
Efficient and Secure Storage of Private Keys for
Pseudonymous Vehicular Communication

Michael Feiri
Distributed and Embedded
Security Research Group

University of Twente
The Netherlands

m.feiri@utwente.nl

Jonathan Petit
Distributed and Embedded
Security Research Group

University of Twente
The Netherlands

j.petit@utwente.nl

Frank Kargl
Institute of Distributed

Systems
University of Ulm
Ulm, Germany

frank.kargl@uni-ulm.de

ABSTRACT
Current standardization efforts for cooperative Intelligent
Transportation Systems both in the U.S. and Europe foresee
vehicles to use a large number of changeable pseudonyms for
privacy protection. Provisioning and storage of these pseu-
donyms require efficient and secure mechanisms to prevent
malicious use of pseudonyms. In this paper we investigate
several techniques to improve secure and efficient storage
of pseudonyms. Specifically, we propose schemes based on
Physical Unclonable Functions (PUFs) that allow to replace
expensive secure key storage by regular unsecured memory
and still provide fully secure pseudonyms storage.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—
Security and protection; K.6.5 [Security and Protection]:
Physical security

General Terms
Security, Privacy

Keywords
PUF, HSM, Secure Storage, KDF, VANET, ITS

1. INTRODUCTION
In a near future, Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2X) communication will enable vehicles to
exchange information regarding safety, traffic condition and
infotainment with each other. The On-Board Unit (OBU)
will play a key role in these systems, as it manages incom-
ing/outgoing messages and also performs security and pri-
vacy functions. Security and privacy of V2X communica-
tions are mandatory to enable a successful deployment of In-
telligent Transportation System (ITS). As many V2X appli-
cations have a potential impact on traffic safety, their com-
munication must be secured for obvious reasons [19]. Only
messages from authenticated vehicles should be processed

by receiving vehicles to prevent, for example, false safety-
related warnings. Current standardization efforts, both in
the U.S. and Europe, foresee that ITS will require the estab-
lishment of a Public Key Infrastructure (PKI), which man-
ages trust and certificates in the ITS. The current set of stan-
dards [10, 11, 12] mandates the use of Elliptic Curve Digital
Signature Algorithm (ECDSA) with P-256 elliptic curve for
message authentication. A näıve implementation of authen-
tication mechanisms breaks user privacy as every receiver
learns the identity of the sender. Therefore, a pseudony-
mous credential – short pseudonym– should be implemented
in order to prevent authentication to facilitate direct vehi-
cle identification. One single pseudonym is not enough to
ensure a sufficient level of privacy. Instead, this pseudonym
has to be changed frequently, and even then, a powerful at-
tacker may be able to track vehicles [41]. A central question
here is how many such pseudonyms a vehicle possesses and
how often it would have to contact the PKI for renewal. In
general, a frequent connection to the PKI to renew pseu-
donyms cannot be guaranteed because large-scale coverage
by road-side units (RSU) or cellular communication in every
vehicle is considered unrealistic during early years of V2X
deployment. Thus, the OBU has to store a potentially large
set of pseudonyms to allow frequent change of pseudonyms
in absence of backend connectivity. In a worst case, a vehi-
cle would only be able to load new pseudonyms during (bi-
)annual inspections in a garage. Recent research estimates
that an OBU is required to store 105,120 pseudonyms for
one year with each pseudonym valid for five minutes [15].

Each of those pseudonyms consists of a public-private key
pair and a corresponding certificate and especially the pri-
vate key needs to be stored securely to not compromise se-
curity of the overall system. If an attacker acquires access to
the secret keys stored in a vehicle, she could perform sybil
attacks, spoofing attacks, and in general jeopardize the au-
thentication and privacy of the victim. In consequence, it
must be guaranteed that a private key is strictly secured
during all events in its life cycle. This goal can be achieved
by designing systems to securely create, manage and destroy
(private) keys, maintaining an audit trail of every operation
executed during their existence. Hardware Security Modules
(HSMs) [7] are specifically designed to protect private keys.
HSMs are specialized tamper-proof devices in which cryp-
tographic functions and embedded software properly man-
age keys and control their life cycles. They are designed in
such a way that if an unauthorised attempt to access them



is made, this is considered an attempt to tamper and all
critical internal parameters and keys are destroyed. The
HSM features make them a crucial component in automo-
tive platform security [22, 27]. However, HSMs are espe-
cially expensive if implemented on an FPGA [42], and a
secure storage within an HSM adds complexity to the over-
all system. With ECDSA P-256 curve, the private keys of
the one-year pseudonyms set proposed in [15] would require
256 bits × 105, 120 = 3.2 Mbytes of secure storage – not
considering yet any overhead for data management. This re-
quirement is too high as current solutions offer a maximum
of 512 kbytes [31, 1]. Therefore, we aim at trading secure
storage of cryptographic key material for regular storage (i.e.
outside of the HSM).

Contribution. In our previous work [35], we already inves-
tigated how Physical Unclonable Functions (PUFs) can be
used for efficient and secure generation of private keys in
the context of V2X pseudonym generation. In this paper,
we focus on the aspect of efficient and secure key storage.
We also provide a detailed overhead analysis of the five pro-
posed schemes and compare their resilience against attacks.

Organization. The paper is organized as follows: Section 2
introduces the related work that deals with provisioning and
secure storage of pseudonyms in vehicular network. Sec-
tion 3 gives the necessary background on PUF, and describes
our system and attacker model. Then, we investigate the
classic solutions for secure storage in Section 4. Section 5
presents our approach how to use Physical Unclonable Func-
tion (PUF) for secure storage of V2X pseudonyms. We then
compare classic secure storage and PUF-based secure stor-
age solutions in Section 6. Finally, Section 7 draws some
conclusions and outlines future work.

2. RELATED WORK
A number of related publications have proposed ways to
enhance the provisioning to and storage of pseudonyms in
vehicles. We first describe the method of pseudonym provi-
sioning based on PKI that underlies current standardization
efforts. Secondly, we detail autonomous pseudonym provi-
sioning techniques that aim at reducing the key material to
be stored. Thirdly, we give an overview on how large amount
of keys are stored in modern operating systems.

2.1 PKI-based pseudonym provisioning
The conservative PKI-based approach is limited to opti-
mize the provisioning process of pseudonyms. This can be
achieved by optimizing the trade-off between availability re-
quirements and storage requirements. The allocation can
happen on-demand, if a connection from the vehicle to a
Certificate Authority (CA) is available, or by caching pre-
allocated pseudonyms in local secure storage. In this context
a pseudonym is defined as the pair of a public and private
key as well as the related certificate issued by a trusted CA
in the PKI.

To the best of our knowledge, detailed analysis of this trade-
off do not exist. But a common assumption is to locally store
a one year supply of pseudonyms inside vehicles [15, 3] to al-

low reloading new pseudonyms to vehicles during annual in-
spections if no other means of communication with the PKI
backend exist. For resupplying pseudonyms it is expected
that vehicles will be able to intermittently use IP connec-
tivity through road side units, residential WiFi or mobile
phone networks.

2.2 Autonomous pseudonym provisioning
Some approaches allow vehicles to generate new pseudonyms
themselves without interaction with a backend.

One example are systems using a group signature scheme [3]
to allow groups of vehicles to autonomously create key pairs
for self-provisioned pseudonyms. These certificates validate
the membership of a vehicle in a group, but do not reveal
which member owns a particular pseudonym. Enrollment
and removal of group members alter the group key material.
This likely requires frequent rekeying and constant availabil-
ity of the group manager, which can limit the appeal of this
scheme. On the other hand, this scheme requires signifi-
cantly less private key material to be stored. One valid set
of long-term credentials for enrolling into an existing group
or forming a new group is sufficient to bootstrap the system
and create pseudonyms. Pseudonyms including private keys
can be generated on demand and do not need to be stored
beforehand.

Attribute-based authentication [29, 5, 43] allows a vehicle
to generate pseudonyms entirely by itself, backed by a pre-
shared cryptographic authorization attribute. A zero knowl-
edge proof is performed between sender and receiver to ver-
ify the authenticity of a pseudonym without revealing any
further identifying information about the signer. Similar to
group signatures, only a set of long-term credentials for the
zero knowledge proof is required to be stored. A vehicle can
independently create pseudonyms, including private keys,
on-demand.

The aforementioned pseudonym schemes have a distinctive
set of advantages and disadvantages. Group-based signa-
tures and attribute-based authentication systems do not need
to store large amounts of private keys for pseudonyms. Un-
fortunately, the utility of these systems is limited in practice
by interactive protocols, reachability requirements for au-
thorities, or slow bilinear pairing based cryptographic prim-
itives. Moreover, as vehicles autonomously generate pseu-
donyms, the number of pseudonyms available to one vehicle
per time cannot be limited. Hence, large-scale Sybil attacks
become possible [44]. These limitations make the schemes
unsuitable for practical applications contexts with low la-
tency requirements, such as vehicular communication.

2.3 Scalable secure key storage
Solutions for the secure local storage of large amounts of
key material do exist in the form of password managers [40,
38], and more generically, in encrypted files [23] or filesys-
tems [14]. These solutions store sets of keys and passwords
in encrypted data stores, which are protected by a master
secret, and additionally, by common operating system secu-
rity features, such as access control lists.

Such solutions are effective with a human user in the loop
to provide the master secret. In vehicular security it is not



expected that a human user will provide a password or sim-
ilar authentication data that could be used to unlock an
encrypted data store. Instead, an On-Board Unit needs di-
rect access to all the required data to boot up into a fully
operational state. Effectively the decryption keys have to be
stored together with the encrypted data. This implies that
this type of solution cannot work as an self-sufficient secure
storage system. Though, encryption of private keys can be
part of a solution that employs another type of secure stor-
age for the master secret. Such a solution is described in
Section 4.2.

3. SYSTEM MODEL
In this section we describe the system model considered in
this paper. First, we explain Physical Unclonable Functions
(PUFs) and related concepts. Then, we show how our so-
lutions fit into the general OBU architecture. Finally, we
describe the attacker model considered and discuss in Sec-
tion 6 the level of protection offered by our solutions against
such attackers.

3.1 Physical Unclonable Functions
A Physical Unclonable Function (PUF), as introduced in
[32, 33], is a primitive that is bound to a physical system
and extracts a pseudorandom bit string for key generation
by mapping a set of challenges Ci to a set of responses Ri.
This challenge-response behavior is highly dependent on the
physical properties of the device in which the PUF is con-
tained or embedded. PUFs consist of two parts:

i) a physical part, which is an intractably complex phys-
ical system that is very difficult to clone. It inher-
its its unclonability from uncontrollable process vari-
ations during manufacturing. For PUFs on an Inte-
grated Circuit (IC), these process variations are typi-
cally deep-sub-micron variations such as doping varia-
tions in transistors.

ii) an operational part, which corresponds to the function.

In order to turn the physical system into a function, a set
of challenges Ci (stimuli) has to be available to which the
system responds with a set of sufficiently different responses
Ri. The function can only be evaluated using the physical
system and is unique for each physical instance because of
process variations. Moreover, it is unpredictable even for an
attacker with physical access.

PUF responses are noisy by nature. This means, that two
calls to a single PUF with the same challenge ci will output
two different but closely related responses ri, r

′

i. The mea-
sure of closeness can be defined via a distance function, e.g.,
the Hamming distance. This distance function should be
small for responses from the same device and very large for
PUF responses from different devices. Since the plain PUF
responses are noisy, they cannot be used as a key. In order
to derive reliable and uniform data from (imperfect) sources
of randomness, such as a PUF, the concept of a fuzzy extrac-
tor [8] or helper data algorithm [28] was introduced. Thus,
we obtain a master secret from the fuzzy extractor. This
master secret can be the seed for a key generation scheme
to derive public/private key pair(s) which can then be used
as a pseudonym(s). Alternatively the master secret can be

Figure 1: ETSI architecture of an OBU [10]

On-Board Unit

RAM CPU

Hardware Security Module

AES

ECCPUF

TRNG
Sec.

Storage

Disk

PUFPUF

PUF

PUF

Figure 2: Simplified hardware architecture of an
OBU

used to first seed a key derivation scheme, which results in
a larger amount of data that can then be used as seeds for
key generation processes.

The formulation of abstract properties of PUF types as well
as the development of PUF constructions are still a matter
of active research [36]. In this paper we use the terminology
proposed by Rührmair et al. [39] and refer to Strong PUFs1

and Weak PUFs2. To the best of our knowledge, no research
has investigated the applicability of PUFs for storage of large
numbers of private keys (or keypairs) as required by the V2X
pseudonym scenario.

3.2 On-Board Unit Architecture
Figure 1 shows the current ETSI reference architecture of
an On-Board Unit (named “ITS Station” in the standard).
It shows the different layers and particularly the security
layer. One can notice the Hardware Security Module (HSM)
within. As Figure 1 is an abstract view of an OBU, and thus,
does not represent the hardware, Figure 2 shows a simpli-
fied hardware architecture. An OBU includes CPU, host

1Labeled as “minimum readout time”PUF (MRT-PUF) [36]
2Also known as Physical Obfuscated Keys (POKs)



memory (RAM), regular storage, and an HSM. For simplic-
ity, we represent an HSM that only includes a true random
number generator (TRNG), cryptographic primitives (AES,
ECC), secure storage, and a PUF. However, one should no-
tice that the PUF could be outside of the HSM (represented
in dashed line in Figure 2). Indeed, the PUF could be fully
integrated in the CPU, GPU or RAM [26], but also attached
to the OBU as an external device. In the remainder of this
paper, we consider the PUF as an external device as we
compare against classic secure storage solutions (e.g. smart
card, secure token), which are mostly externally attached to
the OBU. A consequence of being outside the HSM is the
lack of a secure computation environment. An attacker (de-
scribed in Section 3.3) could then access to the memory to
steal key material. However, this drawback is limited by the
limited lifetime of the pseudonyms (i.e. certificate). We fur-
ther discuss the issue of secure computation in Section 6.2.

3.3 Attacker Model
With respect to secure storage we consider attackers who
want to access the content that is placed in the secure storage
container. In our context, the aim of the attacker is to copy
the private key material used as pseudonym of a vehicle. We
differentiate between two attacker goals: An attacker might
try to get access to the private keys for the currently used
pseudonym or the attacker might aim to access all private
keys for all pseudonyms provisioned in the OBU.

An attack against the OBU can be performed by injecting
a payload into the system, which would trigger malicious
actions. Since the OBU does not provide a user interface,
such a payload needs to be injected into the system remotely.
OBUs offer a number of opportunities to an attacker to input
data into the system remotely. Most notably the networking
and communication applications in the OBU are processing
data from external sources, which might be controlled by an
attacker. Exploitation of security holes in these applications
can lead to different levels of access to the contents of the
OBU:

1. Access to filesystem data
2. Access to application memory
3. Access to hardware devices and code execution

We consider attackers with an escalating set of capabilities
to evaluate the level of protection offered by the different
proposed techniques. Access to filesystem data serves as a
baseline scenario to illustrate that the basic secure storage
mechanisms work. An attacker should never be able to ac-
cess key material based on filesystem access. The second
level of access represents more severe information disclosure
attacks. In a scenario without secure computation this will
allow an attacker to extract key material that is currently
in use. A third type of attacker has the ability to execute
arbitrary code on the OBU, and thus, is able to arbitrar-
ily interact with any device attached to the OBU. For an
external device, such an attacker is indistinguishable from a
regular host application. Nevertheless, we consider this type
of attacker as the most powerful type of attacker, because
she has full control of the OBU.

In this paper we do not investigate hardware attacks against
the secure storage. The intrinsic tamper-resistance of PUFs

is assumed to protect against this kind of attacker. We as-
sume equally that the tamper-proof enclosure of classic se-
cure storage solutions is effective.

4. CLASSIC SECURE STORAGE
In this section we propose ways to implement efficient se-
cure storage of large numbers of private keys for use in se-
cure pseudonymous communication. We differentiate be-
tween regular storage and secure storage requirements for
keys and related support data. The proposed solutions have
different space requirements to store and protect these data,
which will be our main metric to compare the efficiency of
the proposed methods. As a baseline, we assume the avail-
ability of classic external secure storage, for example in the
form of a physical smart card or as part of a dedicated secure
storage token on a USB device. Our goal is to minimize the
usage of this resource or eliminate the use of this resource
entirely.

4.1 Individual key storage
The canonical way to handle secure storage is to assume the
presence of a dedicated device, which is isolated from the
host. The security attributes of this solution are derived
from the fact that the memory on this type of device is only
accessible through a well-defined security API. No other way
should exist to access the data, neither in software nor in
hardware. The protection against hardware access is usually
achieved through protective tamper-proof enclosures or self-
destructive coating. The details of the hardware and the
communication protocol as well as options to perform secure
computation on the device are out of the scope of this paper.

Secure storage

Key Key Key Key
...

Figure 3: All keys in secure storage

Figure 3 illustrates the fact that all n keys need to be stored
in the secure external device. The limiting factor of this
solution is the raw amount of data that needs to be stored
in this scheme. As introduced in Section 1, it is expected
that secure pseudonymous communication in vehicular net-
works will require multiple megabytes of private keys. The
key management and the amount of secured data storage
increase the cost of such a solution as the number of pseu-
donyms grows.

4.2 Encrypted storage
Storing private keys in encrypted form in regular storage,
e.g. in a file or database, is a common solution found in pass-
word management software for consumers (see Section 2.3).
This kind of solution is usually tied to a master password
and a password-based key derivation function to decrypt the
data structure. For non-interactive use, we can adapt this
solution to use a master key stored inside a secure storage
device to encrypt and decrypt the private keys as needed.
Figure 4 illustrates this method. Using a master key with
sufficient entropy in a secure data store allows us to avoid



key stretching techniques [21] that are typically employed in
password based key derivation functions like PBKDF2 [18],
bcrypt [37], or scrypt [34].

Regular storage

Master 
key

Encrypted 
key

Encrypted 
key

Encrypted 
key

Encrypted 
key...

Secure storage

Figure 4: Keys retrieved from encrypted file in reg-
ular storage using a securely stored master key

The advantage of this method compared to a classic secure
storage solution (Section 4.1) is that only one master secret
is required to be stored securely. This master secret will
subsequently unlock any number of additional private keys,
which can be stored in encrypted form in regular unsecured
memory. Conversely, the disadvantage is of course that now
an attacker only requires this master key and the encrypted–
but not securely stored–data structure of private keys to not
just compromise one private key, but all private keys stored
in this data structure.

4.3 Key derivation
Taking the concept of using a master secret even further,
we use a key derivation function to derive secret keys from
the master secret. A practical implementation of this idea
uses a keyed pseudo-random function to derive a sequence
of bits from a single master key (or seed). These bits can be
used as a secret key for symmetric cryptography, but also
as a deterministic source of random bits in the generation
process of an asymmetric ECDSA key pair [13]. Figure 5
illustrates this abstract process. Well known constructions
of such key derivation functions include KDF2 [16, 17, 9],
HKDF [24, 25, 4], and the set of deterministic random bit
generators (without reseeding) recommended by NIST [2].

Secure storage

Master 
seed

Derived 
key

Derived 
key

Derived 
key

Derived 
key...

Figure 5: Keys regenerated through a key derivation
function using a securely stored master key

An additional advantage of using key derivation functions is
the reduction of the communication overhead. Indeed, if the
CA generates and stores the master seed for the vehicles, it

is no longer necessary to submit the key pair through a se-
cure communication channel to the vehicle. It is enough to
transfer only the certificates, which needs to include context
information, to allow the vehicle to derivate the matching
key pair independently. These information do not even re-
quire protection, enabling the use of unauthenticated broad-
cast channels or public certificate servers for the delivery of
new pseudonym certificates.

5. PUF-BASED SECURE STORAGE
In this section we propose secure key storage solutions which
do not rely on any classic external secure storage, but in-
stead, use Physical Unclonable Functions (PUFs) to achieve
the desired security. As introduced in Section 3.1, we con-
sider two types of PUFs: Strong PUFs and Weak PUFs.

5.1 Strong PUF-based secure storage
Ongoing research on applications of PUFs for key gener-
ation and regeneration is focusing on the fuzzy extraction
algorithm. From an application perspective in the vehic-
ular communication context, we observe that we need to
securely store large numbers of secret keys. Our proposal,
which is summarized in Figure 6, requires the use of a Strong
PUF [39] that fulfills the following requirements:

1. It must be impossible to physically clone the PUF.

2. A complete determination/measurement of all challenge-
response pairs (CRPs) within a limited time frame
(such as several days or even weeks) must be impossi-
ble.

3. It must be practically impossible to numerically pre-
dict the response to a randomly selected challenge,
even if many other CRPs are known.

These requirements were setup by Rührmair et al. with
scenarios in mind that require a large number of interac-
tive challenge-response cycles, e.g., for remote authentica-
tion. Attackers could, e.g., send specific challenges to the
PUF, record the responses, and then try to perform a so
called “model building attack” [39]. For our usage of PUFs
for pseudonym storage, an attacker will not be able to di-
rectly query the PUF and see the responses. Only the CA
is supposed to be able to communicate with the OBU, and
PUF responses will only be used to derive key pairs from it.
This effectively removes the unconditional need for require-
ment 2, although for cost effectiveness of this solution it is
still desirable to demand a large space of challenge-response
pairs (CRPs). In Section 5.2, we propose an alternative so-
lution that can tolerate the availability of only small amount
of CRPs per PUF (Weak PUF).

The idea that we pursue in this proposal is to derive key
material from PUF responses. The use of a Strong PUF im-
plies that we have a large space of challenge-response pairs,
which enables us to derive large numbers of keys. As in
the solution based on KDF, we use deterministic random
bits as a source of entropy in the key generation process of
asymmetric ECDSA key pairs [13].

The amount of input data required to generate a stable
amount of responses is highly dependent on the attributes



Regular storage

Chal + 
Helper

Chal + 
Helper

Chal + 
Helper

Chal + 
Helper...

Derived 
key

Derived 
key

Derived 
key

Derived 
key...

Figure 6: Keys reconstructed securely from a strong
PUF using regularly stored challenges and helper
data

of a concrete PUF construction. In general we require a set
of chosen challenges and a set of helper data, which is gener-
ated by the fuzzy extractor during the initial key generation
process. Depending on the type of PUF construction, a to-
tal amount of n challenges cn of x bits length is required to
generate m bits of output. These m bits of output then need
to be stabilized using a fuzzy extractor (see Section 3.1). In
the initial key generation process the fuzzy extractor will
generate helper data. In subsequent calls to the PUF, this
helper data is instead used by the fuzzy extractor to recon-
struct the same stable response. In both cases, the fuzzy
extractor will consume a percentage of the data for entropy
compression and error correction. The factor of the data
reduction r as well as the length y of the helper data W de-
pends on the type and configuration of the fuzzy extractor.
The configuration needs to be calibrated based on the ex-
pected error probability and entropy quality of a given PUF
construction.

Vehicle Strong PUF

Expand(C) = c0 ...n
ci

−−−−−−−−−−→
ri ← ci

Stabilise(r0 ...n) = (R,W )
ri

←−−−−−−−−−−

Figure 7: An initial challenge (C) gets expanded
into n challenges (ci), which generate responses (ri)
in the PUF. The vehicle combines these into a final
response (R) and helper data (W ).

For an overall amount of stable response bits z, we can cal-
culate the number of required challenges as n = z

m·r
. To

enable reconstruction of stable responses, we would need to
store the n challenges of size x and the helper data W of
length y. Regarding the choice of challenges, we note that
to ensure the independence of output bits we need to avoid
repetitions of challenges. A simple increment function al-
lows us to easily expand multiple challenges from an initial
challenge, while avoiding collisions and covering the whole
space of possible challenges optimally. Under the assump-
tion that the number of challenges to expand is implicitly
known for each reconstruction of a response, this makes it
possible to only store the starting challenge and derive all
following challenges. Thus, to enable reconstruction of fixed
size stable responses, we need to store only the starting chal-
lenge of size x and the helper data W . Once all possible

challenges are exhausted the PUF should not be reused3.
Requirement 3 of the Strong PUF definition, as well as the
attributes of the fuzzy extractor, must ensure that even just
a one bit difference between challenges guarantees a fully
independent response.

Vehicle Strong PUF

Expand(C) = c0 ...n
ci

−−−−−−−−−−→
r′i ← ci

Stabilise(r′0 ...n ,W ) = R
r
′

i
←−−−−−−−−−−

Figure 8: Regeneration of responses is analogous to
the initial provisioning, except the previously gener-
ated helper data (W ) is now utilized by the Stabilise()
function to stabilize the response.

The details of the ECDSA key pair generation process are
specified in [13]. For example a fixed amount of 320 random
bits are required to deterministically build a key pair of 256
bits. Thus, we assume a need of z = 320 bits of stable en-
tropy from the PUF to be able to generate a 256 bit ECDSA
key pair.

Once the vehicle has constructed its key pair as outlined
above, it can then build and submit a certificate signing re-
quest (the public key) to the CA through a authenticated
and integrity protected channel to trigger the certification
process. The CA subsequently returns a signed certificate,
which completes the provisioning process of a new pseudo-
nym.

Vehicle CA

(sk , pk)← R← (C,W )
pk

−−−−−−−−−→
certpk = Sign(pk)

(C,W, certpk )
certpk

←−−−−−−−−−

Figure 9: The vehicle generates an asymmetric key
pair from a challenge C and helper data W . The CA
creates a certificate for the public key pk , which is
stored in the vehicle with C and W .

This method of secure key generation and key reconstruc-
tion from PUFs completely avoids any need for classic se-
cure storage. The starting challenge and helper data can
be stored in regular storage space. The security of the key
material is fully guaranteed by the need to have access to
the related PUF device with its intrinsic tamper resistant
attributes.

5.2 Weak PUF-based key derivation
A Weak PUF deviates from the definition of Strong PUF by
allowing just one fixed CRP per PUF. It can be considered
as a PUF that has a fixed built-in challenge and whenever
queried provides the same response. This leads to the vio-
lation of requirements 2 and 3 of the Strong PUF definition
as described above. Nevertheless, even if the Weak PUF has
a capacity of one single CRP, this CPR will have a useful
amount of entropy. Assuming that the size of the response
provides sufficient entropy for a master secret as described
in Section 4.3, we can apply the same technique here.

3Reconfigurable PUFs have been proposed as a desirable
extension [20]



Regular storage

Derived
master 
seed

Derived 
key

Derived 
key

Derived 
key

Derived 
key...

Chal + 
Helper

Figure 10: A master key gets reconstructed securely
from a weak PUF using regularly stored challenges
and helper data and is then used to regenerate de-
rived keys.

An illustration of the two stage key derivation process is
shown in Figure 10. First, a master key is derived from the
response of a Weak PUF. Then, this master key is used as
a seed to derive the key material for multiple pseudonyms.
For instance, the PUF response could be used as the “input
keying material” for the Extract function of HKDF [25].

6. DISCUSSION
The presented solutions for the secure storage of key mate-
rial for pseudonyms employ Key Derivation Functions (KDF)
and Physical Unclonable Functions (PUF) to achieve multi-
ple levels of efficiency improvements. The two major aspects
for the evaluation of the solutions are the storage require-
ments and the security properties with respect to attackers
with different capabilities.

In Table 1 we summarize the storage requirements of the
proposed solutions for the secure storage of k keys. Based
on the assumption of storing k = 105120 keys, the baseline
classic secure storage scenario would require approximately
3.2 Mbytes of secure storage space. An encrypted data struc-
ture, as described in Section 4.2, would allow to drastically
reduce the amount of secure storage. In this scenario, the
full 3.2 Mbytes of encrypted key material still has to be
stored, but it can be stored in regular memory.
The use of a key derivation function removes this require-
ment of regular storage by relying purely on a master seed
value, which is used to generate key material on-the-fly.
The solution based on the application of a Strong PUF does
not require any classic secure storage device at all. Instead,
it is possible to rely solely on the intrinsic security of the
PUF construction. However, the amount of regular stor-
age space required to regenerate keys is larger than the raw
amount of private keys. This is due to the need for helper
data, which is required to stabilize the readings of responses
from the noisy hardware constructions of PUFs. The exact
amount of required helper data and the size of challenges
are highly dependent on the attributes of a given PUF and
also on algorithmic choices of the fuzzy extractor.
Finally, we see that a combination of PUF and KDF tech-

niques even allows us to present a solution that technically
does not require any secure or regular storage at all. The
Weak PUF using just one challenge-response pair, returns
its response without any explicit challenge, simply by virtue
of being powered on.

The second criteria to compare the proposed solutions is
the resilience against attackers with different levels of capa-
bilities (see Section 3.3). Table 2 gives an overview of the
security properties. We see that all solutions guarantee the
basic requirement of denying any access to the key mate-
rial to an attacker who has access to the regular unsecured
filesystem.
As described in Section 3.3, the next level of attacker capa-
bility grants the attacker read-only access to arbitrary re-
gions of OBU memory. The attacker might have found an
exploitable bug in the software and injects malicious code
to extract valuable data. We see weaknesses in three of the
proposed solutions, due to the fact that these rely on a single
piece of master secret to derive key material. This master
secret (a master key or a master seed) has to be extracted
from a classic secure storage device or from a PUF and is
identical for all keys that are derived by the system. An
attacker with the capability to observe the address space of
the application can potentially copy this master secret dur-
ing the derivation process of any key. The attacker can then
derive all possible keys based on this master secret. Only
the pure classic secure storage solution and the Strong PUF
based solution are not affected by this issue, because these
solutions derive all keys independently.
The final model grants the attacker full control over the
host, which implies code execution privileges and direct ac-
cess to the device. Generally, there is no way to protect
the information against access by such a powerful attacker,
because the storage device cannot see a difference between
normal usage and usage by such a powerful attacker. One
last option to offer a mitigation against malicious use could
be a rate limitation mechanism, which limits the number of
requests over time. For the use case of pseudonymous com-
munication in vehicular communication it could be sufficient
to only return one key per minute. Such a feature represents
a viable security benefit, because the attacker can effectively
only make use of the attacked device while it is online. The
classic secure storage solution, as well as the Strong PUF-
based solution, could reasonably offer such a feature.

6.1 Limitations of KDFs and PUFs
In the previous section, the comparison of the security prop-
erties listed in Table 2 shows that the existence of a single
master secret, as it is the case in the KDF-based solutions,
represents a disadvantage under certain attacker models.
Another issue to consider is the limitation of the number
of keys to derive from one single master key. It is advis-
able to rekey the system after a certain amount of keys was
derived. The rekeying interval depends on the construc-
tion of the underlying algorithm used in the KDF. This also
highlights the abstract disadvantage of having to rely on
additional cryptographic algorithms compared to the solu-
tions that access keys without intermediary derivation steps.
More exposure to cryptographically strong algorithms nat-
urally implies more risk of being affected by a discovery of
a weakness in such algorithms.



Table 1: Storage size overview for k keys
Secure Storage Regular Storage Comments

Classic secure storage, Section 4.1 k private keys − ECDSA private key size ≈ 256 bit
Encrypted storage, Section 4.2 1 master key k encrypted private keys Master symmetric key size ≈ 128 bit
Key derivation, Section 4.3 1 master seed − Master seed size ≈ 320 bit
Strong PUF-based secure storage,
Section 5.1

− k challenges, k helper
data

Size of challenge and helper data is
highly dependent on PUF construction.
Chen et al. recommend challenge sizes
of 64 or 128 bits for a BR-PUF [6].

Weak PUF-based key derivation,
Section 5.2

− helper data A Weak PUF does not necessarily re-
quire a challenge. Maes et al. [30] list
y = 2052 bits of helper data for a re-
sponse of 128 bits from an RO-PUF

Table 2: Key stealing protection under different attacker capabilities
Filesystem access Memory access Full control of OBU

Classic secure storage, Section 4.1 safe current key accessible rate limitation possible
Encrypted storage, Section 4.2 safe all keys accessible all keys accessible
Key derivation, Section 4.3 safe all keys accessible all keys accessible
Strong PUF-based secure storage,
Section 5.1

safe current key accessible rate limitation possible

Weak PUF-based key derivation,
Section 5.2

safe all keys accessible all keys accessible

Similar concerns are valid for PUFs, where the fuzzy extrac-
tion process is comparable to a key derivation process. The
complexity of these processes might enlarge the exposure to
bugs and weaknesses. Moreover, there are fundamental ca-
pacity limits (i.e. challenge-response pair space) that might
impede practical deployments. Since PUFs are intrinsically
bound to hardware, it might be impossible to reuse (rekey) a
PUF after the capacity limit is reached. This is particularly
problematic for Weak PUFs with only one or a very limited
number of challenge-response pairs. Controlled PUFs and
Reconfigurable PUFs [20] have been proposed as solutions
for this problem, but the feasibility of such constructions is
hard to evaluate. A controlled PUF would be particularly
desirable in the context of secure storage for the possibility
to effectively implement rate limitation in hardware.

While it is not an issue for pseudonyms storage in vehicular
network, we acknowledge that the speed of accessing a PUF
can be a limiting factor. The secure key reconstruction from
PUFs incurs a considerable amount of computational over-
head for the fuzzy extraction of responses. According to [30]
the execution time is in the order of magnitude of several
milliseconds for an RO-PUF design. Additionally, the chal-
lenge C and helper data W , which need to be stored for
the regeneration of a stable response, are significantly larger
than the plain private key. While we propose an expansion
function to avoid storing all challenges cn, the helper data
can easily add up to several kilobytes in order to generate
stable response data [30].

Another limitation of using PUFs for key generation and
key storage is that PUFs are effectively read-only devices.
Therefore, it is necessary for vehicles to create key pairs
locally, using the response of a PUF challenge as a controlled
source of entropy.

We summarize the limitations of PUFs as follows:

1. Read-only data store
2. Limited capacity
3. Readout time
4. Faith in fuzzy extractor algorithms
5. Need to store helper data

These limitation pose restrictions on the realm of possible
applications for PUF-based secure storage. PUF-based so-
lutions are consequently not suitable as a direct universal re-
placement for all applications of classic secure storage. Nev-
ertheless, when these limitations are met, the use of PUF-
based solutions is a secure and efficient option to replace
classic secure storage.

6.2 PUF integrated within an HSM
As shown in Figure 2, the PUF could be inside an HSM.
Then, our schemes would benefit from this secure compu-
tation environment. Indeed, an HSM commonly provides
secure memory, secure storage, and secure cryptographic
primitives. This solution ensures that the key is generated
and used at the same place, and never leaves the HSM. In
this case, one can notice that integrating the PUF inside
the HSM will prevent all the key stealing attacks listed in
Table 2.

However, an attacker with full access could still use the HSM
to perform malicious actions such as signing forged mes-
sage. Moreover, the PUF limitations still hold even within
an HSM. For instance, the limited capacity of the challenge
space triggers the question about what would happen when
a CRP space is depleted. As no Reconfigurable PUF exists
yet, replacing the HSM would incur a considerable cost.

Finally, we conclude that if secure computation is assumed,



then the cost benefit advantage of PUF is questionable. We
note that the encrypted storage model (Section 4.2) would
not suffer from any limitation of the PUF-based solutions
while offering a better tradeoff between secure storage and
regular storage. According to Table 1, encrypted storage
needs 1 private key and k cipher texts, while PUF-based
approaches require no private key but k challenges and k

helper data. One should notice that, in terms of size, the
cipher text is significantly smaller than the set of challenges
and helper data.

7. CONCLUSION AND FUTURE WORK
Security and privacy of vehicular communication are manda-
tory to ensure a successful deployment and user acceptance
of cooperative Intelligent Transportation System. The cur-
rent set of V2X standards foresees the use of asymmetric
cryptography, digital signatures, and certificates to authen-
ticate users. To prevent tracking and privacy leakage, ve-
hicles frequently switch between short-term pseudonyms to
provide anonymity and unlinkability. As permanent–or even
frequent–connection to the PKI to retrieve new pseudonyms
cannot be guaranteed, a common solution is to store enough
pseudonyms for one year or longer in secure storage. How-
ever, secure storage of large amount of key material is ex-
pensive if done in secure memory of a hardware security
module.

In this paper, we propose to use encryption and key deriva-
tion functions to reduce the need for secure storage. Our
comparison shows that the use of these techniques are ef-
fective at reducing the requirements for secure storage at
the cost of reduced protection against attackers with access
to host memory. We alternatively propose to use Physical
Unclonable Functions (PUFs) to eliminate the need for clas-
sic secure storage entirely. Our analysis shows that PUFs
can effectively replace classic secure storage if an applica-
tion can operate under the limitations of a given PUF. The
use-case of secure pseudonymous communication in vehicu-
lar networks is generally compatible with these limitations.

The attractiveness of PUF-based solutions is a result of po-
tential cost savings due to the use of PUF constructions
compared to more expensive secure storage. PUFs are en-
visioned to be cheap enough for inclusion in mass produced
RFID tags or might already exist in common hardware. This
represents a considerable cost-benefit advantage. Once the
availability of hardware implementations increases, we ex-
pect PUF-based solutions, such as the storage solutions pre-
sented in this paper, to see widespread use in practical ap-
plications.

As future work, we point out that detailed assumptions
about the behavior of PUFs are often hard to verify. In
this paper we require two properties about PUFs that allow
us to implement optimizations and make assumptions about
the security of the overall system:

1. A one bit difference between two challenges is enough
to guarantee completely independent responses. Knowl-
edge of related (not randomly selected) challenges does
not affect the unpredictability of responses.

2. Knowledge of helper data does not reveal any informa-
tion about the expected response from a PUF.

These attributes are implied by the Strong PUF requirement
2 and by the fuzzy extraction algorithm goals. But usually
no explicitly guarantees of these attributes are given in the
design documents of concrete PUF constructions.

Applications of secure storage in vehicular OBUs often in-
volve full Hardware Security Modules (HSM) to provide se-
cure computation in addition to secure storage. Rate limita-
tion and a limited lifetime of certificates do allow operation
without secure computation. It remains an open question,
if a PUF-based secure storage solution can be augmented
to offer secure computation, while retaining a cost-benefit
advantage over classic implementations in an HSMs.

Development of PUF constructions is a very active area of
research and we hope that new developments might remove
some of the aforementioned limitations.

8. ACKNOWLEDGEMENTS
The authors would like to thank Dominik Merli and Christoph
Bösch for their helpful comments. The research leading
to these results has received funding from the European
Union’s Seventh Framework Programme project PRESERVE
under grant agreement n◦269994.

9. REFERENCES
[1] L. Apvrille, R. El Khayari, O. Henniger, Y. Roudier,

H. Schweppe, H. Seudié, B. Weyl, and M. Wolf. Secure
automotive on-board electronics network architecture.
World Automotive Congress (FISITA ’10), May 2010.

[2] E. B. Barker and J. M. Kelsey. Recommendation for
random number generation using deterministic random
bit generators (revised). US Department of Commerce,
Technology Administration, National Institute of
Standards and Technology, Computer Security
Division, Information Technology Laboratory, 2007.

[3] G. Calandriello, P. Papadimitratos, J.-P. Hubaux, and
A. Lioy. Efficient and robust pseudonymous
authentication in vanet. 4th ACM international
workshop on Vehicular ad hoc networks (VANET ’07),
pages 19–28, 2007.

[4] L. Chen. SP 800-56C. recommendation for key
derivation through extraction-then-expansion.
Technical report, Gaithersburg, MD, United States,
2011.

[5] N. Chen, M. Gerla, D. Huang, and X. Hong. Secure,
selective group broadcast in vehicular networks using
dynamic attribute based encryption. 9th IFIP Annual
Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net ’10), pages 1–8, 2010.

[6] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and
U. Rührmair. The bistable ring puf: A new
architecture for strong physical unclonable functions.
IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST ’11), pages 134–141, 2011.

[7] T. C. S. de Souza, J. E. Martina, and R. F. Custódio.
Audit and backup procedures for hardware security
modules. 7th Symposium on Identity and Trust on the
Internet (IDtrust ’08), pages 89–97, 2008.

[8] Y. Dodis, M. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and
other noisy data. In Advances in Cryptology –



EUROCRYPT 2004, volume 3027 of LNCS, pages
523–540, 2004.

[9] B. Elaine, J. Don, and S. Miles. SP 800-56A.
recommendation for pair-wise key establishment
schemes using discrete logarithm cryptography.
Technical report, Gaithersburg, MD, United States,
2007.

[10] ETSI TC ITS. ETSI TS 102 731 v1.1.1 - intelligent
transport systems (ITS); security; security services
and architecture. Standard, 2010.

[11] ETSI TC ITS. ETSI TS 102 941 v1.1.1 - intelligent
transport systems (ITS); security; trust and privacy
management. Standard, 2012.

[12] ETSI TC ITS. ETSI TS 103 097 v1.1.1 - intelligent
transport systems (ITS); security; security header and
certificate formats. Standard, 2013.

[13] Federal Information Processing Standards. Digital
Signature Standard (DSS) - FIPS 186-3, June 2009.

[14] T. Foundation. Truecrypt - free open-source on-the-fly
encryption, 2013. Retrieved July 10, 2013 from
http://www.truecrypt.org/.

[15] D. Garcia, A. Waite, R. Walsh, B. Sheppard,
L. Frank, and D. Jeffers. Certificate management
entities for connected vehicle environment. public
workshop read-ahead document. Technical report
FHWA-JPO-12-038, Research and Innovative
Technology Administration, May 2012.

[16] IEEE. IEEE standard specifications for public-key
cryptography- amendment 1: Additional techniques.
IEEE Std 1363a-2004 (Amendment to IEEE Std
1363-2000), pages 1–159, 2004.

[17] ISO/IEC. Information technology - security techniques
- encryption algorithms - part 2: Asymmetric ciphers.
ISO/IEC 18033-2, 2006.

[18] B. Kaliski. RFC 2898: Pkcs# 5: Password-based
cryptography specification version 2.0. IETF,
September, 2000.

[19] F. Kargl, P. Papadimitratos, L. Buttyan, M. Muter,
E. Schoch, B. Wiedersheim, T.-V. Thong,
G. Calandriello, A. Held, A. Kung, and J.-P. Hubaux.
Secure vehicular communication systems:
implementation, performance, and research challenges.
IEEE Communications Magazine, 46(11):110–118,
November 2008.

[20] S. Katzenbeisser, Ü. Kocabaş, V. van der Leest, A.-R.
Sadeghi, G.-J. Schrijen, and C. Wachsmann.
Recyclable PUFs: Logically reconfigurable PUFs.
Journal of Cryptographic Engineering, 1(3):177–186,
2011.

[21] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure
applications of low-entropy keys. In Information
Security, pages 121–134. Springer, 1998.

[22] B. H. Kim, K. Y. Choi, J. H. Lee, and D. H. Lee.
Anonymous and traceable communication using
tamper-proof device for vehicular ad hoc networks.
International Conference on Convergence Information
Technology, pages 681–686, 2007.

[23] W. Koch. Gnupg - the gnu privacy guard, 2013.
Retrieved July 10, 2013 from http://gnupg.org/.

[24] H. Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In Advances in

Cryptology–CRYPTO 2010, pages 631–648. Springer,
2010.

[25] H. Krawczyk and P. Eronen. HMAC-based
Extract-and-Expand Key Derivation Function
(HKDF). RFC 5869, May 2010.

[26] T. Lange. PUFFIN - the physically unclonable
functions found in standard pc components project,
2013. Retrieved July 10, 2013 from
http://puffin.eu.org/.

[27] T. Leinmüller, L. Buttyan, J.-P. Hubaux, F. Kargl,
R. Kroh, P. Papadimitratos, M. Raya, and E. Schoch.
Sevecom - secure vehicle communication. IST Mobile
and Wireless Communication Summit, pages 1–5,
2006.

[28] J.-P. M. G. Linnartz and P. Tuyls. New Shielding
Functions to Enhance Privacy and Prevent Misuse of
Biometric Templates. Audio-and Video-Based
Biometrie Person Authentication (AVBPA ’03),
2688:393–402, 2003.

[29] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. 6th Annual International
Workshop on Selected Areas in Cryptography (SAC
’99), pages 184–199, 1999.

[30] R. Maes, A. Herrewege, and I. Verbauwhede. PUFKY:
A fully functional puf-based cryptographic key
generator. Cryptographic Hardware and Embedded
Systems (CHES ’12), pages 302–319, 2012.

[31] K. Moerman, T. van Roermund, and M. Knezevic. A
realistic approach to message verification in car-to-car
communication. 19th ITS World Congress, 2012.

[32] R. Pappu. Physical One-Way Functions. PhD thesis,
MIT, 2001.

[33] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical One-Way Functions. Science, 297:2026–2030,
2002.

[34] C. Percival. Stronger key derivation via sequential
memory-hard functions. The Technical BSD
Conference (BSDCan ’09), May 2009.

[35] J. Petit, C. T. Bösch, M. P. Feiri, and F. Kargl. On
the potential of puf for pseudonym generation in
vehicular networks. 4th IEEE Vehicular Networking
Conference (VNC ’12), pages 94–100, November 2012.

[36] R. Plaga and F. Koob. A formal definition and a new
security mechanism of physical unclonable functions.
In Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and Fault
Tolerance, pages 288–301. Springer, 2012.

[37] N. Provos and D. Mazieres. A future-adaptable
password scheme. USENIX Annual Technical
Conference, FREENIX Track, pages 81–91, 1999.

[38] D. Reichl. Keepass password safe, 2013. Retrieved
July 10, 2013 from http://keepass.info.

[39] U. Rührmair, F. Sehnke, J. Sölter, G. Dror,
S. Devadas, and J. Schmidhuber. Modeling attacks on
physical unclonable functions. 17th ACM conference
on Computer and communications security (CCS ’10),
pages 237–249, 2010.

[40] B. Schneier. Password safe - the security of twofish in
a password database, 2013. Retrieved July 10, 2013
from http://www.schneier.com/passsafe.html.

[41] B. Wiedersheim, Z. Ma, F. Kargl, and



P. Papadimitratos. Privacy in inter-vehicular networks:
Why simple pseudonym change is not enough. 7th
International Conference on Wireless On-demand
Network Systems and Services (WONS ’10), 2010.

[42] M. Wolf, A. Weimerskirch, and T. Wollinger. State of
the art: Embedding security in vehicles. EURASIP
Journal on Embedded Systems, 2007, 2007.

[43] L.-Y. Yeh, Y.-C. Chen, and J.-L. Huang. ABACS: An
attribute-based access control system for emergency
services over vehicular ad hoc networks. IEEE Journal
on Selected Areas in Communications, 29(3):630–643,
2011.

[44] B. Yu, C.-Z. Xu, and B. Xiao. Detecting sybil attacks
in vanets. Journal of Parallel and Distributed
Computing, 73(6):746–756, 2013.


