skip to main content
10.1145/2522628.2522649acmconferencesArticle/Chapter ViewAbstractPublication PagesmigConference Proceedingsconference-collections
tutorial

Singularity Free Parametrization of Human Limbs

Authors Info & Claims
Published:11 November 2013Publication History

ABSTRACT

In this paper we propose the Middle-Axis-Rotation (MAR) parametrization of human limbs that addresses the ill-conditioned cases of analytical Inverse Kinematics (IK) algorithms. The MAR parametrization is singularity-free in the reach space of the human limbs. Unlike the swivel representation, it does not rely on the projection of an additional fixed vector. In addition, we express the joint limits of each joint of the limb in terms of the redundancy of the new decomposition. In the specific case of the upper limb, we analyse the contribution of the clavicle to produce biomechanically meaningful postures. We illustrate various real-time applications of this approach.

References

  1. Badler, N. I., and Tolani, D. 1996. Real-time inverse kinematics of the human arm. Presence 5, 4, 393--401.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baerlocher, P., and Boulic, R. 2000. Parametrization and range of motion of the ball-and-socket joint. In DEFORM/AVATARS, 180--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baerlocher, P., and Boulic, R. 2004. An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20, 402--417.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berenson, D., Srinivasa, S. S., and Kuffner, J. J. 2011. Task space regions: A framework for pose-constrained manipulation planning. I. J. Robotic Res. 30, 12, 1435--1460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bolsterlee, B., Veeger, H., and Helm, F. 2013. Modelling clavicular and scapular kinematics: from measurement to simulation. Medical & Biological Engineering & Computing, 1--9.Google ScholarGoogle Scholar
  6. Culham, E., and Peat, M. 1993. Functional anatomy of the shoulder complex. J Orthop Sports Phys Ther 18, 1, 342--50.Google ScholarGoogle ScholarCross RefCross Ref
  7. Grassia, F. S. 1998. Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3, 29--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Halit, C., and Capin, T. 2011. Multiscale motion saliency for keyframe extraction from motion capture sequences. Computer Animation and Virtual Worlds 22, 1, 3--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Huang, W., Kapadia, M., and Terzopoulos, D. 2010. Full-body hybrid motor control for reaching. In Motion in Games, R. Boulic, Y. Chrysanthou, and T. Komura, Eds., vol. 6459 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 36--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kallmann, M. 2008. Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds 19, 2, 79--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Klopcar, N., Tomsic, M., and Lenarcic, J. 2007. A kinematic model of the shoulder complex to evaluate the arm-reachable workspace. J Biomech 40, 1, 86--91.Google ScholarGoogle ScholarCross RefCross Ref
  12. Korein, J. 1985. A geometric investigation of reach. ACM distinguished dissertations. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kovar, L., Schreiner, J., and Gleicher, M. 2002. Foot-skate cleanup for motion capture editing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, SCA '02, 97--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kulpa, R., and Multon, F. 2005. Fast inverse kinematics and kinetics solver for human-like figures. In Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 38--43.Google ScholarGoogle Scholar
  15. Kulpa, R., Multon, F., and Arnaldi, B. 2005. Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum, Eurographics 2005 special issue 24, 343--352.Google ScholarGoogle Scholar
  16. Maurel, W., and Thalmann, D. 1998. Human shoulder modeling including scapulo-thoracic constraint and joint sinus cones. Computers and Graphics 24, 203--218.Google ScholarGoogle ScholarCross RefCross Ref
  17. Molla, E., and Boulic, R. 2013. A two-arm coordination model for phantom limb pain rehabilitation. In The 19th ACM Symposium on Virtual Reality Software and Technology, VRST, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Murray, C., Pettifer, S., Howard, T., Patchick, E., Caillette, F., and Murray, J. 2010. Virtual solutions to phantom problems: Using immersive virtual reality to treat phantom limb pain. In Amputation, Prosthesis Use, and Phantom Limb Pain, C. Murray, Ed. Springer New York, 175--196.Google ScholarGoogle Scholar
  19. Raunhardt, D., and Boulic, R. 2011. Immersive singularity-free full-body interactions with reduced marker set. Computer Animation and Virtual Worlds 22, 5, 407--419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shin, H. J., Lee, J., Shin, S. Y., and Gleicher, M. 2001. Computer puppetry: An importance-based approach. ACM Transactions on Graphics (TOG) 20, 2, 67--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Slonneger, D., Croop, M., Cytryn, J., Kider Jr, J. T., Rabbitz, R., Halpern, E., and Badler, N. I. 2011. Human model reaching, grasping, looking and sitting using smart objects. International Ergonomic Association-Digital Human Modeling.Google ScholarGoogle Scholar
  22. Tolani, D., Goswami, A., and Badler, N. I. 2000. Realtime inverse kinematics techniques for anthropomorphic limbs. Graphical Models 62, 353--388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tucker, C. A., Bagley, A., Wesdock, K., Church, C., Henley, J., and Masiello, G. 2008. Kinematic modeling of the shoulder complex in tetraplegia. Topics in Spinal Cord Injury Rehabilitation 13, 4, 72--85.Google ScholarGoogle ScholarCross RefCross Ref
  24. Unzueta, L., Peinado, M., Boulic, R., and Suescun, Á. 2008. Full-body performance animation with sequential inverse kinematics. Graphical models 70, 5, 87--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, X., and Verriest, J. P. 1998. A geometric algorithm to predict the arm reach posture for computer-aided ergonomic evaluation. The Journal of Visualization and Computer Animation 9, 1, 33--47.Google ScholarGoogle ScholarCross RefCross Ref
  26. Welch, G., and Bishop, G. 1995. An introduction to the kalman filter. Tech. rep., Chapel Hill, NC, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Singularity Free Parametrization of Human Limbs

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            MIG '13: Proceedings of Motion on Games
            November 2013
            30 pages
            ISBN:9781450325462
            DOI:10.1145/2522628

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 11 November 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • tutorial
            • Research
            • Refereed limited

            Acceptance Rates

            MIG '13 Paper Acceptance Rate-9of-9submissions,100%Overall Acceptance Rate-9of-9submissions,100%

            Upcoming Conference

            MIG '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader