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ABSTRACT
An analysis of multiparty interaction in the problem solv-
ing sessions of the Multimodal Math Data Corpus is pre-
sented. The analysis focuses on non-verbal cues extracted
from the audio tracks. Algorithms for expert identification
and performance prediction (correctness of solution) are im-
plemented based on patterns of speech activity among ses-
sion participants. Both of these categorisation algorithms
employ an underlying graph-based representation of dia-
logues for each individual problem solving activities. The
proposed Bayesian approach to expert prediction proved
quite effective, reaching accuracy levels of over 92% with
as few as 6 dialogues of training data. Performance predic-
tion was not quite as effective. Although the simple graph-
matching strategy employed for predicting incorrect solu-
tions improved considerably over a Monte Carlo simulated
baseline (F1 score increased by a factor of 2.3), there is still
much room for improvement in this task.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.5.2 [Pattern Recognition]: Clas-
sifier design and evaluation

Keywords
Collaborative problem solving, Multimodal Math Data Cor-
pus, vocalisation graphs

1. INTRODUCTION
Beyond speech transcription and analysis of high-level con-

tent, it has become increasingly clear that paralinguistic and
multimodal features hold important clues as to the nature
of group interaction in a number of contexts [5, 17, 19, 4,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMI’13, December 9–13, 2013, Sydney, Australia
Copyright 2013 ACM 978-1-4503-2129-7/13/12 ...$15.00.
http://dx.doi.org/10.1145/2522848.2533788.

12]. In learning and problem solving situations involving
groups, in particular, there is evidence that low-level speech
features such as speech duration, energy and prosody, and
writing features such as writing rate, area, aspect ratio, and
pressure are predictors of social dominance and expertise
[20].

This paper describes approaches to the 2013 Multimodal
Learning Analytics (MMLA) challenges which are based on
simple non-verbal speech interaction features (namely, struc-
ture and amount of talk, including simultaneous talk, and
silence). In brief, these challenges consist in, 1) identifying
the domain expert among groups of three students working
cooperatively on mathematical problem solving tasks and
2) inferring, from group interaction during a problem solv-
ing task, whether the group answered the question correctly
or incorrectly. We conceptualise these challenges as cat-
egorisation tasks and refer to them simply as the “expert
identification task” and the “performance prediction task”,
respectively. The data set employed in this MMLA chal-
lenge, the Multimodal Math Data Corpus, is described in
detail in [16]. A benchmark analysis is presented in [15].

A few differences between the approach reported in this
paper and other uses of low-level speech features in predic-
tion tasks, such as in speech act classification [21] and detec-
tion of decision points [6], among others, should be pointed
out. First, we restrict ourselves to the above mentioned
low-level speech features. No other information source, in-
cluding video, writing, past performance (as in the bench-
mark study [15], for instance) is employed. This does not
imply that we believe such features to be of lesser value for
this task. Quite on the contrary. We simply wish to assess
the particular contribution those speech features can make.
Second, we make no use of prosodic features (speech rate,
pitch, loudness) other than pause duration, though we dis-
cuss briefly how these features could be incorporated into
our data representation scheme in future work (section 6).
Third, we structure speech features as a vocalisation graph
[5, 13] rather than consider them in isolation.

In previous research, representations based on vocalisation
graphs have been successfully used, though in quite different
ways, to support qualitative analyses of group behaviour [5]
and clinical dialogue [7], and, in computer science, to auto-
matically segment medical team meetings [12] and categorise
patient case discussion sessions [13]. In the work reported
here, we modify the underlying representation employed in



those works so as to abstract away speaker information. This
is done so that we can deal with the performance prediction
task in a completely general (i.e. session and speaker inde-
pendent) way, on a nearest-neighbour framework. For the
expert detection task, we derive general interaction statis-
tics from each vocalisation graph (representing a problem-
solving dialogue) and employ a strategy based on voting
among naive Bayes classifiers. These approaches yielded
mixed results. The speaker prediction task was quite suc-
cessful within sessions. The correction prediction task was
less effective. This is partly due to the imbalanced nature
of the data (only 19% of answers fall into the “incorrect”
category, and these are unevenly distributed across the vari-
ous sessions and groups, making negative prediction harder),
and partly due to the somewhat crude graph matching algo-
rithm we employed to determine nearest neighbours. How-
ever, we believe that these problems are not insurmountable
and that this graph based approach to performance predic-
tion also shows some promise.

2. DATA PREPARATION
The original MLA corpus comprises data collected from

6 distinct, gender-matched groups of 3 students each, work-
ing on algebra and geometry problems over 12 sessions (2
separate sessions per group). Each session consisted of 16
problem solving tasks, in which the students worked coop-
eratively and mentored one another. The students were be-
tween 15 to 17 years old, and were grouped according to
their skill levels.

The corpus made available to the participants of the ICMI
MLA challenge includes, for each session: 4 audio streams
(3 streams containing individual speaker audio, recorded
through close-talking microphones, and 1 stream containing
all audio, recorded through an omnidirectional microphone
placed above the participants), 4 video streams (recorded
through 3 individual cameras and 1 wide-angle camera, avail-
able in both high and low resolution versions), 3 digital pen
log files (1 per student), and annotated metadata. The an-
notation includes, for each of task: time boundaries (start
and end of problem solving, start and end of “moment of in-
sight”, time to solution), performance data (time to solution
and correctness), participation data (student who initiated
the answer, and the student who explained the answer, when
prompted), and coding of the digital pen data.

At the session level, the metadata provided with the cor-
pus includes the identities (participant codes) of the group
leaders and dominant experts for each session. A partici-
pant’s expertise is defined in terms of a cumulative score of
points assigned to correctly and incorrectly solved problems,
weighted according a discrete difficulty level scale (“easy”,
“moderate” , “hard”). The session expert is the student with
the highest such expertise score. A detailed description of
the tasks, the participant profiles, the data collection pro-
cedure and the data set can be found in the accompanying
documentation [16].

The MLA corpus provides a rich resource for the analy-
sis of different aspects of interaction in educational settings.
However, for the purposes of the work reported in this paper,
only the individual (close-talking) audio streams, the task-
level timing information, and the correctness and expertise
coding (to identify the target categories for classification)
have been used. The processing of these data and the re-
sulting new data sets are described next.

2.1 Generating vocalisation graph data sets
Initially, the audio files were processed in order to detect

speech intervals (vocalisations) and to assign these intervals
unique speaker identifiers (or the identifier “Group vocalisa-
tion” for intervals containing overlapping speech by two or
more speakers). Since the individual recordings were fairly
free from noise, we could employ a simple voice activity de-
tection algorithm to generate time stamps for vocalisation
intervals. For each speaker’s audio file, the signal was re-
sampled at 100ms intervals, and for each sample we marked
it as a potential vocalisation (and stored it) if it exceeded
an energy threshold of -36dB, otherwise it was marked as
silence. Consecutive silence intervals exceeding 1s in dura-
tion indicated the end of a vocalisation, at which point the
time stamps of stored vocalisation samples were smoothed
and stored as an array. The arrays containing individual
vocalisation profiles were then merged into a single stream
of vocalisation events. From these vocalisation streams, we
generated transition matrices encoding Markov chains such
as the one shown in Figure 1 (top).
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Figure 1: An individuated vocalisation graph repre-
senting the dialogue of group 1, solving problem 1A
in session 1 (top) and its convergence to a steady
state (bottom).

Note that very short vocalisations (< 0.9s), which for the
most part corresponded to breathing noises and other non-
verbal events were filtered out. This should not be taken



to imply that we consider all such non-verbal events irrele-
vant. In fact, there is evidence (from other domains) that
non-verbal speech sounds such as laughter and “fillers” have
clear roles in structuring the dialogue [4, 2]. On the other
hand, those very short bursts of audio activity would have
had a detrimental effect on categorisation had they not been
removed. This effect has also been observed in topic segmen-
tation tasks [11].

A vocalisation event can be: a vocalisation, containing
speech a participant’s speech turn, a pause, or an interval
greater than 1s in which all participants have fallen silent
(we further distinguish“switching pauses”, or silence interval
between vocalisations by different speakers [5]), or a group
vocalisation, where two or more speakers speak at the same
time. See [12] for a more formal definition. Each entry in
the vocalisation matrix represents the probability P (Vj |Vi)
that a vocalisation event Vi will be followed by a vocalisation
event Vj , where typical transitions include, for instance, a
speaker s starting to speak after a pause, a speaker s initiat-
ing a turn and being interrupted by speaker t, an interval of
silence followed by two speakers speaking at the same time,
and so on.

A vocalisation graph is a Markov chain containing a sin-
gle aperiodic recurrent class, which means that the tran-
sition probabilities always converge to steady state proba-
bilities by iterating the Chapman-Kolmogorov equation, as
the number of iterations increases. Figure 1 (bottom) shows
this convergence for the corresponding vocalisation graph
(shown at the top). We define two kinds of vocalisation
graphs: “individuated graphs” (like the one shown in Fig-
ure 1) and “aggregated graphs”. Aggregated vocalisation
graphs do not distinguish between speakers but rather pool
all vocalisations into a single node.

For performance prediction (i.e. prediction of correct vs
incorrect solution) we employed aggregated vocalisations graphs,
since our aim has been to make this task entirely indepen-
dent of sessions and groups. That is, we aim to find fea-
tures that generalise across all problem solving dialogue in-
stances. For expert identification, on the other hand, we
created a feature set based on individuated graphs (omit-
ting, of course, the specific speaker identification tags).

2.2 Expert identification data set
Expert identification posed a problem for the above-described

graph representation schema. Recall that we have formu-
lated the problem as a categorisation task. That is, given
a data instance representing a speaker our goal is to label
that data instance with an expert or an non-expert category
tag. Therefore we cannot identify individual nodes explic-
itly in the representation. Neither, for the same reason, can
we identify speaker to speaker transitions.

In face of this difficulty, we chose to represent each speaker
s in each problem solving dialogue d as an octuple of the
form:

s = [vΣ, vµ, vσ, p(s|f), p(f |s), p(s|g), p(g|s), H(V |s)] (1)

where:

vΣ is the total duration of all vocalisations produced by
speaker s,

vµ is the average duration of the vocalisations produced by
speaker s,

vσ is the standard deviation of vocalisations produced by
speaker s,

p(s|f) is the probability of a transition from “floor” (i.e.
a pause, group switching pause or speaker switching
pause) to a vocalisation produced by speaker s,

p(f |s) is the probability of a transition from a vocalisation
by speaker s to floor (i.e. that speaker s falls silent
and no other speaker speaks for at least 1 second),

p(s|g) is the probability of transitioning from a group vo-
calisation to a speaker s vocalisation,

p(g|s) is the probability of transitioning from a speaker s
vocalisation to a group vocalisation,

H(V |s) is the Shannon entropy of a vocalisation event V
conditioned on a speaker s vocalisation event, that is, a
measure of uncertainty in the transitions (turn taking)
originating from speaker s, given by

H(V |s) = −
∑
v

P (v|s)log2P (v|s)

This representation is independent of speaker identity,
group session and problem task dialogue and was generated
uniformly for the entire MLA data set.

As regards our choice of features, it seems plausible that
the level of expertise of a speaker (as related to their con-
tributions to solving problems correctly) correlates with the
amount of speech they produce and the regularity with which
they produce their spoken contributions. Features vΣ, vµ
and vσ are meant to capture this putative regularity. It also
seems reasonable to expect that the dominant speaker would
tend to initiate turns, after moments of silence, and perhaps
take most turns following a moment of simultaneous speech.
Features p(s|f) and p(s|g) quantify such situations. Simi-
larly, features p(f |s) and p(g|s) reflect the extent to which
a speaker’s vocalisation yields silence (perhaps indicating
writing activity) and simultaneous verbal activity (perhaps
indicating disagreement), respectively. Finally, the entropy
feature the uniformity with which vocalisation events are
distributed in succession to a speaker’s vocalisation. Ex-
perts are expected to exhibit more predictable vocalisation
sequence patterns (i.e. they are expected to be more consis-
tent in their contributions). In fact, preliminary data anal-
ysis reveals a weak (ρ = −0.18) but reliable (p < 0.01) cor-
relation between amount of speech and entropy, indicating
that more verbally active speakers are also more predictable
in terms of the turn taking patterns they originate.

2.3 Performance prediction data set
The performance prediction data set consists of 190 in-

stances, corresponding to aggregated vocalisation graphs for
each problem solving task dialogue. Figure 2 shows prob-
lems 1B and 2B, solved by group 1 in session 2 (G1D2), rep-
resented as vocalisation graph instances of the kind used in
the performance prediction task. The graphs correspond to
dialogues that resulted in a correct (problem 2B, top graph)
and an incorrect (problem 1B, bottom graph) answer. A
node for “switching vocalisations” was added in order to en-
code information about speaker change, even though the
speaker identities themselves were not represented, for the
reasons of generality explained above. One can see, for in-
stance, that the incorrectly answered question produced a



lot more overlapping speech (group vocalisations), less si-
lence and less turn taking. Our working hypothesis is that
these kinds of difference reflect dialogue regularities that
have predictive value in this task.

Figure 2: Aggregated vocalisation graphs showing
dialogues resulting in correct (top) and incorrect
(bottom) answers, for problems of similar difficulty
levels.

As is the case of the representation set out in equation (1),
this graph representation can be generated uniformly for
the entire corpus (it can, in fact, be generated for any di-
alogue). However, for categorisation purposes, the matrix
representation for these vocalisation graphs has been “flat-
tened” into 40-tuple instances, each feature representing one
of the 4 + 6 × 6 possible vocalisations and transitions, as
explained in section 4.

3. EXPERT IDENTIFICATION
A continuous-variable naive Bayes approach was employed

for expert prediction. For each speaker sa, . . . sc in a prob-
lem solving task dialogue, described by features V1, . . . V8

as in equation (1), the probability that this speaker will be
labelled an expert is given by equation (2), which can be
rewritten as (3) under the usual conditional independence
assumption.

P (t|s) ∝ P (V1 = sΣ, . . . , V8 = H(V |s)|t) (2)

=

n∏
i=1

P (Vi = vi|t) (3)

The estimation procedure for the conditionals in (3) mod-
els the vocalisation features through Gaussian kernels, as
shown in equation (4), where µt and σ2

t are the mean and

variance of the values taken by the features Vi in the data
set given a positive expert label, represented here as Boolean
t. Non-parametric estimation methods also exist [9] but we
have not tried them in this task.

P (Vi = x|b) = g(x;µt, σt)

=
1

σt
√

2π
e
− (x−µt)2

2σ2t (4)

These models were trained on a portion of a session’s data
and subsequently used to estimate probabilities for each
speaker instance in the testing problem solving dialogues.
Expert inference consisted in taking a vote among the esti-
mates, so that and expert label s∗ was assigned to the most
likely instance:

s∗ = arg max
s∈{sa...,sc}

P (t|s) (5)

Similarly, one could apply a voting strategy to identify
an expert for the overall session rather than individual in-
stances by choosing the mode of the set of labels produced
by evaluating all individual instances in the test set.

3.1 Expert identification results
There are different ways of going about identifying domain

experts in a corpus of recorded problem solving dialogues,
and at least two distinct ways of framing the problem.

As regards expert identification methods, one could base
the system’s inference on domain knowledge, or try to in-
ductively learn such knowledge from relatively unstructured
data. Oviatt [15], for instance, presents a rule-base method
that selects as expert the participant who answers the most
of the first n problems correctly (alternatively, the partici-
pant that initiates the most of the first n answers). The ap-
proach we adopted here, on the other hand, requires training
data in the form of instances that describe the participants’
speech interactions during a problem solving session in or-
der to learn which instance most closely resembles the speech
activity of the expert.

With respect to framing the prediction problem itself,
there are, so to speak, a more general and a more specific
way of looking at it. A more general perspective would de-
fine the task of the system as follows: given a single dialogue
(say, a set of participant interaction instances) recorded dur-
ing a problem solving activity, identify the participant who is
characterised as the domain expert in the session (containing
several such dialogues) during which the dialogue in question
took place. This is the harder version of the problem. The
specific, and somewhat easier version of the problem can be
formulated as follows: given a problem solving session (as
a set of dialogue representations), identify the participant
characterised as the expert. The above described rule-based
approach would achieve 50% accuracy [15, p. 7] in the most
general formulation, since it would have to base its decision
on the features of a single problem. However, in the easier
formulation, the rule-based approach performs quite well,
being able to correctly guess the expert after seeing only 7
problem instances.

In order to assess the performance of our approach under
these different formulations of the problem we ran a series of
learning iterations over the 12 sessions, training the system
on different numbers of dialogues (each of which yielded 3



Table 1: Expert prediction accuracy for different
numbers of training dialogues averaged over predic-
tions for dialogues and grouped by sessions.

# training mean accuracy
dialogues by dialogue(sd) by session

1 0.54 (0.22) 0.67
2 0.58 (0.27) 0.75
3 0.55 (0.29) 0.67
4 0.60 (0.18) 0.83
5 0.61 (0.18) 0.75
6 0.62 (0.17) 0.92
7 0.70 (0.14) 1.00

training instances; one per speaker) and averaged the accu-
racy results over the 12 sessions. The results are shown in
Table 1.

The mean accuracy by dialogue corresponds to the more
general formulation. The average reported is across all ses-
sions, and the number of training dialogues refers to the
training data for each individual session. On the sixth row,
for instance, the 62% accuracy score was obtained by train-
ing the system on 6 dialogues (18 speaker instances described
as in equation (1)) per session, testing on the remaining 9 di-
alogues and averaging the results over all sessions (standard
deviation of 0.17). As the training set increases in size so do
the accuracy and the stability of predictions, as indicated
by decreasing standard deviations.

The figures for accuracy per session correspond to the
more specific formulation. As in [15] we report the accu-
racy scores obtained as the system “sees” progressively more
dialogues of a session (though in our case the position of
the problem in the session is irrelevant). For this setting we
trained the models in the same way as before, but identi-
fied the expert as the one who matched the chosen expert
speaker label in most dialogues of a session (or rather, most
dialogues in the test set of a session). In this case, if the
system is presented with, say, 6 dialogues (training set) and
infers the expert for the session by choosing the majority
label assigned to the remaining 10 dialogues it infers the
session expert correctly for 92% of the sessions. Likewise, 7
training dialogues suffice to identify all experts correctly in
all sessions. The relatively low accuracy figures in the sec-
ond column (mean accuracy by dialogue) compared to the
third (mean accuracy per session) reflect the fact that the
former assesses classification of individual dialogues, where
the system makes no use of the knowledge that a particular
speaker is identified as the expert for all dialogues in a par-
ticular session. It is tempting therefore to speculate that in
some problem solving sessions certain speakers exhibit ex-
pert behaviour even though they may not do so throughout
the session.

We also ran 4-fold cross validation tests per session in or-
der to get a better idea of expert prediction performance by
dialogue (general formulation) in each session. The mean
accuracy results are shown in Table 2. In most (though not
all) cases, prediction performance degrades in sessions that
have different speakers as assigned session leader and expert.
It seems therefore that the expert leader role adds a measure
of “noise” to those data folds by altering the relative amount
of talk produced by non-expert leaders. However, perfor-
mance in all cases is well above the 33% baseline, indicating

Table 2: Mean expert prediction accuracy scores for
4-fold cross-validation experiments per session.

Session Accuracy (sd)
G1D1 0.88 (0.34)
G1D2 0.62 (0.50)
G2D1 0.75 (0.45)
G2D2 0.69 (0.48)
G3D1 0.81 (0.40)
G3D2 0.81 (0.40)
G4D1 0.88 (0.34)
G4D2 0.69 (0.48)
G5D1 0.50 (0.52)
G5D2 0.69 (0.48)
G6D1 0.75 (0.45)
G6D2 0.62 (0.50)

that the method is quite robust, even in the presence of this
sort of noise.

4. PERFORMANCE PREDICTION
As mentioned before, the MLA corpus is quite imbalanced

with respect to the questions answered correctly and incor-
rectly. The overall distribution is 81% for correct answers
versus 19% incorrect answers. Class imbalance is known to
cause difficulties to most machine learning methods [8]. To
complicate matters, the balance of positive and negative in-
stances varies greatly from session to session, reflecting the
different levels of expertise of the 6 groups. Thus, the pro-
portion of correct answers varies from 38% in G2D1 to 100%
in G2D2 and G5D2.

In order to minimise this problem, we have used the en-
tire data set for evaluation, ignoring group and session sub-
divisions. This also means that we attempted to model cor-
rectness and incorrectness prediction in the most general
setting, in which classification does not depend on features
that are specific to a group of participants. To this end, ag-
gregated vocalisation graphs of the kind shown in Figure 2
were employed in this task.

The classification method is based on a k nearest neigh-
bour strategy [1]. The “training” of the system consists sim-
ply in storing the training instances. Classification was per-
formed by finding the vocalisation graph (or graphs) most
similar to the test instance and assigning it the category of
that training instance (or the majority label, in case there
are more than one such neighbours). Instance similarity was
defined in terms of the Euclidean distance

d(s, t) =

√√√√ n∑
i=1

(V ti − V si )2

between instances, taking into account the n = 40 features
representing all transition probabilities in the graph.

4.1 Performance prediction results
The imbalanced nature of the data set must also be taken

into account when assessing performance prediction results.
Accuracy figures (i.e. ratio of the total number of correctly
classified instances to the total number of instances tested)
are typically misleading in the presence of class imbalance.
For this data set, for instance, a trivial acceptor (i.e. a



Table 3: Precision, recall and F1 results for the
performance prediction task. Values denote means
computed over a 10-fold cross validation.

System hypotheses
Correct Incorrect

Precision: 0.850 Precision: 0.375
Recall: 0.826 Recall: 0.417
F1: 0.838 F1: 0.395

Baselines (Monte Carlo)
Correct Incorrect

Precision: 0.805 Precision: 0.178
Recall: 0.809 Recall: 0.193
F1: 0.802 F1: 0.193

“classifier” that labelled all instances “correct”) would have
accuracy of 80% on average. We therefore provide a finer
grained evaluation broken down into metrics for each class
(“correct” and “incorrect”) separately. These metrics include
precision (ratio of the number of true positives to the total
number of items categorised as the target category by the
system), recall (ratio of the number of true positives to the
total number of items in the target category) and F1 (the
harmonic mean of precision and recall).

Table 3 summarises the results. As expected, the “incor-
rect” category proved to be much harder to predict than the
“correct” category. With respect to the former, the system
performs quite poorly. It detects just over 41% of problems
that are solved incorrectly. Furthermore, of the problems
it flags as incorrect solutions, nearly two thirds are false
alarms.

However, to put these results into perspective, we propose
comparing them to a Monte Carlo baseline. The baseline
scores shown in Table 3 were obtained by simulating 190
classification 100 times and averaging the precision, recall
and F1 results. The categorisation decisions in these sim-
ulations can be regarded as “informed guesses”, since they
were the result of sampling the two possible categories ac-
cording to category generalities proportional to the general-
ities observed in the actual data set. In comparison to this
baseline, the system categorisation results for the“incorrect”
class represent a marked improvement, while no performance
degradation is observed for the “correct” class.

It should also be remarked that the group 5 sessions are
atypical in that they are extremely imbalanced. In fact, one
of them (G5D2) does not contain a single error. If these sec-
tions are removed, a slight improvement in prediction per-
formance can be observed.

In all cases, however, the models produced had fairly weak
diagnostic power in general. A useful summary of overall
predictive power is given by the area under the ROC (re-
ceiver operating characteristic) curve [3]. The ROC curve is
a plot of the true positive rate (or recall) against the false
positive rate (specificity) as the classification threshold is
varied. Figure 3 shows the ROC the curves for a nearest
neighbour model and a 3 nearest neighbour model, where
the probabilities for the classification thresholds were ob-
tained by weighting the neighbours proportionally to the
inverse of their distance to the query instance. The diag-
onal represents chance classification. It can be seen from
the ROC chart that the voting strategy employed by the 3-

Figure 3: Area under the ROC curve for nearest
neighbour (lower curve, in blue) and 3-NN (higher
curve, in black) models evaluated over the 12 ses-
sions of the MLA corpus.

NN model improves the overall quality of the classifier, even
though the improvement in terms of F-score for the negative
class (incorrect answers) is negligible.

5. DISCUSSION
The accuracy results obtained by the graph vocalisation

method for expert identification presented in this paper are
comparable to the benchmark results reported by Oviatt
[15]. In fact, our results show certain advantages of our
approach with respect to that benchmark. The method pre-
sented there works by keeping a count of the number of times
a participant initiated an answer or correctly solved a prob-
lem. However, since the number of correct solutions forms
part of the definition of expertise according to the annota-
tion schema, and since the accuracy of solutions is directly
proportional to the overall number of solutions initiated (i.e.
participants who contribute many solutions are more likely
to contribute correct answers than incorrect ones), classi-
fication based on these features appears to be of limited
informative value.

The method described here, in contrast, only employs low-
level speech features that can be easily extracted from speech
recorded through close-talking microphones and require no
content analysis as such. Yet, despite their simplicity, these
features seem to generalise well over different groups and
levels of skill. With this feature set based on vocalisation
graphs, a naive Bayes classifier required very few instances
to attain a reasonable level of accuracy.

The comparatively high dimensionality of the feature set
used in the performance prediction task seems to have been
responsible for the poorer results obtained in this task. Since
the graphs had to be represented as vectors in order to al-
low for Euclidean distance comparison, all possible transi-
tions had to be accommodate in the same representation.
This resulted in a scheme that contained 40 features, many
of which were rather sparsely filled. One of the main chal-



lenges in performance prediction is the uneven and imbal-
anced distribution of correct and incorrect solutions in the
MLA corpus. Since detecting incorrect solution would in-
tuitively appear to be more important from an applications
perspective than simply acknowledging correct solutions, a
cost sensitive classification approach may be required for this
task.

The models we have tested so far essentially employ a zero-
one loss function, so that classification decisions penalise all
miscategorisations equally (i.e. λ(T, F ) = λ(F, T ) = 1 and
λ(T, T ) = λ(F, F ) = 0, where λ is a loss function). Given
that the data set is imbalanced, such a function will tend to
improve accuracy for the overall session at the expense of the
dialogues that resulted in incorrect answers. A cost sensitive
approach would choose a threshold (defined, as illustrated in
Figure 3, in terms of probabilities) so as to penalise miscat-
egorisations of negative instances (incorrect answers) more
than positive ones.

6. CONCLUSION AND FURTHER WORK
This paper reported on our initial experiments with vo-

calisation based (“content free”) approaches to expertise de-
tection and performance prediction in problem solving ac-
tivities by small groups of students.

Overall, the results look promising. The expertise detec-
tion task was performed quite accurately based on a simple,
8-feature summary of vocalisation transitions, in problem
solving dialogues, from the point of view of each speaker.
The performance prediction results were poorer, but never-
theless improved upon a simulated baseline, suggesting that
the graph based approach can play a role in a performance
prediction method that includes other data sources. Re-
stricted to the speech modality alone, one possible avenue
for improvement would be to devise a more effective graph
similarity measure to mitigate the effect of the relatively
high dimensionality which seems to impair the method em-
ployed so far. We expect that this, in combination with a
cost sensitive classification approach as outlined above would
improve the prediction performance in this challenging task.

We also plan on incorporating richer features into the
vocalisation graph framework. Speech features could be
refined, for instance, by incorporating detection of laugh-
ter, fillers, hesitation markers and other non-verbal speech
sounds [4]. In addition, features from the video and writing
streams could also be incorporated into the data representa-
tion. It has been suggested that even fairly low-level features
extracted from recorded written interaction in combination
with vocalisation data can be effective in helping browsers
of meeting recordings structure and visualise [10] intervals
and actions of potential interest in the data [14]. Further
work on multimodal learning analytics could build on this
research.
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APPENDIX
A. SOURCE CODE AND DERIVED DATA

SETS
The source code for the algorithms presented in this paper,

and the new data and annotations produced in the course
of this work are available for download from our GitLab
server. The the most recent version of the source code and
derived data sets that are necessary to replicate the results
described above can be obtained by git clone ’ing the fol-
lowing repository:

http://gitlab.scss.tcd.ie/saturnino.luz/icmi-mla-challenge.git

The current (“frozen”) version of the code and data is also
available from the author’s website at

https://www.scss.tcd.ie/~luzs/software/icmi-mla2013.tgz

Please note that the MMLA corpus itself is subject to
a non-disclosure agreement and is therefore not distributed
with the packages above. The data distributed in these pack-
ages consist solely of the derived vocalisation graphs needed
to perform the categorisation experiments.

The source code has been written mostly in R [18]. It
contains functions for creation and manipulation of vocal-
isation graphs, in addition to classification and evaluation
functions. The derived data sets are encoded in standard
formats used in machine learning (ARFF and CSV). The
software requirements, the directory structure and a sum-
mary of the results, along with the commands used to pro-
duce them are described in labbook/README, in the above
mentioned archive.

http://mla.ucsd.edu/data/MMLA_Math_Data_Corpus.pdf
http://mla.ucsd.edu/data/MMLA_Math_Data_Corpus.pdf
http://gitlab.scss.tcd.ie/saturnino.luz/icmi-mla-challenge.git
https://www.scss.tcd.ie/~luzs/software/icmi-mla2013.tgz
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