

Vrije Universiteit Brussel

SpeeG2: A Speech- and Gesture-based Interface for Efficient Controller-free Text Input
Hoste, Lode; Signer, Beat

Published in:
Proceedings of ICMI 2013, 15th International Conference on Multimodal Interaction

DOI:
10.1145/2522848.2522861

Publication date:
2013

License:
Other

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Hoste, L., & Signer, B. (2013). SpeeG2: A Speech- and Gesture-based Interface for Efficient Controller-free Text
Input. In Proceedings of ICMI 2013, 15th International Conference on Multimodal Interaction (Proceedings of
ICMI 2013, 15th International Conference on Multimodal Interaction). ACM.
https://doi.org/10.1145/2522848.2522861

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 25. Apr. 2024

https://doi.org/10.1145/2522848.2522861
https://cris.vub.be/en/publications/speeg2-a-speech-and-gesturebased-interface-for-efficient-controllerfree-text-input(8a8055fe-fb24-4eae-a308-9f4b054134d3).html
https://doi.org/10.1145/2522848.2522861

SpeeG2: A Speech- and Gesture-based Interface for
Efficient Controller-free Text Entry

Lode Hoste and Beat Signer
Web & Information Systems Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{lhoste,bsigner}@vub.ac.be

ABSTRACT
With the emergence of smart TVs, set-top boxes and public infor-
mation screens over the last few years, there is an increasing de-
mand to no longer use these appliances only for passive output.
These devices can also be used to do text-based web search as well
as other tasks which require some form of text input. However,
the design of text entry interfaces for efficient input on such appli-
ances represents a major challenge. With current virtual keyboard
solutions we only achieve an average text input rate of 5.79 words
per minute (WPM) while the average typing speed on a traditional
keyboard is 38 WPM. Furthermore, so-called controller-free appli-
ances such as Samsung’s Smart TV or Microsoft’s Xbox Kinect
result in even lower average text input rates. We present SpeeG2, a
multimodal text entry solution combining speech recognition with
gesture-based error correction. Four innovative prototypes for the
efficient controller-free text entry have been developed and evalu-
ated. A quantitative evaluation of our SpeeG2 text entry solution
revealed that the best of our four prototypes achieves an average
input rate of 21.04 WPM (without errors), outperforming current
state-of-the-art solutions for controller-free text input.

Categories and Subject Descriptors
H.5.2. [Information Interfaces and Presentation (e.g. HCI)]:
User Interfaces

General Terms
Design, Experimentation, Human Factors

Keywords
SpeeG2; speech input; gesture interaction; multimodal input; text
entry; camera-based UI

1. INTRODUCTION
Since the early days of computing, the field of text entry systems

has been dominated by keyboards. This is caused by the fact that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMI’13, December 9–12, 2013, Sydney, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2129-7/13/12 ...$15.00.
http://dx.doi.org/10.1145/2522848.2522861.

text entry solutions have the trade-off between efficiency and train-
ing time as well as between the device size and the character set
size [12]. The widespread familiarity with QWERTY keyboards
causes the training time to go down and efficiency to go up, which
makes keyboards a very efficient text entry solution.

However, in many situations it is either not possible or not opti-
mal to provide a full-fledged keyboard [4, 9, 7]. This is strength-
ened by the recent deployment of research prototypes in the real
world such as gesture keyboards for mobile devices. Similar to mo-
bile devices, smart TVs and set-top boxes allow users to browse for
additional information on the Web, tweet1 or review movies while
watching a television show [6]. The keypad of remote controllers
contains buttons with letters that enable a simple form of text input.
Nevertheless, with the introduction of controller-free appliances in-
cluding Samsung’s Smart TV2, Microsoft’s Xbox Kinect3 or recent
large public displays and Internet-enabled embedded devices, new
challenges arise to provide adequate text entry methods.

Current text input for set-top boxes makes use of a virtual key-
board which is normally navigated via a D-pad controller (as avail-
able for the Microsoft Xbox, Nintendo Wii or Sony Playstation 3)
containing one or multiple discrete confirmation buttons. The per-
formance of virtual keyboard input was measured to be between
5.79 and 6.32 words per minute (WPM) [13, 2]. However, these
solutions require physical buttons to select and confirm characters,
which is inherently problematic for controller-free text entry. First,
it is hard to find a balance between accidental activation and hover-
ing over an option for some time. Second, the performance would
be worse due to the timeout period to confirm every single word.

For decades, speech has been the holy grail when it comes to
fast text entry. Besides being intuitive and non-intrusive, its perfor-
mance characteristics are very promising as speech input can easily
reach input rates of 196 WPM [14], while the average typing speed
on a keyboard is only 38 WPM [3]. On the other hand, the inaccu-
racy of speech recognisers requires human correction which poses
major challenges for the adoption of speech-based text entry. In
addition, speech-based correction frequently results in cascading
errors and therefore an extra input modality is at least advised [10].
Most multimodal interfaces of this kind use a two-phase text entry
approach. In a first phase, the user decides when the speech record-
ing starts and stops by pressing a button. In the second phase, the
user corrects any errors made by the speech recogniser via mouse
or keyboard. Note that the switching between these two phases not
only reduces the potential performance but also requires an intru-
sive physical controller.

1http://www.twitter.com
2http://www.samsung.com/us/2012-smart-tv/
3http://www.xbox.com/kinect

http://www.twitter.com
http://www.samsung.com/us/2012-smart-tv/
http://www.xbox.com/kinect

SpeeG2 provides a solution for controller-free text entry by fus-
ing information from speech and gesture input. Speech is used as
the main modality to enter text, while gesture input from the domi-
nant hand is used to correct the speech recognition results. We have
developed and evaluated four prototypes to overcome the lack of
discrete input. Some of the key design elements of our work, such
as the grid layout, simple gestures to confirm correct results and the
support of continuous interaction are based on earlier experiments
in various related work.

Commercial systems for controller-free text entry currently only
reach input rates of 1.83 WPM [2]. With the increasing interest
from industry (e.g. Microsoft’s Xbox Kinect, smart TVs) and the
emergence of ubiquitous controller-free intelligent environments,
there is a need for new efficient ways of controller-free text entry.
We start in Section 2 by presenting related work in the domain of
speech- and gesture-based text entry solutions. This is followed by
our general design decisions regarding the SpeeG2 user interface in
Section 3. The functionality offered by our four different SpeeG2
text entry prototypes is introduced in Section 4. After presenting
the results of a quantitative and qualitative evaluation of these four
prototypes, we provide some final conclusions.

2. RELATED WORK
Speech Dasher supports writing text through a combination of

speech and the Dasher user interface [11]. Their work extends
Dasher by visualising the output of a speech recogniser rather than
single letters. The speech-based output consists of n-best word
candidates that can be selected, resulting in a higher text input
rate. Based on a two-step model, the user first utters a sentence
and then presses a discrete button to disable the microphone be-
fore switching to the correction phase where the recognised sen-
tence can be modified via the zoomable Dasher interface [12]. The
Speech Dasher prototype also targets users with limited mobility
and is used on a personal computer system since the correction
phase can be controlled via mouse or gaze.

The output of a speech recogniser offers many different possible
candidates for one utterance. In Speech Dasher, only the top pre-
dictions are directly added to the interface. Excluded options and
character-based selection can be enabled by selecting a dedicated
star character (*). The developers made this design choice because
too many alternative choices would increase the difficulty in navi-
gating the interface. Speech Dasher uses the Sphinx4 speech recog-
niser with a trigram language model. Depending on the participant,
a UK or US acoustic model is applied. Three participants were
used in the user study and the average text entry rate was 40 WPM
compared to the 20 WPM of the original Dasher interface. The
word error rate (WER) for Dasher was 1.3% while the WER for
Speech Dasher was 1.8%. Note that these numbers are optimised
using user-specific native speech recognition training. The perfor-
mance for a non-native English speaker (i.e. German) was not as
good due to the fact that the recogniser used a US acoustic model.
Furthermore, the visualisation was not optimal for viewing at a dis-
tance and the use of discrete start and end buttons does not map
well controller-free input.

SpeeG (v1.0) is a system similar to Speech Dasher but with
a focus on controller-free imprecise gesture-based input for de-
vices such as always-on set-top boxes, game consoles or media
centers [2]. The SpeeG prototype offers a non-intrusive multimodal
user interface that combines speech and gestures in a Dasher en-
vironment. While speech is used as the primary input, pointing
gestures are used for the correction phase. However, instead of

4http://cmusphinx.sourceforge.net

the two-phase model introduced by Speech Dasher, SpeeG uses a
continuous model which allows users to continue speaking while
they are using gestures to correct previously recognised words. A
quantitative evaluation of SpeeG demonstrated that this model was
able to achieve 6.52 WPM which is comparable to the performance
achieved with a virtual keyboard in combination with a game con-
troller (between 5.79 WPM [13] and 6.32 WPM [2]). In the qualita-
tive study of SpeeG, users suggested to offer a word-level selection
to further improve the performance and to reduce the ergonomic
issues such as fatigue. We argue that the physical strain not only
originates from using a mid-air interface, but due to the use of the
Dasher-based interface which requires users to point into a certain
direction for a longer period of time.

Parakeet [10] combines speech and touch to enter text on mo-
bile devices. It works in a two-step process: first the sentence is
recorded and when the discrete ‘Mic off’ button is pressed, a touch
interface is presented to correct the hypothesis of the speech recog-
niser. In contrast to zoomable Dasher-based solutions, Parakeet
uses a grid layout to present the speech recogniser’s hypothesis.
The key design decisions were fragmented interaction, the avoid-
ance of cascading errors and the exploitation of alternative recog-
nition results. The user interface grid consists of columns repre-
senting consecutive words and rows that offer the n-best word can-
didates from the speech recogniser. The bottom row additionally
presents a delete block which is used to skip invalid word candi-
dates. A virtual keyboard can be used as a fallback solution to
enter words that are not present in the speech recognition vocabu-
lary. Note that other systems such as SpeeG do not offer such fall-
back functionality. The touch-based interface of Parakeet requires
discrete commands to switch between the two-step model. Unfor-
tunately, discrete commands are time consuming and non-intuitive
for camera-based gesture input.

Sim [8] describes an interface for combining speech and touch
gestures for continuous mobile text entry. Experimental results
show that concurrent speech input enhances the accuracy of a ges-
ture keyboard even in noisy conditions. However, their interface
requires precise input to select characters using a swipe gesture.
Additionally, in case of errors, the user is still required to correct
the words on a character level using a virtual keyboard.

3. SPEEG2 DESIGN
SpeeG2 is a multimodal, controller-free text entry solution using

speech as the main input modality and hand gestures to correct or
confirm the proposed entry. Based on related work and the scenario
described in the introduction, we identified several interesting chal-
lenges: (1) provide a continuous model for both the speech recog-
nition and hand gesture-based interaction to eliminate the need for
discrete buttons, (2) reduce physical strain by allowing rest posi-
tions for the arms, (3) optimise the performance in terms of WPM
and WER. In this section, we discuss the general concepts, archi-
tecture and control flow of SpeeG2, while the four different proto-
types to perform the word selection are described in Section 4.

3.1 Architecture and Control Flow
Our four prototypes share the same interaction with the speech

recogniser and the skeletal tracking of the Kinect sensor. The dif-
ference between the prototypes lies in the user interaction when
correcting speech recognition errors (selection process). The com-
mon architecture shared by all four prototypes is illustrated in Fig-
ure 1.

First, a user utters a sentence (1) and the speech recogniser trans-
lates the spoken sentence into a sequence of words (2). At any time
when a user speaks, the SpeeG2 GUI visualises what the speech

User

Speech recognition

(Microsoft SAPI 5.4)

Skeletal tracking

(Microsoft Kinect)

5

4

2

3

SpeeG2 GUI

6

1

Figure 1: SpeeG2 interaction

recogniser assumes to be the correct word sequence. Even if a
user has not yet finished a sentence, partial results are shown in the
GUI. When a sentence is spoken, the selection process becomes ac-
tive (3). The user can start correcting the recognised word sequence
by using the dominant hand as input modality (4). The hand move-
ment is registered by a Microsoft Kinect and transformed to screen
coordinates (5). Via the GUI the user gets continuous feedback
about the speech recognition and the hand tracking (6). Note that
the communication between the speech recogniser and the GUI has
been realised via asynchronous network communication. This al-
lows for abstraction and independent evolution of both components
and depending on the scenario, our solution might be tailored with
domain-specific speech recognition. A more detailed description
of the inner workings of the GUI is provided in Section 3.2.

Due to the continuous nature of both, speech- and gesture-based
input, our interface was built to support sequence (1), (2), (3) in-
dependently from the sequence (4), (5), (6). Therefore, speech in-
put and gesture-based correction can overlap and occur in parallel,
providing more freedom to the user and potentially improving the
performance. A user can also first speak a few sentences forming a
paragraph and perform the corrections afterwards.

3.2 Interaction Features
The graphical grid layout user interface of SpeeG2 entails a num-

ber of important features for this kind of multimodal application. In
the following, we briefly describe the different components of the
SpeeG2 graphical user interface which are highlighted by the num-
bers (1) to (7) in Figure 2. Note that all the red annotations shown
in the following screenshots do not form part of the user interface.

(1) Visualising what a user is saying:
The top area visualises intermediate speech results. Instead
of waiting for a full sentence candidate from the speech recog-
niser, we use this direct feedback to let a user know that the
system is listening. Therefore, all words in this area are sus-
ceptible to changes depending on the grammar rules applied
by the speech recogniser. It is common to see this direct
feedback pattern in dictation software since it improves the
connection between the system and the user. As soon as the
speech recogniser has sent its final hypothesis, the colour of
the best sentence candidate will change from black to green.
In SpeeG2, a valid sentence has to consist of a sequence of at

1

2

3

4

5

6

7

Figure 2: Highlighted parts of the grid layout

least three words. If the system detects a word sequence of
less than three words, the corresponding text will be coloured
red and not considered as a sentence. We decided to define
such a minimal sentence length in order to filter out noise and
short unintended utterances. After a valid sentence has been
recognised by the speech recogniser, the text will be queued
in the area indicated by number 2 in Figure 2.

(2) What still needs to be processed:
This GUI element forms a queue for all accepted input that
still has to be corrected or confirmed. In the example shown
in Figure 2 “in the water.” forms part of the sentence “My
watch fell in the water.” which is being corrected. This allows
the user to build larger paragraphs and also to use speech
and gesture input in parallel. However, if a user first speaks
a few sentences before starting to correct them, this part of
the screen helps to remember what has already been said,
allowing delayed correction while providing memorisation.

(3) Processing speech recognition results in a grid layout:
The grid area contains all the words that can be substituted
with other word candidates via hand gestures. As speech
recognition is nearly accurate but not perfect, most of the
classification errors can easily be corrected by choosing one
of the alternative hypotheses. The columns of the grid rep-
resent a word sequence and the rows offer alternative word
substitutes. In the example shown in Figure 2, two sentences
are being processed. The first sentence is “This sentence has
almost been processed.” and the second one is “My watch
fell in the water.”. Figure 2 shows the state where the last two
elements of the first sentence (“processed .”)—in this case
without any alternative word candidates—and the beginning
of the next sentence (“my watch fell”) have to be corrected.
In the fifth column, the speech recogniser found “fill” to be
more likely than “phil”, “fail” and “fell”. The word candi-
dates returned by the speech recogniser are sorted in inverse
order meaning that the bottom row contains the most likely
words. This allows the user to confirm a correctly recognised
sentence with minimal effort by holding the dominant hand
as low as possible without having to move it up or down.
To form the correct sentence, the user has to correct “fill”
to “fell” by selecting the element in the second row of that
column. The top row of each column offers the possibility
to skip and delete a particular word by selecting the “- - -”
element. Note that a full stop is also considered a word in or-
der to provide a clear separation between sentences. The grid
highlights selected words with a yellow background. How-
ever, the way in which the user interacts with the grid and

selects alternative words is different for each of the four pro-
totypes and will be presented later. After a sequence of words
has been confirmed or corrected, it is sent to the area show-
ing the processed parts which is highlighted by number (4).
The size of the grid areas depends on the size of the display
or other contextual parameters (e.g. the distance from the
screen) and should be large enough to also work with less
accurate hand movements. To insert missing words, users
can make use of the insertion feature represented by area (5).

(4) What has been processed:
The area highlighted by number (4) contains all words that
have been processed via the grid. It therefore shows the final
corrected text and should be seen as the actual entry box to
external applications. A current limitation of SpeeG2 is that
text in this box cannot be altered anymore.

(5) Insert word(s):
The plus signs are used to insert a (single) missing word be-
tween two columns. This insertion feature is activated by
hovering over the plus sign for 700 milliseconds and opens
the insert dialogue box as shown in Figure 3. The insert fea-
ture works with the concept of speech reiteration. Only a
single word that the user utters is shown in the dialogue box.
If the recognised word is incorrect, the user simply needs to
utter the word again. Note that this solution is susceptible to
cascading errors. However, if the speech recognition engine
is not able to correctly recognise a word after multiple trials,
alternative correction methods (such as spelling mode) can
be used. After a word is confirmed to be inserted, it is added
at the location of the selected plus sign. This feature en-
ables users to address scenarios where the speech recogniser
ignored a specific word. Since this feature is not frequently
used, we opted to use a discrete action (i.e. hovering by using
the hand). While hovering over a plus sign button, the black
cursor fills up orange to visualise the timeout, a mechanism
that is commonly used for camera-based applications.

Figure 3: The insert dialogue box

(6) Skip sentence:
If the speech recogniser returned mostly incorrect results or
even captured unintended input, a user can use the skip sen-
tence feature. When area (6) is hovered over for 700 mil-
liseconds, the current sentence will be deleted. To distin-
guish between multiple partial sentences, the active sentence
is identified based on the number of words in the grid. In
Figure 2 most words originate from the sentence “My watch
fell in the water”, meaning that this is the active sentence.

(7) Camera visualisation:
When designing interactive camera-based applications, it is
important to provide users feedback about their position and
the tracking accuracy. Sensors such as the Microsoft Kinect
have a limited field of view and depth range. Therefore,
area (7) shows the camera feed in order to enable users to
correct improper positioning or solve other kinds of prob-
lems such as inadequate lighting conditions.

3.3 Spelling Mode
Previous features show how SpeeG2 deals with substitution, in-

sertion and deletion errors in the speech recognition hypothesis.
However, some words like the names of people are not likely go-
ing to be part of the speech recognition vocabulary. To offer a
complete text entry solution, SpeeG2 provides a spelling mode
where words can be spelled out. This mode can also be used when
non-native English speakers continuously mispronounce a partic-
ular word. The spelling mode works as a substitution method for
an invalid word and is activated by a push up gesture with the non-
dominant hand. The grid component is then transformed from a
word-based to a character-based selection. All other GUI elements
such as the insertion buttons, the skip element or feedback views re-
main intact. A user can now spell the word and the rows in the grid
will provide candidate letters instead of words. Furthermore, the
spelling mode provides a natural language feature allowing users
to elaborate on their spelling by using words starting with a spe-
cific letter. For example, a user might say “a as in alpha” to clarify
the character “a”. Note that the spelling mode can also be used to
slightly modify a candidate word. For instance, to add an “s” at the
end of a word, the user activates the spelling mode and then uses
the existing insertion feature to add an “s” character. As illustrated
in Figure 4, the spelling mode is visualised by purple column bor-
ders, a single letter in each column and a special “*end*” block at
the end of a word.

Figure 4: Correcting the word “fill” in spelling mode

The selection process of the grid in spelling mode works the
same way as each prototype works in non-spelling mode. How-
ever in spelling mode, each time a user utters a letter, it fills the
currently active column with the most probable letters.

3.4 Accuracy and Training
Previous work suggests to increase recognition accuracy by train-

ing the speech recogniser and generating a profile for each user.
While speech accuracy is very important, the main goal of SpeeG2
is to provide a text entry tool which is immediately usable by a
large number of people, even if training might improve the over-
all performance as demonstrated by Parakeet [10]. One of our
main intentions is to avoid asking people to go through a training
phase before they can start entering text. This barrier might also
be one of the reasons why dictation software is not used very of-
ten, especially when users own a multitude of electronic devices.
Therefore, SpeeG2 uses a generic model offered by Microsoft’s
Speech Recognition API to reach a large group of users. Nev-
ertheless, users who are willing to invest some time in a training
phase can build a speech profile by using existing tools. We argue
that even without any training and for non-native speakers, current

state-of-the-art generic speech recognisers including Microsoft’s
and Google’s speech recognition, provide adequate candidate re-
sults. Driven by results from previous work, we further opted for
sentence-level recognition to improve the recognition rates due to
the use of a language model.

4. SPEEG2 PROTOTYPES
We introduce four different prototypes which share a common

grid interface but offer different forms of interaction for correcting
speech recognition errors. We evaluated different selection strate-
gies in the setup shown in Figure 5 and observed whether accidental
triggering is an issue in some of the prototypes.

Figure 5: User interacting with one of the SpeeG2 prototypes

4.1 Scroller Prototype
The Scroller prototype uses similar design concepts as the Dasher

interface. The interface shown in Figure 6, is controlled by navi-
gating towards the next word in a stepwise manner. The scrolling
steps are represented by the numbers -2 to 3 which have been added
to the screenshot. When the progress bar at the top is filled (i.e. is
fully green), a step occurs and the next word is put into the active
column (0). The speed at which the progress bar fills is controlled
by the horizontal movement of the dominant hand. The further
away the hand is from the body, the faster the progress bar fills.

-2 -1 0 1 2 3

Figure 6: Scroller prototype interface

The user is also allowed to go back to previously confirmed
words by moving the dominant hand to the other side of the body.
For example, when the right hand is moved to the left side of the

body the progress bar will reduce its value and we start to go back-
wards to the previous step when reaching the active column (0). A
vertical movement of the hand is used to choose between the can-
didate words within the active column. The other columns are used
to visualise consecutive and previous words.

The Scroller prototype reuses some concepts from Dasher to deal
with inaccurate input in an incremental manner. However, com-
pared to our earlier SpeeG (v1.0) prototype, it reduces physical
strain as users select words instead of letters and are able to re-
lax their hand which causes the progress bar to halt. Note that the
spelling mode is available for all four prototypes and whenever a
slight modification has to be performed, the spelling mode can be
activated by performing a push up gesture with the non-dominant
hand. Furthermore, to insert a word before the currently active col-
umn, the user can hover over the plus sign below the grid.

4.2 Scroller Auto Prototype
A variation of the Scroller prototype is the Scroller Auto proto-

type shown in Figure 7. The difference is that the green progress
bar has been removed and the movement occurs continuously. In-
stead of processing the words in a step-by-step manner, the columns
move sideways (similar to a 2D side-scrolling game).

210-1-2 3

Figure 7: Scroller Auto prototype interface

Moving the dominant hand on the x-axis still controls the speed
while vertical hand movements are used to select a word within the
active column. The active column is the column currently in the
centre (0). In the example shown in Figure 7, the column with the
words “might” and “my” is active and “might” is selected because
the cursor (represented by the black dot) is horizontally aligned
with it (as indicated by the arrow). The location of the cursor (in
column 2) is currently far to the right of the centre, implying a
high scrolling speed. Whenever words cross the centre, they are
confirmed and the next word can be corrected.

4.3 Typewriter Prototype
The Typewriter prototype is based on the concept of traditional

typewriters where the carriage had to be pushed back to start writ-
ing on a new line. Even though typewriters are seldom used nowa-
days, people still remember them and know how they used to work.
We wanted to exploit this knowledge in order to minimise the learn-
ing time and to increase usability. In the Typewriter prototype, the
selection of a word is not dependent on an active column anymore.
Instead, a single swipe of the hand can select an entire sequence of
words on the grid. This is illustrated by the red arrow in Figure 8
selecting the words “processed”, “.”, “my”, “watch” and “fell”
in the current view. Once the red area on the right-hand side is
reached, the words are committed and the following set of queued
words are shown on the grid similar to a new line on a typewriter.

Figure 8: Navigating through the Typewriter interface

This prototype was optimised to navigate very fast through the
hypothesis space. The downside of this approach is that committed
words can no longer be edited. Additionally, the red area does not
require any hovering time since the words are confirmed as soon
as it is hit. Therefore, we were concerned about the accidental
activation of a “carriage return” and introduced a slight variation
with the Typewriter Drag prototype.

4.4 Typewriter Drag Prototype
The Typewriter Drag prototype extends the Typewriter prototype

by requiring an explicit drag movement after the red zone shown at
the right-hand side of Figure 8 is reached. Similar to a manual car-
riage return on old typewriter machines, the dominant hand has to
be moved back to the left hand side. This means that the selection
is done from left to right and the result is confirmed by dragging it
to the left. This gesture reduces the potential risk of an accidental
activation of a carriage return. Furthermore, errors can be undone
by dragging in the opposite direction. Once the dragging is acti-
vated, the columns that were processed change colour to visualise
the confirmation process. A drag can always be interrupted and the
confirmation can be cancelled by moving the hand into the opposite
direction.

5. EVALUATION STRATEGY
To evaluate SpeeG2 and the four proposed prototypes, we con-

ducted a quantitative and qualitative pilot study. All users got an
introduction and a maximum training period of five minutes for all
prototypes before the evaluation was conducted. This enabled users
to get used to the speech recognition engine and how their pronun-
ciation influences the results. It also let them get comfortable with
the different SpeeG2 prototypes. Note that we further uniformly
distributed the order of the tested prototypes. Last but not least,
the same nine participants were used to evaluate the speech only
solution and the four SpeeG2 prototypes.

5.1 Participants and Method
The study featured nine participants (aged between 20 and 40

years). Seven participants had a computer science background but
nobody used voice recognition on a frequent basis and 67% of the
participants have never used speech recognition. Among the par-
ticipants there were eight native Dutch speaking and one French
user. The participants had a variety of different accents coming
from different parts in Belgium. All tests were performed with the
generic English US acoustic model of the Microsoft Speech Recog-
niser 8.0. As argued in the introduction, our goal is to provide
a generic text entry solution that requires no training at all. Fur-
thermore, future work could incorporate some form of automated

training based on the user-corrected speech utterances. By relying
on face recognition for user identification and continuous training,
users could further improve their performance. However, this is out
of the scope of this paper and we focus on a multimodal text entry
solution supporting non-native users without any necessary con-
figuration phase. In our setup shown earlier in Figure 5, we used a
regular projector that is capable of offering the same kind of visual-
isation as provided by a large TV. Users were positioned 2.5 metres
away from the screen as proposed by the Xbox Kinect scenario.
During the development, initial tests suggested that offering four
candidate words per column provided a good balance between of-
fering enough candidates, dealing with the imprecise hand tracking
of the Kinect and the visibility of the text at such a distance. In the
qualitative study, no user suggested to change this configuration.
Due to some limitations in terms of the availability of a facility,
the study was conducted in a noisy air conditioned room forcing
us to use a Sennheiser PC 21-II headset. However, in a less noise
polluted environment and with a good sound recording device such
as the one offered by the Microsoft Kinect, similar results should
be achieved. After the introduction and a short training session, all
participants were asked to learn the following six sentences by heart
in order that later no reading interruptions or hesitation occurred:
“This was easy for us.” (S1), “He will allow a rare lie.” (S2), “Did
you eat yet.” (S3), “My watch fell in the water.” (S4), “The world
is a stage.” (S5) and “Peek out the window.” (S6). Note that three
sentences originate from DARPA’s TIMIT [1] speech recognition
benchmark and the others from MacKenzie and Soukoreff [1, 5] to
evaluate text entry performance.

5.2 Performance Measurement
In each test, we recorded the time it took the participants to pro-

cess the sentence starting from the point when the first sound of
the sentence was uttered until the time when the entire sentence
(including the full stop) was processed. To compute the text entry
speed, the standard measure for a word was used. A word is con-
sidered a five character sequence, including spaces and punctua-
tion. The text entry speed is computed in words per minute (WPM).
In addition, the word error rate (WER) was computed. The WER
measure was computed as the word-level edit distance between the
stimulus text and a user’s response text, divided by the number of
characters in the stimulus text.

For each participant, the time they spent with alternative cor-
rection methods (e.g. insertion dialogue or spelling mode) was also
recorded. The goal was to observe whether users needed these cor-
rection methods and whether they contribute to the reduction of
the WER. When speech recognition performed poorly, the option
to skip the sentence was allowed as well (without resetting the ob-
served time).

5.3 Speech as a Single Modality
To measure the amount of errors and potential speed without the

use of extra modalities, a speech only test was conducted. When the
sentence was recognised correctly, users were allowed to continue
to the next sentence. If one or multiple errors occurred in the result,
the number of errors were noted down. Participants were asked to
repeat the sentence up to a maximum of five times when errors
occurred. The number of tries participants needed was recorded
together with the average number of errors in a sentence.

5.4 Prototypes
To test the performance of the four prototypes, each participant

was asked to test every single prototype in addition to the speech-
only test. First, a prototype was chosen uniformly distributed over

all participants. However, in order to reduce confusion, every time
the Scroller prototype was chosen it was followed by its closely
related Scroller Auto prototype and vice versa. The same strategy
was applied for the Typewriter and Typewriter Drag prototypes.
Then participants were asked to produce the same six sentences
S1 to S6 that were also used for the speech only test. Again,
for each sentence, the time and the number of errors made by the
speech recogniser were recorded and we also noted down which
feature the participant used to correct the sentence. After this quan-
titative study, a qualitative study was conducted to investigate the
usability of the four SpeeG2 prototypes. Each participant was asked
to fill in a questionnaire about their experience with the prototypes
and the speech recognition.

6. QUANTITATIVE RESULTS

6.1 Overview
The mean WPM and WER for each prototype are highlighted in

Table 1. The highest mean WPM was achieved in the speech-only
test. However, there was no correction phase besides repeating a
sentence. Therefore, the WER of the speech-only test should be ob-
served as the error score after correction. The WER of other tests
(Scroller, Scroller Auto, Typewriter and Typewriter Drag) shows
the WER before correction. After correction, all SpeeG2 proto-
types resulted in a WER of 0% for all participants.

Speech Scroller Scroller
Auto

Type-
writer

Type-
writer
Drag

WPM 77.63 13.59 9.69 21.04 15.31
WPM-SD 9.71 3.12 3.22 6.50 3.99

BC-WER(%) 17.72 20.43 25.68 20.15 17.47
BC-WER-SD 12.16 15.80 14.10 11.63 11.51

Table 1: Average per participant WPM and WER before correc-
tion (BC-WER) for each prototype together with the corresponding
standard deviation (SD)

We verified our data using a general linear model repeated mea-
sures analysis with the different solutions (Scroller, Scroller Auto,
Typewriter and Typewriter Drag) as within-subject variable. The
results show a significant effect of SpeeG2 on the WPM count
(F (4, 24) = 24.91, p < 0.001). A post-hoc analysis shows that
the Scroller performance was significantly higher than the Scroller
Auto (p = 0.035) performance, but significantly lower than Type-
writer (p = 0.002). The Scroller Auto performance was signif-
icantly lower than Typewriter (p = 0.001) and Typewriter Drag
(p = 0.003). The Typewriter performance was significantly higher
than Typewriter Drag (p = 0.010). Furthermore, Scroller and
Typewriter Drag did not differ significantly. Our quantitative data
shows that the Typewriter prototype is indeed the best performing
interface with a mean text entry speed of 21.04 WPM (standard de-
viation SD = 6.85). This can also be observed in the box plot
shown in Figure 9, highlighting the WPM for each prototype.

The speech recognition accuracy varied from person to person
and greatly depended on the user’s accent and pronunciation. In
particular, one participant suffered from bad accuracy with a WER
of up to 100% for sentence S2. The mean WER before correction
for all prototypes and participants was 20.29% (SD = 12.61).
This is comparable to one error occurring in a five word sentence.
Considering that all participants were non-native English speakers,
this is better than the error rate of 46.7% for non-native participants
in the Speech Dasher study mentioned earlier.

5

10

15

20

25

30

Scroller Scroller Auto Typewriter Typewriter Drag

Figure 9: Box plot of WPM per prototype

6.2 Discussion
We would like to further discuss some observations that we made

based on our data and state some interesting elements about the
evaluation. The proposal of n-best word candidates (n = 4 in our
setup) has shown to be a valuable asset as it was used for nearly all
sentences. We also observed the frequent use of the spelling mode
for slight modifications of words. The Typewriter prototype did
indeed suffer from accidental confirmation, however this was only
during the training phase and not during the evaluation. Further, the
use of the explicit drag movement in the Typewriter Drag prototype
to go back to previously confirmed words was not used, while in the
Scroller prototype users did go back to a previous word a few times.
The skip sentence feature was used when the speech recognition
results were completely invalid. This was rather unexpected as it
was designed to skip irrelevant or noisy conversations. The inser-
tion mode was the least frequently used correction method which
implies that users did not experience issues related to the use of
linear correction (i.e. word by word selection). Overall, users were
able to use the different means of correction methods. We also ob-
served that they sometimes did not use the most optimal correction
method (as observed from an expert point of view) which might be
improved if SpeeG2 is used more frequently.

During the study, participants were asked to perform the tests
sentence by sentence such that we could study the results in more
detail. Therefore, users did not entirely benefit from the parallel
processing capabilities potentially offered by SpeeG2. However,
we argue that the parallel input allows more freedom for different
scenarios: if the user is not focussed enough they can just speak an
entire paragraph and correct it later, or an expert user can use this
feature to exploit higher performance. We did observe participants
using both speech and gesture input at the same time: e.g. while
they were hovering for 700 milliseconds to activate the skip sen-
tence button, they already started uttering the sentence such that
they could start correcting as fast as possible. It should be noted
that the presented numbers are obtained in a worst case scenario
where non-native English speakers were asked to enter text without
speech recognition training. We assume the WPM could be further
improved when performing the optional speech recognition train-
ing with native as well as non-native English speakers. However, a
main goal of SpeeG2 is to allow any user to start using the interface
without requiring any prior configuration or training steps, thereby
reducing potential boundaries of speech technology adoption.

7. QUALITATIVE RESULTS
Our qualitative questionnaire (using a Likert scale from 1 to 6

ranging from “not agree at all” or “very bad” to “completely
agree” or “very good”) consisted of 29 questions investigating
previous experience with speech recognition as well as the qual-
ity of certain aspects of each prototype. The users found that the
speech recognition results combined with their alternative candi-
dates were decent (3). Two participants agreed that they experi-
enced physical strain (4), while the others declared a score of 1 or
2 (disagree) which is quite an improvement compared to our earlier
results achieved with SpeeG (v1.0). The qualitative results confirm
the performance of the Typewriter prototype. It was evaluated as
the easiest to use and considered to be the fastest prototype to enter
text. Only one participant found the Typewriter Drag faster which
was in fact confirmed by their quantitative measurements. Five par-
ticipants preferred using the Typewriter prototype. The remaining
three preferred the Typewriter Drag prototype. As potential im-
provements, participants suggested to add more alternative word
choices to the prototypes. However, we will have to investigate this
since it might reduce the readability. Furthermore, three partici-
pants would like to see an improvement in the speech recognition.

8. CONCLUSION
We have presented SpeeG2, a multimodal speech- and gesture-

based user interface for efficient controller-free text entry. A forma-
tive quantitative user study revealed that our Typewriter prototype
reaches an average of 21.04 WPM, which outperforms existing so-
lutions for speech- and camera-based text input. Furthermore, the
Typewriter prototype was also the preferred prototype of our par-
ticipants as demonstrated by a qualitative evaluation. The highest
recorded speed for entering a sentence was with the Typewriter pro-
totype at a rate of 46.29 WPM, while existing controller-free text
entry solutions such as SpeeG (6.52 WPM) and the Xbox Kinect
Keyboard (1.83 WPM) are far less efficient. Interestingly enough,
our controller-free multimodal text entry solution also outperforms
game controller-based solutions (5.79–6.32 WPM) [13, 2]. Fur-
thermore, the grid-based user interface layout of SpeeG2 reduces
physical strain by not requiring continuous pointing as required in
Dasher-like solutions. Last but not least, all participants were able
to produce error free text entry via the effective multimodal com-
bination of speech and gestures offered by SpeeG2. We hope that
our promising results will lead to further research on multimodal
speech- and gesture-based interfaces for emerging ubiquitous en-
vironments, smart TVs and other appliances with a demand for
controller-free text entry.

9. ACKNOWLEDGMENTS
We would like to thank all the study participants. Furthermore,

we thank Sven De Kock for implementing major parts of the pre-
sented SpeeG2 prototypes. The work of Lode Hoste is funded by
an IWT doctoral scholarship.

10. REFERENCES
[1] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, and

N. Dahlgren. TIMIT Acoustic Phonetic Continuous Speech
Corpus, 1993.

[2] L. Hoste, B. Dumas, and B. Signer. SpeeG: A Multimodal
Speech- and Gesture-based Text Input Solution. In
Proceedings of AVI 2012, 11th International Working
Conference on Advanced Visual Interfaces, pages 156–163,
Naples, Italy, May 2012.

[3] C.-M. Karat, C. Halverson, D. Horn, and J. Karat. Patterns of
Entry and Correction in Large Vocabulary Continuous
Speech Recognition Systems. In Proceedings of CHI 1999,
ACM Conference on Human Factors in Computing Systems,
pages 568–575, Pittsburgh, USA, May 1999.

[4] P. O. Kristensson, J. Clawson, M. Dunlop, P. Isokoski,
B. Roark, K. Vertanen, A. Waller, and J. Wobbrock.
Designing and Evaluating Text Entry Methods. In
Proceedings of CHI 2012, ACM Conference on Human
Factors in Computing Systems, pages 2747–2750, Austin,
USA, May 2012.

[5] I. MacKenzie and R. Soukoreff. Phrase Sets for Evaluating
Text Entry Techniques. In Extended Abstracts of CHI 2003,
ACM Conference on Human Factors in Computing Systems,
pages 754–755, Fort Lauderdale, USA, April 2003.

[6] M. R. Morris. Web on the Wall: Insights From a Multimodal
Interaction Elicitation Study. In Proceedings of ITS 2012,
International Conference on Interactive Tabletops and
Surfaces, pages 95–104, Cambridge, USA, November 2012.

[7] A. Schick, D. Morlock, C. Amma, T. Schultz, and
R. Stiefelhagen. Vision-based Handwriting Recognition for
Unrestricted Text Input in Mid-Air. In Proceedings of ICMI
2012, 14th International Conference on Multimodal
Interaction, pages 217–220, Santa Monica, USA, October
2012.

[8] K. C. Sim. Speak-As-You-Swipe (SAYS): A Multimodal
Interface Combining Speech and Gesture Keyboard
Synchronously for Continuous Mobile Text Entry. In
Proceedings of ICMI 2012, 14th International Conference on
Multimodal Interaction, pages 555–560, Santa Monica,
USA, October 2012.

[9] C. Szentgyorgyi and E. Lank. Five-Key Text Input Using
Rhythmic Mappings. In Proceedings of ICMI 2007, 9th
International Conference on Multimodal Interfaces, pages
118–121, Nagoya, Japan, November 2007.

[10] K. Vertanen and P. Kristensson. Parakeet: A Continuous
Speech Recognition System for Mobile Touch-Screen
Devices. In Proceedings of IUI 2009, 14th International
Conference on Intelligent User Interfaces, pages 237–246,
Sanibel Island, USA, February 2009.

[11] K. Vertanen and D. MacKay. Speech Dasher: Fast Writing
Using Speech and Gaze. In Proceedings of CHI 2010,
Annual Conference on Human Factors in Computing
Systems, pages 595–598, Atlanta, USA, April 2010.

[12] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay. Dasher –
A Data Entry Interface Using Continuous Gestures and
Language Models. In Proceedings of UIST 2000, 13th
Annual ACM Symposium on User Interface Software and
Technology, pages 129–137, San Diego, USA, November
2000.

[13] A. D. Wilson and M. Agrawala. Text Entry Using a Dual
Joystick Game Controller. In Proceedings of CHI 2006,
ACM Conference on Human Factors in Computing Systems,
pages 475–478, Montréal, Canada, April 2006.

[14] J. Yuan, M. Liberman, and C. Cieri. Towards an Integrated
Understanding of Speaking Rate in Conversation. In
Proceedings of Interspeech 2006, 9th International
Conference on Spoken Language Processing, pages
541–544, Pittsburgh, USA, September 2006.

	1 Introduction
	2 Related Work
	3 SpeeG2 Design
	3.1 Architecture and Control Flow
	3.2 Interaction Features
	3.3 Spelling Mode
	3.4 Accuracy and Training

	4 SpeeG2 Prototypes
	4.1 Scroller Prototype
	4.2 Scroller Auto Prototype
	4.3 Typewriter Prototype
	4.4 Typewriter Drag Prototype

	5 Evaluation Strategy
	5.1 Participants and Method
	5.2 Performance Measurement
	5.3 Speech as a Single Modality
	5.4 Prototypes

	6 Quantitative Results
	6.1 Overview
	6.2 Discussion

	7 Qualitative Results
	8 Conclusion
	9 Acknowledgments
	10 References

