the two nodes
of the edge. Distances are computed using the Vincenty
inverse formula for ellipsoids, available as part of the gdist

function in the Imap R package. Edges are also annotated
with a road type extracted from the downloaded XML files.
This map data16 covers an area of more than 1500 sq. miles
in Denver, Colorado and its suburbs (Fig. 2), spanning be-
tween latitudes 39.41015oN and 39.91424oN , and longitudes
105.3150oW and 104.3554oW .

We also assigned speed limit values to the edges of the
graph. Since it was di�cult to obtain the legal speed limit
on all roadways, we assigned numbers based on the road type
indicated in the XML data. A capable adversary can obtain
more accurate speed limit data from commercial sources.

4.2 Generating candidate paths
Candidate paths are generated by performing a standard

depth-first search (DFS) of the map graph. The DFS starts
at a node corresponding to the start-location of a trip and
outputs all paths that satisfy the list of constraints discussed
next.

Stop-point matching. During the DFS traversal, we
keep track of the length of the path from the start node.
This constraint requires that, at any stage of the traversal,
the current path must have an intersection node (3-way or
more) at all stop-points less than the current length of the
path. However, since tra�c stops often happen a few feet
away from the signal (the exact coordinates of the intersec-
tion), we allow for a slack while matching the path length to
a stop-point. The slack is set to 500 feet in this study. Stop-
point matching is not performed for the last stop-point, since
the last stop-point appears due to the vehicle being parked,
rather than due to a tra�c stop.

Shortest path. The second constraint requires that, at
any stage of the traversal, a path to a node must always be
the shortest one (within a slack of 0.1 miles) from the start
node to that node. The constraint is motivated by typi-
cal driving behavior where a shortest path is preferred when
traveling short distances inside the city. In such cases, short-
est paths are often fastest paths too. This is a reasonable

16crisp.cs.du.edu/datasets
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di↵erent path (di↵ers in the first mile).

assumption in lieu of tra�c conditions data at the time of
the trip. However, the assumption fails when traveling long
distances, where the driver is likely to take a faster (not nec-
essarily shorter) route through the highway. Nonetheless,
we can make the assumption that the driver would take the
shortest route up to the highway, and then again from the
point of exit on the highway to the destination. We incor-
porate this assumption by changing the start node to be
the currently explored node, if the current node is part of a
highway segment. As a result, the shortest path constraint
remains disabled as long as the exploration continues on the
highway nodes; the constraint is enabled when the explo-
ration enters non-highway nodes, although the start node
now is the last highway node (point of exit) on the path
(Fig. 3).

Turn feasibility. The third constraint requires a path
to always satisfy feasible speed limits at points of right and
left turns. At every point of the exploration, we compute
the angle by which a vehicle would have to turn when mov-
ing from the current node to the next node (Fig. 4). An
angle higher than 60o is considered a turn, in which case we
consult the trip data to ensure that the speed at that point
of time was under 25 mph. We use the current length of
the path to extract the closest data point from the trip, and
use the speed in that data point as the current driving speed.

Length. The length constraint terminates the explo-
ration along a particular path when the path length exceeds
the trip length. The path is then a candidate path if all
stop-points (except the last one) have been matched in the
path. When multiple candidate paths to the same end node
are discovered, we retain the one with the least number of
turns.

The nodes in our map graph correspond to points on road-
ways. However, the initial few data points (and the last few
as well) of a trip may correspond to driving on a parking
lot or a driveway. We used the GPS coordinates logged by
the tracking device to manually discard some of these initial
data points such that the first data point of a trip always
corresponds to a node of the map graph. This processing is
not required when more elaborate map data is used to gen-

erate the graph; many online services (e.g. Google Maps)
already use commercial maps with data for parking areas,
bikeways, and pedestrian paths.

4.3 Candidate ranking
The DFS traversal for a given trip outputs the candidate

paths that satisfy the four constraints discussed above. We
process the candidates through a ranking procedure to ar-
rive at the top inferred destinations of a trip. The ranking
procedure makes use of information on typical speed lim-
its along the candidate paths to find ones that best match
the speed changes observed in the trip data points. We be-
gin by first creating an ideal speed model for each candidate,
then augment the model with driving behavior typically seen
when making turns, and then compute a probability for the
observed trip data to have been generated from the model.
The candidates are ranked based on decreasing order of the
probabilities.

Ideal speed model. The ideal speed model of a path
P is a representation of the speeds that an ideal driver would
follow when driving along the path under ideal conditions.
An ideal driver is considered to be one who drives at exactly
the speed limit, and ideal conditions imply no acceleration
or decelerations in the driving speed. The model can be
formally expressed as a function M of distance d and a path
P . The output of such a function is the legal speed limit
at distance d from the beginning of path P (assuming speed
limit is same along both directions of travel).

M(d, P ) = s

limit

In a discrete representation, the ideal speed model is an
array of distance and speed pairs at points where the speed
limit changes along the path.

Augmenting the model. An ideal speed model can
be improved by correcting the output speed in parts of the
path where the vehicle would be performing a turn. Even an
ideal driver in ideal conditions will decelerate to a reason-
able speed to make a right or a left turn. A turn is assumed
to happen exactly at the node joining the two edges that
make the turn. We assume that all left turns happen at a
speed of 15 mph and all right turns happen at 10 mph. The



augmented model, denoted by M

aug

, gradually reduces the
output speed to the turning speed over a distance that de-
pends on the acceleration and deceleration capabilities of the
vehicle. Similarly, the model also incorporates the required
acceleration behavior after the turn is complete. For all ve-
hicles in this study, we use a fixed deceleration rate of 25
feet/s

2 (= 7.8m/s

2= 0.8g, g being the acceleration of grav-
ity), and a fixed acceleration rate of 6.5 feet/s

2 (= 2m/s

2).
The augmented model also incorporates the information

that the vehicle must have come to a complete halt at all
stop-points. Similar to the turns, the output speed is cor-
rected around the vicinity of the stop-points as well. Fig. 5
compares the speed values from a trip, and the values gener-
ated from the ideal speed model and the augmented model
along a similar path to the same destination.
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/20. For example, in a road with speed
limit 60 mph, most drivers are assumed to drive at speeds
between 60-72 mph, with 66 mph being the mean. For lower
speed limits, we assume that drivers are more likely to stay
close to the limit. The probability is then computed as
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where ✏ is a negligible number (10�5). To avoid issues of
precision, we take the sum of the logarithm of the probabil-
ities instead of the product of the probabilities at di↵erent
time instances. The ranking is not a↵ected because of this
transformation.

5. EMPIRICAL OBSERVATIONS
We applied the inference algorithm to the data from 30

trips. Inference correctness depends on factors such as stop-
points, abidance to the shortest path assumption, ability to

trip length
(miles)

number of
candidates

rank of actual
destination

1.48 12 1
1.59 12 1
2.60 50 1
3.23 15 1
3.78 11 2
3.85 23 1
3.93 52 1
3.93 49 1
3.95 37 3
5.47 11 2
5.89 18 1
5.84 20 1
7.95 196 2
9.42 26 4
13.15 37 3
14.10 53 1
14.57 68 1
24.10 42 13

Table 1: Rank of actual trip destination from
amongst the candidate paths.

drive at speed limits, and the correctness of the map data.
The algorithm was unable to generate any path leading to
the actual destination in 12 out of the 30 trips. However,
in 16 of the remaining 18 trips, the actual destination was
always in the top three destinations (in fact the first one
in 11 of them) generated after the ranking. The number of
candidate paths ranged between 4 and 196 across the trips.
Table 1 lists the trip length, number of candidate paths, and
rank of actual destination for the 18 trips with successful
inference. We are unable to find a correlation between the
number of candidate paths and the ranking performance.

5.1 Illustrative example
Fig. 6 shows five candidate paths identified for one of the

trips. A total of 196 candidate paths were found for this
trip. All candidate paths match the four stop-points of the
trip (7.95 miles in length). Candidate path 118 is also the
actual route taken during the trip. The last plot in the figure
shows the end nodes (destinations) of all candidate paths.
Irrespective of the large number of candidate paths identified
for this trip, most destination nodes cluster around a small
number of localities. This is worth noting, since only four
stop-points are involved over a distance of 7.95 miles in this
trip; yet the ways to match them to an actual map are quite
limited!

Fig. 7 compares the speed profiles of the actual trip and
that generated by the augmented model for a path. It is
clear that the more similar the speed limits and turns along a
path are to that of the actual route, the higher is the ranking.
Candidate paths 9, 32 and 118 progressively cover more of
the highway, thereby increasing the match probability.

5.2 Ranking performance
The ranking method is found to be robust in identifying

the actual destination of a trip. If the destination is the end
point of a candidate path, the path is often found in the
three most likely paths that match the speed profile of the
trip. Note that the ranking procedure does a point-by-point
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Figure 6: Sample candidate paths generated for a trip. Candidate path 118 is the actual route taken during
the trip. The bottom right plot shows the destinations of all (196) candidate paths generated for this trip.
A: start node; B: end node. Map data: Google (2013).

probabilistic comparison of the speed values observed in the
trip and that along an entire path. Therefore, although we
are not interested in the actual route followed during a trip,
the obtained paths often represent the exact driving route.
An interesting observation is that, even if the top ranked
destination is not the actual one, they are usually very close
(within 0.5 miles) to each other. Therefore, the locality of
the destination can be inferred almost always! The ranking
method su↵ers when speed limits are not reasonably fol-
lowed, either due to excessive speeding or slow movement in
tra�c, and another candidate path matches this noisy speed
profile.

5.3 Failed inferences
We also manually analyzed the 12 trips to understand why

a path to the actual destination was not discovered during
the DFS. For 4 out of the 12 paths, the trip involved a route
that is not the shortest one. For most others, a stop was
made for a significantly long amount of time in the mid-
dle of the road due to heavy tra�c. Note that our tra�c
pre-processing looks for more than one stop within a small
distance; if a single stop is made due to heavy tra�c, we will
instead interpret it as a stop-point. In one case, the search
was unsuccessful due to errors in the map data. The short-
est path issue can be resolved by allowing a larger slack on
the constraint, although doing so may increase the number
of candidate paths. Identifying single stops in the middle
of a road segment due to tra�c conditions is more di�cult.
An alternative is to allow a maximum number of violations

of the stop-point matching constraint. We believe that un-
derstanding the factors underlying a failed inference is the
key to creating a privacy-preserving technique for telemat-
ics data collection. For example, an auto-insurance data
collection device that intermittently perturbs the detected
speed of the vehicle for short durations can make the task
of inference more prone to noise.

5.4 Summary
We summarize our observations in this study in the fol-

lowing points.

• Although multiple candidate paths may satisfy the
stop-points and turn feasibility constraints, the num-
ber of neighborhoods where the paths end can still be
limited.

• A robust ranking method can easily identify candidate
paths that do not conform with the speed profile of
the trip, possibly leaving behind ones that end near
the true destination.

• The speed attribute in the collected data is a crucial
component in the inference process. It is worth explor-
ing how the data collection process can be modified to
introduce noise in this attribute, of course, without
a↵ecting its intended use.

• Finally, it is possible to infer the destination (often the
full route) of a trip from driving habits data such as
speed and distance traveled. It is crucial that agencies
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Figure 7: Speed profile during actual trip and that generated by augmented model for sample paths.

that collect such data acknowledge this fact and inform
their customers about it.

6. CONCLUSIONS
In this paper, we studied the threat of location inference

in vehicle telematics applications that collect driving habits
data. We developed an inference algorithm to demonstrate
that inferring the destinations of driving trips is possible
with access to simple features such as driving speed and dis-
tance traveled. The algorithm does fail in some cases. How-
ever, we believe that communicating the existence of this
threat to privacy is a priority to perfecting the algorithm.
Privacy advocates have presumed the existence of location
privacy threats in non-tracking telematics data collection
practices; our work shows that the threats are real. It is un-
fortunate, but the di�culties in data collection/sharing due
to quasi-identifiers is very much present in this domain as
well. The design of privacy-preserving techniques for telem-
atics data collection is open to research. In the meantime,
enough information should be conveyed to consumers so that
an informed decision can be made.
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