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ABSTRACT
In this paper we present a non-invasive ambient intelligence
framework for the analysis of non-verbal communication ap-
plied to conversational settings. In particular, we apply fea-
ture extraction techniques to multi-modal audio-RGB-depth
data. We compute a set of behavioral indicators that define
communicative cues coming from the fields of psychology
and observational methodology. We test our methodology
over data captured in victim-offender mediation scenarios.
Using different state-of-the-art classification approaches, our
system achieve upon 75% of recognition predicting agree-
ment among the parts involved in the conversations, using
as ground truth the experts opinions.

1. INTRODUCTION
In a conversation setting with different people involved

we find a set of communicative cues. These cues appear
implicitly during the conversational process and provide rich
information that may be missed by the observer. Often, the
goal in a conversation is to achieve the agreement among
the parts involved by obtaining an equilibrium among their
arguments and interests. Moreover, high levels of agreement
among the parts are determinant indicators to detect the
success of a conversation [1].

In the fields of psychology and observational methodol-
ogy one can find biological, psycho-social, and environmen-
tal factors that help to better understand what and how
they affect to participants mood. Therefore, if these tech-
niques were studied and established as self-knowledge tools
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for both communication and intervention, experts could ob-
tain feedback from the conversations to analyze the process,
and guide it toward it success.

In this context, multimedia data analysis from different
sources can be used to achieve those objectives. This in-
formation can be analyzed on different modules in order to
extract features separately, and later combine them to define
communicative indicators.

1.1 Related work
Recently, many social signal analyses from multimedia

data have been performed on small group conversations [2],
where the goal is to detect and emphasize the importance
of social signals in group interactions. In particular, these
works present several approaches for automatically analyze
non-verbal behavior by extracting body communicative cues
in both simulated and real scenarios. Most of these social
signal processing frameworks are used to detect a set of vi-
sual indicators (including body and face analysis), or includ-
ing information obtained from the speech or other ambient
and wearable sensors [3, 4].

Many of previous works proved that the agreement dur-
ing the communication is an indicator highly dependent on
social signals. Therefore, one is able to perform an exhaus-
tive analysis to detect which are the roles of each partici-
pant in terms of influence, dominance, or submission. For
instance, in [5], both the interest of observers and the dom-
inant people are predicted using only behavioral motion in-
formation when looking at face-to-face (also called vis-à-vis
or dyadic) interactions. Furthermore, there exist many in-
terdisciplinary works in the state-of-the-art covering related
fields under the social computing point of view, some of them
summarized in [1].

In most of these social signal processing frameworks, one
can observe that both ambient intelligence and egocentric
computing methods are defined. In fact, this definition refers
to the data acquisition procedure which mainly depends on
how data captured from different devices is handled, as well
as what devices are used for capturing these data. Ambi-
ent intelligence regards to electronic environments that are
sensitive and responsive to the presence of people, whereas
egocentric computing refers to the use of wearable devices.
Therefore, the use of these devices in this procedure depends
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on the environmental conditions of the application (scenario,
people involved, the electronic distribution and organization
of devices, or the intrusiveness of wearable devices). Often,
existing techniques used for data acquisition make use of in-
terface devices [6], or special wears like gloves [7] to increase
recognition accuracy. However, while these techniques give
striking results in simulated environments, their use becomes
not feasible in real-case scenarios due to their invasiveness
and the uncontrolled nature of the application context.

Because of the need to avoid wearing intrusive egocen-
tric devices, some other ambient sensors that provide multi-
modal data can be considered. In [2], a custom developed
system is applied in a real-case scenario for job interviews.
The data acquisition procedure is performed using different
types of cameras by setting them in different positions and
ranges for capturing visual and depth information. Simi-
larly, scenes with non-invasive systems have been proposed
in other works like [8], which provides trajectory analyses
from body movements and gestures. Furthermore, audio in-
formation has been analyzed in [9], with the objective of
modeling descriptors for speech recognition. This can be
useful information to measure the levels of activity from
speech cues like detection of speech/non-speech, interrup-
tions, pauses, or segments obtained from a speech diariza-
tion process.

In most of previous conversational contexts people usu-
ally appear either sitting or with some body parts occluded.
Therefore, from a computer vision point of view one may
be interested in focusing only on the upper body regions.
Afterwards, feature extraction techniques can be performed
using computer vision techniques, where sources of most sig-
nificative information come from interest regions such as face
and hands. These regions provide discriminative behavioral
information called adaptors, which are movements like head
scratching, attitude, anxiety level and self-confidence; and
beat gestures, which are flicks of hands used to emphasize
important parts of the speech with respect to the larger dis-
course [10]. However, as it is explained in [2, 11], body
posture is also found to be an important indicator of the
emotional state of a person. Additionally, another potential
source of information is provided by facial expressions [4].

In most of the presented scenarios, classic computer vision
techniques are applied on RGB data. It implies that either
multiple cameras are installed and synchronized to obtain
3D data and other discriminant information, or some rele-
vant behavioral and postural information is not captured. In
this sense, recent works included compact multi-modal de-
vices which allow to obtain 3D partial information from the
scene. In [12], authors proposed a system for real-time hu-
man pose recognition including depth information for each
image pixel. In this case, information is obtained by means
of KinectTM device, which estimates a depth map based on
the inverse of time response of an infrared sensor sampling
within the scene. This new source of information that pro-
vides visual 2.5D features has been recently applied by sev-
eral authors. As an example, in [13] a new human pose de-
scriptor is presented by combining different state-of-the-art
RGB-depth features.

Many recent methods for detecting the body posture per-
form spatial optimization of their parts. In [12] this is per-
formed using GrabCuts, which are based on multiple repre-
sentations of Gaussian Mixture Models (GMM) and graph
cuts optimization. Once body postures and their parts are

Figure 1: Multi-modal feature extraction module.

represented, behavioral indicators are usually analyzed by
studying their trajectories using both machine learning and
pattern recognition approaches. Some methods in this con-
text are based on dynamic programming techniques such
as Dynamic Time Warping (DTW) [14] or statistical ap-
proaches such as Hidden Markov Models (HMM) and Con-
ditional Random Fields (CRF) [15, 16].

Once data from the environment are acquired and pro-
cessed defining a set of behavioral features, these are the
basis for modelling a set of communication indicators. In the
context of conversations we are specially interested in behav-
ioral traits belonging to social signals presented within both
the communication and interactions among participants. In
this sense, levels of activity, stress, and involvement can be
analyzed not only from body movements, but also from the
speech, facial expressions, or look. Therefore, we can then be
able to perform an exhaustive analysis for modelling those
significative social signals to estimate the levels of dominance
or agreement in conversations.

1.2 Contributions
In this paper, we propose a non-invasive ambient intelli-

gence framework for the analysis of real conversation set-
tings. First, we extract a set of multi-modal audio-RGB-
depth features from the analysis of faces, gestures, and speech,
and an semi-automatic heuristic procedure is presented to
correct and improve the continuity of positive region of inter-
est detections. Then, we compute a set of behavioral com-
munication indicators from the multi-modal features, which
are used to measure the degree of agreement using state-of-
the-art machine learning approaches and the ground truth
defined in the data set. In particular, we use real data from
victim-offender mediation processes, using as ground truth
the level of agreement achieved based on the opinion of the
experts. As a result, we found that our technology achieves
good correlation between those relevant features regarding
to behavioral indicators and the information provided by the
experts.

2. PROPOSED METHOD
The proposed method for the non-verbal communicative

analysis is described in this section. The framework con-
sists of three main sequential modules. The first includes
the multi-modal feature extraction from audio-RGB-depth
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Figure 2: Example of the conversation scenario. Image (a) shows the RGB image with both face detection
and head pose estimation. Image (b) shows the corresponding depth map, where the gray hues indicate the
distance respect to the camera. Image (c) illustrates the speech diarization process for each subject S1 and
S2, where clusters that belong to each one are obtained from the input signal estimating the speech time of
each segment, as well as the speech pauses/interruptions.

data, which is summarized in Figure 1. As shown in the
scheme, the steps for obtaining multi-modal features from
different sources of information are the speech diarization,
user segmentation, and region detection. Once multi-modal
features are extracted, they are used to define the behavioral
indicators in the second module, which are used as inputs
for the learning and classification step in the third module
of the system.

2.1 Conversation Setup
Figure 2 represents an example of a conversation scenario.

In the next sections we refer to a session as a conversational
setting where different individuals appear. Individuals (or
subjects) are both men and women, adults, and belong to
different parts or roles: victim, offender, or mediator in our
particular victim-offender scenarios. For each session and
part, the mediator fills a survey with information regard-
ing his/her impressions about the conversation such as the
agreement reached. The agreement answers are later used
as ground truth for the classification in order to analyze the
achieved agreement recognition rates.

2.2 Audio Analysis
This section describes the feature extraction applied to

audio data source. As audio cues are the primary source
of information, they can provide useful evidence for speech
production.

2.2.1 Speech Diarization
In order to obtain the audio features, we use a diariza-

tion scheme based on the approach presented in [17]. These
features correspond to the state-of-the-art on audio descrip-
tions, which have been successfully applied in several audio
analysis applications [18, 19]. The process is described next:

Description: The input audio is analyzed using a sliding-
window of 25 ms, with an overlap of 10 ms between con-
secutive windows, and each window is processed using a
short-time Discrete Fourier Transform (DFT), mapping all
frequencies to the Mel scale. Finally, the Discrete Cosine
Transform (DCT) is used in order to obtain the first 12
MFCC coefficients. Those coefficients are complemented
with the energy coefficient and the dynamic features delta

and delta-delta, which correspond to the first and second
time-derivatives of Cepstral coefficients.

Speaker segmentation: Once the audio data is properly
codified by means of those features, next step is to identify
the segments of the audio source which correspond to each
speaker. A first coarse segmentation is generated according
to a Generalized Likelihood Ratio, computed over two con-
secutive windows of 2.5 s. Each block is represented using
a Gaussian distribution with full covariance matrix over the
extracted features. This process produces an over segmen-
tation of the audio into homogeneous small blocks. Then, a
hierarchical clustering is applied over the segments. We use
an agglomerative strategy, where initially each segment is
considered as a cluster, and at each iteration the two most
similar clusters are merged, until the Bayesian Information
Criterion (BIC) stopping criterion is met. As in the previous
step, each cluster is modeled by means of a Gaussian dis-
tribution with full covariance matrix and centroid distance
is used as link similarity. Finally, a Viterbi decoding is per-
formed in order to adjust the segment boundaries. Clusters
are modelled by mean of a one state HMM having as ob-
servation model GMM with diagonal covariance matrices.
Since most of people appear only in a single session, we do
not learn speaker models from cluster GMMs. Therefore,
models extracted from a session are not used on the diariza-
tion process of other sessions. Figure 2 (c) illustrates the
procedure and the resulting segments assigned to the two
subjects (two parts involved in the conversation).

2.3 User Detection
Both RGB and depth data are used for postural and be-

havioral analysis of the person. In this sense, the first step
is to perform a limb-segmentation process of the body based
on the Random Forest method of [12].

Once interest regions are located, it is of special inter-
est to get the real-world distance values for some computed
features in order to make them comparable among differ-
ent subjects. For this, we inspired on a similar procedure
as explained in [20], which converts the 2D pixels onto 3D
real-world coordinates using the depth values provided by
the KinectTM device. Figure 2 (b) shows the depth image
corresponding to the RGB image (a).
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2.4 Region Detection
This section describes the different modules for the feature

extraction applied to visual data source once user has been
segmented. In particular, we perform an analysis of the
face, hands, and upper body, as well as visual movements
performed by these regions during conversations. Moreover,
the estimation of head/body postures provides information
about both where each person may be looking at, and the
status of the people in terms of agitation.

2.4.1 Face Analysis
Face analysis is the first feature extraction step, where

we are mainly interested in obtaining the head pose angle
for each person. First, we base on the method of [21]. It
contains a set of previously trained faces in order to create
the face models.

The face model is based on a mixture of trees with a shared
pool of parts B, where every facial landmark is modelled as
a part and global mixtures are used to capture topological
changes due to viewpoint. Global mixtures can also be used
to capture gross deformation changes for a single viewpoint,
such as changes in expression.

While face detection takes place for each tested image,
a semi-automatic heuristic procedure is proposed in order
to both improve the continuity of positive detections on the
person among consecutive frames, and correct possible miss-
detections due to the inherent difficulties of the problem at
hand. Figure 3 shows the flowchart of the procedure ap-
plied to each frame. Summarizing, it consists of a tempo-
ral filtering methodology of detected regions (faces) among
one-by-one consecutive frames. It is based on three main
constraints that allow to choose the detected regions at the
current frame in comparison to the the previous one: offset
pixels produced by the mass centers, offset angle produced
by head poses, and the size difference factor produced among
the region areas. Thus, three thresholds ΨΘ, Ψβ , and ΨΞ are
respectively used to discriminate the occurred cases on each
constraint, whose values may vary depending on the ses-
sion conditions. Moreover, there are three counting variables
that accumulate, for each person, the number of positive de-
tections h℘, false positives FP℘ and false negatives FN℘.
Then, a confidence ζ is computed from h℘ and the sum of
false detections ε℘ to decide whether the current detected
region has to be stored or discarded by means of the thresh-
old Ψζ . These counting variables are highly dependent on
constraint thresholds, as they make the system to be more
or less restrictive when choosing detected regions. There-
fore, a trade-off between constraint thresholds and control
thresholds should be reached when assigning their values in
order to both assure the continuity of positive detections for
that person (even though the method could not detect any
region in the image), and decide whether a manual annota-
tion is required to re-initialize the detection process in the
(approximately) desired frequency rate. The RGB image (a)
of Figure 2 shows the two meshes obtained after this proce-
dure fitted the face regions and the estimation of their head
poses (in terms of orientation degrees).

2.4.2 Hand Analysis
Given that the skeletal model computed from the person

segmentation image [12] does not offer accurate fitting of
the hand joints in our particular scenario, we designed a
semi-automatic procedure for hand detection, considerably

Figure 3: Flowchart of the heuristic procedure ap-
plied to each frame. The total number of people
that appear in the current video is denoted by ℘v.
Constraints of the main condition at the center of
the flowchart are denoted by ∆Θ, ∆β, ∆Ξ, and their
respective thresholds ΨΘ, Ψβ, ΨΞ. The counting vari-
ables are FN℘, FP℘, h℘, representing the accumu-
lated number of false negatives, false positives, and
hits for the current person ℘. They are used to com-
pute the confidence ζ from the accumulated detec-
tion errors ε℘ and the hits h℘, and decide whether
the current detected region has to be stored or dis-
carded through the threshold Ψζ.

reducing the number of both false positives and false nega-
tives.

First, hands are manually annotated at the starting frames
of each session to perform posterior color segmentation for
the rest of frames. In this way, a GMM is learned with the
marked set of most significative pixels, defining the skin color
model of the person at those starting frames. Then, poste-
rior frames are tested into the built GMM using a thresh-
old ϑ, discriminating those pixels belonging to the skin color
than those belonging to the background. The resulting blobs
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are filtered using mathematical morphology closing opera-
tion with a 3 times 3 square structured element to discard
noise and get smoother regions. Once the set of blobs is ob-
tained, we need to choose those two candidates that belong
to the hand regions. This is firstly performed by computing
the optical flow among consecutive frames, which allows to
discard noise on cases that we obtain more than two blobs
by keeping those with higher movement.

On the other hand, we use the same heuristic procedure
(Figure 3) than the one applied to the face analysis step for
choosing the two best candidates, but now adapted to the
hand regions. The incorrect regions detected at the first in-
stance are those blobs having the highest optical flow, and
then the heuristic procedure corrects those regions by com-
paring them with the hand regions obtained from the previ-
ous frame. As it occurs in face detection, manual annotation
may be required in those cases where the heuristic procedure
needs to be re-initialized. For this task, an interface has been
designed for manual annotation of the hand regions for the
set of frames where this occurs. When the user makes any
annotation, the GMM color model is newly re-constructed at
this frame using the marked pixel positions, and the whole
process is repeated.

Once we have obtained the blobs belonging to the hand
regions, the extremes with higher optical flow magnitude are
used to obtain 2D hand positions. Finally, these positions
are transformed to 3D real world coordinates using [20].

2.4.3 Upper Body Analysis
As presented above, the probability of each pixel of an

image to belong to a labeled body part is computed in sec-
tion 2.3 using depth features. This information is used for
posterior calculation of optical flow on RGB images where
the upper body region appears. Therefore, each pixel of the
image detected by Random Forest with high probability of
being part of the person is used to calculate the optical flow.
Finally, an average of optical flow is computed for the up-
per body region. Averaged optical flow will be used later to
define behavioral indicators extracted from the upper body.

2.5 Behavioral Indicators
Once multi-modal features have been extracted, we use

them to build a set of behavioral indicators that reveal com-
municative cues about each part involved in the conversa-
tion. Thus, in this section we describe the set of behav-
ioral indicators constructed from the output of the different
blocks shown in Figure 1, which will define the final feature
vector for each part within the conversation.

2.5.1 Target Gazes Codification
Values regarding to the head angle pose of participants

are correlated among them depending on the session setup.
From them, one can be able to identify if participants are
looking at other participants (i.e. target gazes). Since each
conversation session have different number of people, tar-
get gazes have to be correlated depending on the number
of people and their roles within the session (see section 3.1
for details about data). This correlation is performed by as-
signing binary values that codify target gazes through angle
ranges. These angle ranges limit the people view areas for
each participant role within a session and vary depending on
the session setup. Then, a head pose angle that falls within
these ranges means that the person (belonging to a role)

is looking at the target subject (who may belong either to
another or to the same role). Finally, we use these binary
values to compute the time percentages of target gazes for
each part.

2.5.2 Agitation Estimation
As explained in section 2.4.2, the positions belonging to

the hand regions are computed from the extreme positions of
higher optical flow. From them, we are able to quantify the
movement for each region among consecutive frames. There-
fore, to compute the accumulated agitation of the hands we
calculate the averaged Euclidean distances of both hand po-
sitions among λ consecutive frames.

On the other hand, in section 2.4.3 is explained how the
averaged optical flow is obtained for the upper body region.
Therefore, to compute the accumulated agitation of the up-
per body we calculate the average of optical flow produced
by the upper body among λ consecutive frames.

Thus, for each part and session, agitation averages are
computed over processed frames, having a total of 8 agi-
tation indicators, both alone and combined with other in-
dicators previously calculated. These indicators regard to
several possible combinations taking into account both agi-
tation from the upper body and hands, and that agitation
while a target gaze exists.

2.5.3 Posture Identification
From the 3D body position, we detect the body posture as

a behavioral indicator, which may describe the involvement
(or engagement) of the participants within the session. Our
description of body posture is classified into three main po-
sitions (tilted backward, normal, tilted forward), where the
posture selected is the one that has the most occurrences
over the processed frames.

In addition, 3D hand positions are used to detect where
the hands are along the processed frames, in terms of av-
erage and time percentages. In particular, we discriminate
three cases (i.e., 3 indicators): hands together, hands touch
the face, and hands under the table. This is done in a sim-
ilar way as done for agitation estimation, using Euclidean
distances computed over 3D positions.

2.5.4 Speech Turns/Interruptions Detection
The speech diarization process of section 2.2.1 detects

time segments belonging to each participant within the con-
versation. In order to extract the degree of interaction, we
not only use the time each participant is speaking, but we
extract the number of turn taking in each session. It allows
to differentiate between a session where each part exposes
its position from sessions and the different persons involved
in the process.

Apart from the quantization of the turn taking, a relevant
indication on the social communication analysis is the de-
tection of interruptions, which are related to the dominance
and respect between two persons [22]. Using the time be-
tween turns, we compute the percentage of the turns where
a participant interrupts another participant.

2.6 Classification
The total number of behavioral indicators is 34, which

defines the feature vector for each sample of our data set.
Here, we define a sample as each part involved in a session
keeping out an specific part (the mediator role). Thus, a
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sample of 34 features is created for each (non-mediator) part
and session. Note that each part may consist of more than
one person. Table 1 summarizes the behavioral indicator
list with their brief descriptions. All features except the
features from f7 to f12 are automatically obtained. These
features [f7,f12] are extracted from a report obtained before
the session, which is written by the mediators to analyze if
they have influence on the final agreement prediction.

On the other hand, observations or responses that we want
to predict in the classification task are the accuracy when
correlating the agreement produced among the parts with
the impressions given by the experts (mediators in our case).
These opinions given by the experts are quantified values of
agreement from 1 (lowest) to 5 (highest), assigned to each
session based on level of agreement achieved at the end of the
process by the two parts (victim and offender). Then, the
ground truth of the system is obtained from a binarization of
these values, which are assigned as the labels to each sample
of the data set to obtain a binary setup. Since agreement is
globally assigned for each session, those sessions containing
two parts (or roles) will share the same ground truth labels
for both generated samples. Section 3.1 explains in more
detail the binarization task to set the sample labels.

Table 1: Summary of behavioral indicators defining
each feature vector.

Feature Brief description
f1 Role within the conversation (victim, or offender)
f2 This part looks at the other
f3 The other part looks at this part
f4 This part looks at the mediator
f5 The mediator looks at this part
f6 Body posture inclination of this part
f7 Gender of the mediator
f8 Gender of this part
f9 Gender of the other part
f10 Age of the mediator
f11 Age of this part
f12 Age of the other part
f13 Session type (individual/joint encounter)
f14 Upper body agitation of this part
f15 Upper body agitation of this part while looking at the other
f16 Upper body agitation of this part while looking at the mediator
f17 Hands agitation of this part
f18 Hands agitation of this part while looking at the other
f19 Hands agitation of this part while looking at the mediator
f20 Hands agitation of the mediator while looking at this part
f21 Hands agitation of the other part while looking at this part
f22 This part have the hands together
f23 Hands of this part touches his/her face
f24 This part have the hands under the table
f25 Mediator speaking time
f26 Part speaking time
f27 Other part speaking time
f28 Mediator speaking turns
f29 Part speaking turns
f30 Other part speaking turns
f31 Mediator interrupts this part
f32 This part interrupts the mediator
f33 This part interrupts the other part
f34 The other part interrupts this part

Learning is then performed over these samples and their
features as a binary classification problem, grouping into
two classes the quantified answers provided by the experts.
For this, we base on four classical techniques regarding to
machine learning field: Adaboost [23], Support Vector Ma-
chines (SVM) [24], and two kinds of Artificial Neural Net-
works (ANN), in particular Cascade-Forward (CF) and Feed-
Forward neural networks (FF) [25].

3. EXPERIMENTS
This section presents the experiments performed by using

the behavioral indicators summarized in Table 1. First, we
describe the setting and validation measurements, as well as
the performed experiments.

3.1 Data and Settings
Data consist of a total of 26 recorded conversational ses-

sions of about 35 minutes-per-session. Each session con-
tains audio-RGB-depth information, whose modalities are
registered using the parameters from the camera, and syn-
chronized among the different devices through the system
clock. The set of images for each session has been recorded
at resolution 640 × 480 and 12 frames per second (fps) in
average, both for RGB and depth information. Each audio
channel belonging to one of the four microphones linearly
spread out along a multi-array microphone processes 16-bit
audio at a sampling rate of 16 kHz. The distance between
participants and the KinectTM device is between one and
two meters depending on the limitations of recording facil-
ity. We defined the ground truth of the system by using
quantitative answers in terms of agreement, provided by the
mediator surveys. The agreement is defined as the degree of
accordance produced among the parts (globally quantified
for each session). Therefore, each part of a video session is
a sample for the classification task, and the total number of
used samples is 28.

Learning is performed using leave-one-out validation, keep-
ing each time one sample out for testing. Since the total
number of samples is reduced and the ground truth values
are quantified within ranges [1, 5], we simplified the prob-
lem by grouping the different response degrees into binary
groups. As we are defining a binary setup, then the value 3
can be considered either as high or low. For this reason, we
have thrown the experiments twice considering both cases
and computing the mean of the two leave one out experi-
ments.

In order to accomplish the compromise described at the
end of section 2.4.1, the parameters used in the heuristic
procedure have been experimentally set to ranges ΨΘ ∈
[50, 120], Ψβ ∈ [30, 60], and ΨΞ ∈ [0.1, 0.3], depending on
the session, and the standard value Ψζ = 0.5 for all sessions.

In our experiments, we have set the standard value of
50 to the number of decision stumps for Adaboost tech-
nique. For the SVM, we have experimentally set to 1 the
cost parameter, and 0.5 the gamma parameter to the radial
basis function. Finally, we have set two standard neural net-
works (CF and FF), both with a single hidden layer with 10
neurons values and Levenberg-Marquardt back-propagation
training function. The results obtained are shown in terms
of accuracy percentages.

3.2 Results and discussion
The addressed predictions for our classification task focus

on the reached agreement level. The percentage of accuracy
on predictions is then compared among the different tech-
niques: Adaboost, SVM, CF, and FF. Results for predicting
the agreement are shown in Table 2. The best prediction is
given by the FF neural networks with a 75% of accuracy.
Moreover, we can note that all classifiers are able to predict
above the random decision. This fact can be interpreted in
the way that there exist a correlation degree between the
captured data and the information that we want to predict.
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Table 2: Accuracy predicting agreement.

Label Adaboost CF FF SVM
Agreement 71% 71% 75% 71%

An important aspect to highlight in the classification task
is the weight of grouping the quantified degrees of mediator
answers into the binary case. This entails to obtain different
results depending on the employed classification technique
and the prediction type. This is probably due to the uncer-
tainty of the mediator when assigning a value of 3 to the
answers with respect to the evaluation purposes, fact that
may include noise to the overall data.

As described in section 2.4.1, the user manual interac-
tions is an important requirement in our proposed semi-
automatic system to improve the continuity of positive de-
tections among consecutive frames. For our sessions, the
averaged frequency rate of manual annotations required is 1
for each 2000 frames using the above parameters. It means
that using those parameters the feature extraction proce-
dures for hands and faces offer high accuracy.

4. CONCLUSION
We proposed a multi-modal framework for the analysis

of non-verbal communication in conversation settings. We
showed the usability of computer vision, signal processing,
and machine learning strategies in these scenarios. In partic-
ular, we computed a set of features from audio-RGB-depth
data. Then, a heuristic procedure was presented within the
multi-modal feature extraction to improve the continuity of
positive detections among consecutive frames. Finally, we
defined an automatic computation of behavioral indicators
used as final features for learning and classification tasks.
We demonstrated the applicability as a tool for the experts,
obtaining results upon 75% of accuracy predicting the agree-
ment in conversational victim-offender mediation processes
based on the ground truth defined by the experts. Based on
the obtained results, our future work involves including lo-
cal behavioral features, which will provide information about
the instant of time where the behavior takes place (early or
latest stages of the conversational session). Additionally, we
plan to extend the binary agreement classification problem
to a continuous or regression task, where a more fine agree-
ment prediction could be achieved.
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Anguera. Automatic detection of dominance and expected
interest. EURASIP Advances in Signal Processing,
Research Article, 2010.

[6] T. Takahashi and F. Kishino. Hand gesture coding based
on experiments using a hand gesture interface device.
SIGCHI Bull., 23(2):67–74, March 1991.

[7] G. Fang, W. Gao, and D. Zhao. Large-vocabulary
continuous sign language recognition based on
transition-movement models. SMC-A, 37(1):1–9, 2007.

[8] V. Ponce, M. Gorga, X. Baró, and S. Escalera. Human
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