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ABSTRACT
The Visual Focus of Attention (what or whom a person is
looking at) or VFOA is a fundamental cue in non-verbal
communication and plays an important role when designing
effective human-machine interaction systems. However, rec-
ognizing the VFOA of an interacting person is difficult for
a robot, since due to low resolution imaging, eye gaze esti-
mation is not possible. Rather, head pose cue is used as a
substitute for gaze, but leads to ambiguities in its interpreta-
tion as VFOA indicator. In this paper, we investigate the use
of the robot conversational state, which the robot is aware
of, as contextual information to improve VFOA recognition
from head pose. We propose a dynamic Bayesian model that
accounts for the robot state (speaking status, person he ad-
dresses, reference to objects) along with a dynamic head-to-
gaze mapping function. Experiments on a publicly available
human-robot interaction dataset, where a humanoid robot
plays the role of an art guide and quiz master, shows that
using such conversational context is effective in improving
VFOA.

Categories and Subject Descriptors
I.2.9 [Artifical Intelligence]:Robotics-Operator Interfaces
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1. INTRODUCTION
Gaze is an important non-verbal cue with many functions

in human interaction and discourse regulation [6], and can
therefore play an important role for supporting interactions
and dialog modeling: it is a good indicator of addresseehood
(who speaks to whom, and in particular is a person speaking
to the robot) and a good cue to monitor people engagement
[2]. For instance, in [4], the head pose is used to model
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Figure 1: Vernissage data (top): The robot explains
3 groups of paintings to the participants, and then
gives them a quiz. Our task is to monitor people at-
tention, i.e. recognize whether they look at Nao, the
other person, paintings, or elsewhere. Pose ambigu-
ity (bottom): two frames from the video as seen by
Nao. The same head pose is used for looking at the
other person (left) and at the 3rd painting (right).

predefined state-of-interactions of a customer in a bartender
application. In our scenario (see Fig. 1), a humanoid robot
(Nao) is used as an art guide, proposing and explaining dif-
ferent paintings surrounding him, and ultimately gives a quiz
to participants. In this situation, VFOA can be used for
addressee recognition as well as to monitor whether people
follow the conversation (are people looking at the painting I
am currently explaining?) or evaluate their level of interest.

Motivation and related work. Recognizing the VFOA
of people is however a difficult task. As standard sensor-
based gaze tracking technologies can not often be applied,
researchers have considered head pose as main gaze informa-
tion [10, 1, 4, 5]. Head poses, however, are ambiguous: in
realistic and dynamic scenarios, the same pose can be used
to look at different targets, depending on the situation (see
Fig. 1). To remove this ambiguity, researchers have explored
two directions: (i) the use of other social cues, leveraging on
the fact that the recognition of non-verbal cues should not be
done in isolation, but jointly, as some behaviors provide con-
text to others. In human-human interaction (mainly meet-
ings), examples include speaker information [10] or higher
conversational states [5], that can be complemented with
group activity [1]; (ii) the improvement of the prediction
of the gaze direction (including eye information) from the



head pose, allowing a better association of a head pose with
looking at a given target [9].

While in human-human analysis applications most social
cues to be used as context have to be inferred from the
data and might suffer from being noisy, in the robotic or
Embodied Conversational Agent (ECA) cases, the agent is
fully aware of its own conversational acts. Such information
can thus be more conveniently exploited to better interpret
the non-verbal cues performed by interacting people. For in-
stance, in [8], different types of features (lexical, timing, ges-
ture displayed) performed by an ECA are exploited within
a supervised learning framework to predict head nods and
head shakes in combination with a vision-based head gesture
recognizer. However, to our knowledge, while estimating the
VFOA is considered by several systems [2, 4], the use of the
robot dialog context to improve the recognition of a user
attention (VFOA) has not been explored in the past.

Contributions. To improve VFOA recognition, we propose
to leverage on two types of robot dialog acts that can affect
VFOA expectations: communicative acts (people look more
at speakers; and this is particularly true from addressed per-
sons), and lexical (implicit or explicit references to scene
object(s)). We propose an Input-Output Hidden Markov
Model (IO-HMM) to integrate such information in a recogni-
tion process that also leverages on a better head-pose to gaze
dynamic mapping process [9]. Experiments are conducted
on a recent HRI database with available ground-truth [3]
featuring natural human robot interactions. Results using
either head pose ground truth or pose estimated by an auto-
matic tracking algorithm show the viability of the method.

2. VFOA RECOGNITION MODEL
We formulate the recognition problem as the estimation of

the VFOA state Ft ∈ F of a given participant at each time
t, with F defined as {Nao, partner, pai1, pai2, pai3, other},
where paij refers to painting number j and other stands for
VFOA that is not attributed to any other label (see Fig. 1).
Below we define the conversation context as derived from the
robot and then present our contextual recognition model.

2.1 Robot Conversation Context
Given our task, the question is which of the robot actions

affect people VFOA, and how? In interactions, these mainly
relate to the communication functions of gaze and their rela-
tionships with speaking turns [6]. However, it is also known
that objects that play a central role in the conversation may
attract the attention, whereby overruling the communica-
tion patterns [11] observed in natural conversation. In our
art guide scenario this corresponds to physical locations in
the room and particularly paintings. We thus defined the
robot interaction context as described below.

Speaking context. Since people look more at speakers
than at non-speakers, we defined a speaking context state
variable st ∈ {0, 1} as whether Nao speaks or not at time t.

Addressee context. It is known that speakers monitor
their addressees’ attention by gazing at them, and expect
gaze in return [6]. We thus defined the addressee context
a ∈ AC = {pers1, pers2, group} of a speech segment the sit-
uation when the robot addresses the first person, the second
person, or both. In our data, this context is automatically
derived from the dialog system, which is aware of who is
addressed (either a person, or a group) along with the way
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Figure 2: VFOA statistics of an individually ad-
dressed person (left), a non-addressed person (mid-
dle), and addressed person, when both persons are
addressed (right). The x axis denotes the time since
the end of the robot’s utterance. The statistics for
x = 0 are collected during the robot’s utterance.

Do you want me to give you some 
information about these paintings Alex? 

Good, I will do that. The first painting, that 
we will look at is there on the right side. 

 person 1 

Would you also like me to 
explain this painting Chris? 

 person 2  group 

 paints pai 1 pai 1 

 segment: 

 speaking: 

addressee: 

 topic: 

 seg 1  seg 2 seg 3 

Figure 3: Illustration of the context assignments.

to address them, which in our set-up was accomplished for
a given individual by naming him and turning the head to-
wards him, or by directing the head in between participants
when both persons were addressed. VFOA statistics de-
pending on the addressee status are shown in Fig. 2, during
the robot speech (x = 0) or x seconds after the end of the
speech. In spite of the noise, we can notice that addressed
people tend to stay more in visual contact with the robot,
while non-addressed people disengage quicker to look at the
other person or elsewhere. There is overall no strong tem-
poral variation of VFOA probabilities (after the utterance),
so to avoid overfitting, it is reasonable to assume a constant
model for x>0. We defined the addressee context state at
at t as the addressee context derived from the current (if
st = 1) or preceeding (if st = 0) robot utterance.

Topic context. Given our scenario, the topic context set
is defined as OC = {pai1, pai2, pai3, paintings, none} corre-
sponding to whether the robot informs or refers to a specific
painting, all paintings, or none of them. The topic context
state ot ∈ OC at t is thus defined as topic context of the
robot utterance that preceeds t.

Overall conversational context Ct. As a summary, at
each instant t the different context states st, at and ot are
automatically assigned according to the spoken utterances
and temporal segments, as illustrated in Fig. 3. The final
context state Ct is then defined as the Cartesian product
of all contexts, i.e. Ct = (st, at, ot), and will influence the
VFOA recognition as explained in the next Section.

2.2 Conversation Aware VFOA Recognition
To address VFOA recognition, we propose the IOHMM

graphical model of Fig. 4. Broadly speaking, the middle
part (box) shows the main process, which models how the
sequence of VFOA states generates a sequence of head poses
Ht ∈ R2 (represented by pan and tilt angles). This process
is affected in two ways: by the gaze-head mapping model
in the bottom part, whose goal is to dynamically predict
the expected head pose µh

t for each VFOA target; and by
the conversation context Ct (top part). More precisely, the
VFOA is inferred by maximizing the posterior probability
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Figure 4: VFOA recognition from head pose.

of the sequence of VFOA states F1:t given all observed vari-
ables: head pose Ht ∈ R2 and context Ct. The posterior for
the graphical model of Fig. 4 is expressed as:

p(F1:t|H1:t, C1:t, µ
h
1:t, R1:t)∝

∏
t=1:t

p(Ht|Ft, µ
h
t )p(Ft|Ft−1, Ct)

with p(Ht|Ft = f, µh
t ) = N (Ht|µh

t (f),ΣH(f)) (1)

and p(Ft|Ft−1, Ct) ∝ p(Ft|Ft−1)p(Ft|Ct) (2)

where the different terms are explained below.

Data likelihood. The term in Eq. 1 represents the like-
lihood of an observed head pose for a given focus, and is
modeled as a Gaussian distribution with mean µh

t (f) and
variance ΣH(f). The means µh play a crucial role for VFOA
recognition, as they represent the expected head pose for
looking at each target. Often, researchers assume a fixed
setting, with people facing the camera at a given distance
and set time-independent means manually or through learn-
ing [2, 4]. In this work, we follow the approach of [9] that
leverages on body-head-gaze behavioral studies and better
accounts for natural gaze shifts. Accordingly, the means
were set dynamically as a combination of the direction in
which the person should gaze to look at a target, and of
the body orientation Rt (estimated as a proxy through the
average of the past head poses). See [9] for more details.

Contextual prior. Eq. 2 denotes the prior on the focus,
which we assumed can be decomposed in two parts. The first
one is the temporal prior p(Ft|Ft−1), which allows temporal
smoothing by setting large probabilities to stay in the same
state and equal low probability to transit to other states.
The second one p(Ft = f |Ct = c) = Bcf denotes our Robot
context prior which affects the recognition by altering the
expectations about what people look at depending on the
context, and is parameterized by the probability tables B.

Learning the context tables. There are several ways
to set the tables, depending on the goals and assumptions.
Here, we use a learning approach, with smoothing to handle
the lack of data for some contexts, and further modeling
assumption to avoid data overfitting and better capture the
generalization capabilities of the model.
• Given a training dataset, we gather the VFOA data Dc =
{fi} observed under each given context c. Then, using a
Maximum A Posteriori approach with a conjugate Dirichlet
prior (i.e. maximizing p(Bc·|Dc) ∝ p(Dc|Bc·)Dir(Bc·|α)),
the table entries are defined as Bcf ∝ nf + αf , where nf

denotes the number of occurrences of the focus f in Dc, and
the Dirichlet prior parameters are set as αf = 0.1Nf/(K ×
NC), where Nf ,K and NC denote the number of observation
in the whole training set, the number of VFOA targets, and
the number of contexts, respectively. In other words, the

Table 1: Sample context probability priors (using
only the topic context) showing parameter tyings.

Context Nao partner pai1 pai2 pai3 others
pai1 0.33 0.03 0.53 0.04 0.04 0.03
pai2 0.33 0.03 0.04 0.53 0.04 0.03
none 0.58 0.17 0.04 0.04 0.04 0.12

prior corresponded to the addition of virtual observations
equally spread among table entries and amounting to 10%
of the total number of real observations.
• Priors learned using the above scheme might overfit the
specific setup. In particular, the painting positions or the
duration of references and explanations about each of them
lead to the gathering of different statistics for each painting.
To be more general, we applied parameter tying, enforcing
that all table entries involving paintings which play the same
role should be the same, as illustrated in Table 1 with some
sample context probability priors.

3. EXPERIMENTS AND RESULTS
Data. We used the Vernissage dataset [3], containing natu-
ral interactions recorded using a Wizard of Oz approach. In
each recording, that lasts around 10 minutes, Nao first en-
gages with two participants and explains them three paint-
ings. He then gives them a quiz in which participants could
discuss before the person to whom a question was addressed
gave the answer. Both parts are approximately of equal du-
ration. Note that people were free to walk around, and that
some of the questions (4 out of 10) referred to paintings in
the room. This dataset consists of 10 sequences and VFOA
is fully annotated for all participants.

As head poses, we used both measures derived from Vi-
con (a motion capturing system) data and estimates ob-
tained by applying a joint head tracking and pose estima-
tion algorithm [7]. After inspection, the head pose Vicon
measures of one sequence happened to be inconsistent in
time (the head-bands attaching the Vicon markers to peo-
ple head might have moved), and we dropped it. Pose es-
timated from video were obtained by applying a particle
filter tracker with appearance head pose modeling [7]. How-
ever, since in this dataset Nao is performing head gestures
-pointing to paintings, rotating the head to address people,
nodding- that greatly affects the video quality (with peo-
ple disappearing from the field of view, frequent lighting
changes, etc.) results were not very accurate. Since our goal
is to evaluate VFOA performance under reasonable head
pose estimation, the tracker output was filtered by keeping
only track segments that matched the (sparse) ground truth
location available in the dataset [3], and results with too
large average pose errors or no sufficient tracker recall were
removed. This resulted in a dataset of 13 persons, amount-
ing to around 100 minutes of data.

Experimental setup. To evaluate the contribution of the
different contexts, we considered different settings: No con-
text (baseline), one single context cue (speaking, addressee,
or topic), and all cues together. In addition, we experi-
mented without or with (Static and Dynamic settings, re-
spectively) the dynamic model (as explained in Sec. 2.2)
for head pose prediction [9]. The static case was obtained
by using the reasonable assumption that people were fac-
ing the robot (body orientation reference set to 0). The
dynamic setting allows us to investigate whether the con-



Table 2: VFOA recognition with Vicon head poses.

Static Setting Dynamic Setting
Context Full Explain Quiz Full Explain Quiz

None 52.6 54.9 51.7 65.8 67.8 64.9
Speak. 61.2 62.3 60.8 67.3 63.2 68.9
Addr. 61.6 63.8 60.8 68.1 64.3 69.5
Topic 63.9 67.4 62.5 71.3 73.5 70.2
All. 65.0 68.0 63.8 72.3 74.2 71.4

Table 3: VFOA recognition with tracker head pose
estimates.

Static Setting Dynamic Setting
Context Full Explain Quiz Full Explain Quiz

None 61.7 56.3 63.2 62.0 58.9 62.8
Speak. 63.9 56.7 65.9 63.6 58.0 65.0
Addr. 64.6 57.9 66.5 64.1 59.1 65.4
Topic 66.7 66.0 66.9 66.4 67.5 66.0
All. 67.0 66.8 67.2 66.8 68.1 66.3

text is still useful when more accurate gaze-to-head pose
predictions are made. In all experiments, the parameters
of the HMM model (variances, temporal transition priors)
were the same and set as in [9]. Context tables were learnt
for each participant through leave-one-out cross-validation
on data from all the other participants. Finally, we used
as performance measure the Frame based Recognition Rate
(FRR), defined as the percentage of frames during which the
VFOA has been correctly recognized. Performance was re-
ported for the full recordings, or separately on the first part
(explanation part) of the recording, or on the quiz part.

Results and Discussion. Table 2 shows the results ob-
tained when using the head poses derived from the Vicon.

Looking first at the static setting commonly used by re-
searchers, we can notice the following. Despite accurate
head poses, the result of the baseline is only of 52%, show-
ing the difficulty of the task. Most confusion comes from
looking at Nao and at the group of paintings above him, as
well as looking at the partner versus at painting in a similar
direction (like in Fig. 1). The performance improves what-
ever individual cue we consider. The increase is larger when
using the topic context, in particular during the first part
of the interaction when Nao makes regular reference to the
paintings. Alltogether, the use of all context cues brings a
considerable improvement of more than 12%.

With the dynamic setting the baseline already produces a
recognition rate of 65.8%, which is more than in the static
case with context. Still, even in this case the context im-
proves the results with a gain of 6.5% when using all cues.
Interestingly, the results with individual cues exhibit dif-
ferent behaviors depending on the interaction phase. As
can be seen, the communication cues (speaking, addressee)
which emphasize Nao or people as VFOA prior increase per-
formance during the quiz, which is more interactive, but de-
crease by around 4% the performance during the painting ex-
planations. However, when using all cues, the performance
is higher in all situations, demonstrating their complemen-
tarity for the VFOA recognition task.

Finally, Table 2 presents the results obtained with auto-
matic head pose tracker estimates. They are not comparable
to those obtained with Vicon pose since the set of sequences
are slightly different, and the tracker misses around 15% of

the heads (particularly those with profile poses). Neverthe-
less, we can notice that i) resultats are quite good overall,
despite the task complexity, and comparable to using the
Vicon poses; ii) the dynamic pose modeling does not help
much, which can be partly explained by the missed profile
poses; iii) the context (esp. the topic one) improves results
in all situations and the conclusions made in the Vicon case
hold true as well here.

4. CONCLUSION.
We proposed a contextual VFOA recognition model ex-

ploiting a robot’s (or ECA’s) gaze-related conversational
context. As context, we relied on communicative cues –the
robot’s speaking status, addressee– as well as topical cues
referring to object in the scene. Experiments with Vicon
and estimated head pose data on a challenging dataset con-
taining natural interaction between people and a humanoid
robot acting as an art guide demonstrated the usefulness of
the approach and the cue complementarity to remove pose
ambiguities. Note that the method can be used with a dif-
ferent number of artworks: topic context statistics can still
be used appropriately. Performance will probably decrease
with more artworks since it increases the VFOA confusion,
but the drop would be even more important without our
approach. More generally, the method can be used with any
other scenarios implying objects which the robot is aware of
and that he can reference to in the conversation.
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