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ABSTRACT
In the last two decades, the continuous increase of computational
power has produced an overwhelming flow of data which has called
for a paradigm shift in the computing architecture and large scale
data processing mechanisms. MapReduce is a simple and power-
ful programming model that enables easy development of scalable
parallel applications to process vast amounts of data on large clus-
ters of commodity machines. It isolates the application from the
details of running a distributed program such as issues on data dis-
tribution, scheduling and fault tolerance. However, the original im-
plementation of the MapReduce framework had some limitations
that have been tackled by many research efforts in several followup
works after its introduction. This article provides a comprehensive
survey for a family of approaches and mechanisms of large scale
data processing mechanisms that have been implemented based on
the original idea of the MapReduce framework and are currently
gaining a lot of momentum in both research and industrial commu-
nities. We also cover a set of introduced systems that have been
implemented to provide declarative programming interfaces on top
of the MapReduce framework. In addition, we review several large
scale data processing systems that resemble some of the ideas of
the MapReduce framework for different purposes and application
scenarios. Finally, we discuss some of the future research direc-
tions for implementing the next generation of MapReduce-like so-
lutions.

1. INTRODUCTION
We live in the era of Big Data where we are witnessing a contin-

uous increase on the computational power that produces an over-
whelming flow of data which has called for a paradigm shift in
the computing architecture and large scale data processing mech-
anisms. Powerful telescopes in astronomy, particle accelerators in
physics, and genome sequencers in biology are putting massive vol-
umes of data into the hands of scientists. For example, the Large
Synoptic Survey Telescope [1] generates on the order of 30 Ter-
aBytes of data every day. Many enterprises continuously collect
large datasets that record customer interactions, product sales, re-
sults from advertising campaigns on the Web, and other types of
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information. For example, Facebook collects 15 TeraBytes of data
each day into a PetaByte-scale data warehouse [116]. Jim Gray,
called the shift a "fourth paradigm" [61]. The first three paradigms
were experimental, theoretical and, more recently, computational
science. Gray argued that the only way to cope with this paradigm
is to develop a new generation of computing tools to manage, vi-
sualize and analyze the data flood. In general, current computer
architectures are increasingly imbalanced where the latency gap
between multi-core CPUs and mechanical hard disks is growing
every year which makes the challenges of data-intensive comput-
ing much harder to overcome [15]. Hence, there is a crucial need
for a systematic and generic approach to tackle these problems with
an architecture that can also scale into the foreseeable future [110].
In response, Gray argued that the new trend should instead focus on
supporting cheaper clusters of computers to manage and process all
this data instead of focusing on having the biggest and fastest single
computer.

In general, the growing demand for large-scale data mining and
data analysis applications has spurred the development of novel
solutions from both the industry (e.g., web-data analysis, click-
stream analysis, network-monitoring log analysis) and the sciences
(e.g., analysis of data produced by massive-scale simulations, sen-
sor deployments, high-throughput lab equipment). Although par-
allel database systems [40] serve some of these data analysis ap-
plications (e.g. Teradata1, SQL Server PDW2, Vertica3, Green-
plum4, ParAccel5, Netezza6), they are expensive, difficult to ad-
minister and lack fault-tolerance for long-running queries [104].
MapReduce [37] is a framework which is introduced by Google
for programming commodity computer clusters to perform large-
scale data processing in a single pass. The framework is designed
such that a MapReduce cluster can scale to thousands of nodes in
a fault-tolerant manner. One of the main advantages of this frame-
work is its reliance on a simple and powerful programming model.
In addition, it isolates the application developer from all the com-
plex details of running a distributed program such as: issues on data
distribution, scheduling and fault tolerance [103].

Recently, there has been a great deal of hype about cloud com-
puting [10]. In principle, cloud computing is associated with a
new paradigm for the provision of computing infrastructure. This
paradigm shifts the location of this infrastructure to more central-
ized and larger scale datacenters in order to reduce the costs associ-

1http://teradata.com/
2http://www.microsoft.com/sqlserver/en/us/solutions-

technologies/data-warehousing/pdw.aspx
3http://www.vertica.com/
4http://www.greenplum.com/
5http://www.paraccel.com/
6http://www-01.ibm.com/software/data/netezza/
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ated with the management of hardware and software resources. In
particular, cloud computing has promised a number of advantages
for hosting the deployments of data-intensive applications such as:
• Reduced time-to-market by removing or simplifying the time-

consuming hardware provisioning, purchasing and deploy-
ment processes.
• Reduced monetary cost by following a pay-as-you-go busi-

ness model.
• Unlimited (virtually) throughput by adding servers if the work-

load increases.
In principle, the success of many enterprises often rely on their abil-
ity to analyze expansive volumes of data. In general, cost-effective
processing of large datasets is a nontrivial undertaking. Fortunately,
MapReduce frameworks and cloud computing have made it easier
than ever for everyone to step into the world of big data. This tech-
nology combination has enabled even small companies to collect
and analyze terabytes of data in order to gain a competitive edge.
For example, the Amazon Elastic Compute Cloud (EC2)7 is offered
as a commodity that can be purchased and utilised. In addition,
Amazon has also provided the Amazon Elastic MapReduce8 as an
online service to easily and cost-effectively process vast amounts of
data without the need to worry about time-consuming set-up, man-
agement or tuning of computing clusters or the compute capacity
upon which they sit. Hence, such services enable third-parties to
perform their analytical queries on massive datasets with minimum
effort and cost by abstracting the complexity entailed in building
and maintaining computer clusters.

The implementation of the basic MapReduce architecture had
some limitations. Therefore, several research efforts have been
triggered to tackle these limitations by introducing several advance-
ments in the basic architecture in order to improve its performance.
This article provides a comprehensive survey for a family of ap-
proaches and mechanisms of large scale data analysis mechanisms
that have been implemented based on the original idea of the MapRe-
duce framework and are currently gaining a lot of momentum in
both research and industrial communities. In particular, the remain-
der of this article is organized as follows. Section 2 describes the
basic architecture of the MapReduce framework. Section 3 dis-
cusses several techniques that have been proposed to improve the
performance and capabilities of the MapReduce framework from
different perspectives. Section 4 covers several systems that sup-
port a high level SQL-like interface for the MapReduce framework.
Section 5 reviews several large scale data processing systems that
resemble some of the ideas of the MapReduce framework, without
sharing its architecture or infrastructure, for different purposes and
application scenarios. In Section 6, we conclude the article and
discuss some of the future research directions for implementing the
next generation of MapReduce/Hadoop-like solutions.

2. MAPREDUCE FRAMEWORK: BASIC AR-
CHITECTURE

The MapReduce framework is introduced as a simple and power-
ful programming model that enables easy development of scalable
parallel applications to process vast amounts of data on large clus-
ters of commodity machines [37, 38]. In particular, the implemen-
tation described in the original paper is mainly designed to achieve
high performance on large clusters of commodity PCs. One of the
main advantages of this approach is that it isolates the application
from the details of running a distributed program, such as issues on
data distribution, scheduling and fault tolerance. In this model, the

7http://aws.amazon.com/ec2/
8http://aws.amazon.com/elasticmapreduce/

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Figure 1: An Example MapReduce Program [37].

computation takes a set of key/value pairs input and produces a set
of key/value pairs as output. The user of the MapReduce frame-
work expresses the computation using two functions: Map and Re-
duce. The Map function takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce framework groups
together all intermediate values associated with the same interme-
diate key I and passes them to the Reduce function. The Reduce
function receives an intermediate key I with its set of values and
merges them together. Typically just zero or one output value is
produced per Reduce invocation. The main advantage of this model
is that it allows large computations to be easily parallelized and re-
executed to be used as the primary mechanism for fault tolerance.
Figure 1 illustrates an example MapReduce program expressed in
pseudo-code for counting the number of occurrences of each word
in a collection of documents. In this example, the map function
emits each word plus an associated count of occurrences while the
reduce function sums together all counts emitted for a particular
word. In principle, the design of the MapReduce framework has
considered the following main principles [126]:
• Low-Cost Unreliable Commodity Hardware: Instead of us-

ing expensive, high-performance, reliable symmetric mul-
tiprocessing (SMP) or massively parallel processing (MPP)
machines equipped with high-end network and storage sub-
systems, the MapReduce framework is designed to run on
large clusters of commodity hardware. This hardware is man-
aged and powered by open-source operating systems and util-
ities so that the cost is low.
• Extremely Scalable RAIN Cluster: Instead of using central-

ized RAID-based SAN or NAS storage systems, every MapRe-
duce node has its own local off-the-shelf hard drives. These
nodes are loosely coupled where they are placed in racks
that can be connected with standard networking hardware
connections. These nodes can be taken out of service with
almost no impact to still-running MapReduce jobs. These
clusters are called Redundant Array of Independent (and In-
expensive) Nodes (RAIN).
• Fault-Tolerant yet Easy to Administer: MapReduce jobs can

run on clusters with thousands of nodes or even more. These
nodes are not very reliable as at any point in time, a cer-
tain percentage of these commodity nodes or hard drives will
be out of order. Hence, the MapReduce framework applies
straightforward mechanisms to replicate data and launch backup
tasks so as to keep still-running processes going. To han-
dle crashed nodes, system administrators simply take crashed
hardware off-line. New nodes can be plugged in at any time
without much administrative hassle. There is no complicated
backup, restore and recovery configurations like the ones that
can be seen in many DBMSs.
• Highly Parallel yet Abstracted: The most important contribu-

tion of the MapReduce framework is its ability to automat-
ically support the parallelization of task executions. Hence,
it allows developers to focus mainly on the problem at hand
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Figure 2: An Overview of the Flow of Execution a MapReduce
Operation [37].

rather than worrying about the low level implementation de-
tails such as memory management, file allocation, parallel,
multi-threaded or network programming. Moreover, MapRe-
duce’s shared-nothing architecture [113] makes it much more
scalable and ready for parallelization.

Hadoop9 is an open source Java library [124] that supports data-
intensive distributed applications by realizing the implementation
of the MapReduce framework10. It has been widely used by a large
number of business companies for production purposes11. On the
implementation level, the Map invocations of a MapReduce job are
distributed across multiple machines by automatically partitioning
the input data into a set of M splits. The input splits can be pro-
cessed in parallel by different machines. Reduce invocations are
distributed by partitioning the intermediate key space into R pieces
using a partitioning function (e.g. hash(key) mod R). The num-
ber of partitions (R) and the partitioning function are specified by
the user. Figure 2 illustrates an example of the overall flow of a
MapReduce operation which goes through the following sequence
of actions:

1. The input data of the MapReduce program is split into M
pieces and starts up many instances of the program on a clus-
ter of machines.

2. One of the instances of the program is elected to be the mas-
ter copy while the rest are considered as workers that are
assigned their work by the master copy. In particular, there
are M map tasks and R reduce tasks to assign. The master
picks idle workers and assigns each one or more map tasks
and/or reduce tasks.

3. A worker who is assigned a map task processes the contents
of the corresponding input split and generates key/value pairs
from the input data and passes each pair to the user-defined
Map function. The intermediate key/value pairs produced by
the Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk and
partitioned into R regions by the partitioning function. The
locations of these buffered pairs on the local disk are passed

9http://hadoop.apache.org/
10In the rest of this article, we use the two names: MapReduce

and Hadoop, interchangeably
11http://wiki.apache.org/hadoop/PoweredBy

back to the master, who is responsible for forwarding these
locations to the reduce workers.

5. When a reduce worker is notified by the master about these
locations, it reads the buffered data from the local disks of the
map workers which is then sorted by the intermediate keys
so that all occurrences of the same key are grouped together.
The sorting operation is needed because typically many dif-
ferent keys map to the same reduce task.

6. The reduce worker passes the key and the corresponding set
of intermediate values to the user’s Reduce function. The
output of the Reduce function is appended to a final output
file for this reduce partition.

7. When all map tasks and reduce tasks have been completed,
the master program wakes up the user program. At this point,
the MapReduce invocation in the user program returns the
program control back to the user code.

During the execution process, the master pings every worker pe-
riodically. If no response is received from a worker within a certain
amount of time, the master marks the worker as failed. Any map
tasks marked completed or in progress by the worker are reset back
to their initial idle state and therefore become eligible for schedul-
ing by other workers. Completed map tasks are re-executed on a
task failure because their output is stored on the local disk(s) of
the failed machine and is therefore inaccessible. Completed reduce
tasks do not need to be re-executed since their output is stored in a
global file system.

3. EXTENSIONS AND ENHANCEMENTS OF
THE MAPREDUCE FRAMEWORK

In practice, the basic implementation of the MapReduce is very
useful for handling data processing and data loading in a heteroge-
nous system with many different storage systems. Moreover, it
provides a flexible framework for the execution of more compli-
cated functions than that can be directly supported in SQL. How-
ever, this basic architecture suffers from some limitations. [39]
reported about some possible improvements that can be incorpo-
rated into the MapReduce framework. Examples of these possible
improvements include:
• MapReduce should take advantage of natural indices when-

ever possible.
• Most MapReduce output can be left unmerged since there

is no benefit of merging them if the next consumer is just
another MapReduce program.

• MapReduce users should avoid using inefficient textual for-
mats.

In the following subsections we discuss some research efforts
that have been conducted in order to deal with these challenges
and the different improvements that has been made on the basic
implementation of the MapReduce framework in order to achieve
these goals.

3.1 Processing Join Operations
One main limitation of the MapReduce framework is that it does

not support the joining of multiple datasets in one task. How-
ever, this can still be achieved with additional MapReduce steps.
For example, users can map and reduce one dataset and read data
from other datasets on the fly. Blanas et al. [18] have reported
about a study that evaluated the performance of different distributed
join algorithms using the MapReduce framework. In particular,
they have evaluated the following implementation strategies of dis-
tributed join algorithms:
• Standard repartition join: The two input relations are dy-



Figure 3: Decision tree for choosing between various join
strategies on the MapReduce Framework [18].

namically partitioned on the join key and the corresponding
pairs of partitions are joined using the standard partitioned
sort-merge join approach.
• Improved repartition join: One potential problem with the

standard repartition join is that all the records for a given join
key from both input relations have to be buffered. There-
fore, when the key cardinality is small or when the data is
highly skewed, all the records for a given join key may not fit
in memory. The improved repartition join strategy fixes the
buffering problem by introducing the following key changes:

– In the map function, the output key is changed to a com-
posite of the join key and the table tag. The table tags
are generated in a way that ensures records from one in-
put relation will be sorted ahead of those from the other
input relation on a given join key.

– The partitioning function is customized so that the hash-
code is computed from just the join key part of the com-
posite key. This way records with the same join key are
still assigned to the same reduce task.

– As records from the smaller input are guaranteed to
be ahead of those from L for a given join key, only
the records from the smaller input are buffered and the
records of the larger input are streamed to generate the
join output.

• Broadcast join: Instead of moving both input relations across
the network as in the repartition-based joins, the broadcast
join approach moves only the smaller input relation so that
it avoids the preprocessing sorting requirement of both input
relations and more importantly avoids the network overhead
for moving the larger relation.
• Semi-join: This join approach tries to avoid the problem of

the broadcast join approach where it is possible to send many
records of the smaller input relation across the network while
they may not be actually referenced by any records in the
other relation. It achieves this goal at the cost of an extra
scan of the smaller input relation where it determines the set
of unique join keys in the smaller relation, send them to the
other relation to specify the list of the actual referenced join
keys and then send only these records across the network for
executing the real execution of the join operation.

Figure 2: Data and control flow for the Map-
Reduce-Merge framework. The coordinator man-
ages two sets of mappers and reducers. After these
tasks are done, it launches a set of mergers that read
outputs from selected reducers and merge them with
user-defined logic.

parallel processing (MPP) machines equipped with high-
end network and storage subsystems, most search en-
gines run on large clusters of commodity hardware.
This hardware is managed and powered by open-source
operating systems and utilities, so that the cost is low.

• Extremely Scalable RAIN Cluster: Instead of us-
ing centralized RAID-based SAN or NAS storage sys-
tems, every Map-Reduce node has its own local off-
the-shelf hard drives. These nodes are loosely cou-
pled in rackable systems connected with generic LAN
switches. Loose coupling and shared-nothing architec-
ture make Map-Reduce/GFS clusters highly scalable.
These nodes can be taken out of service with almost no
impact to still-running Map-Reduce jobs. These clus-
ters are called Redundant Array of Independent (and
Inexpensive) Nodes (RAIN) [18]. GFS is essentially a
RAIN management system.

• Fault-Tolerant yet Easy to Administer: Due to
its high scalability, Map-Reduce jobs can run on clus-
ters with thousands of nodes or even more. These
nodes are not very reliable. At any point in time, a
certain percentage of these commodity nodes or hard
drives will be out of order. GFS and Map-Reduce are
designed not to view this certain rate of failure as an
anomaly; instead they use straightforward mechanisms
to replicate data and launch backup tasks so as to
keep still-running processes going. To handle crashed
nodes, system administrators simply take crashed hard-
ware off-line. New nodes can be plugged in at any time
without much administrative hassle. There is no com-
plicated backup, restore and recovery configurations
and/or procedures like the ones that can be seen in
many DBMS.

• Simplified and Restricted yet Powerful: Map-
Reduce is a restricted programming model, it only
provides straightforward map and reduce interfaces.
However, most search-engine (and generic) data pro-
cessing tasks can be effectively implemented in this

model. These tasks can immediately enjoy high paral-
lelism with only a few lines of administration and con-
figuration code. This “simplified” philosophy can also
be seen in many GFS designs. Developers can focus on
formulating their tasks to the Map-Reduce interface,
without worrying about such issues as implementing
memory management, file allocation, parallel, multi-
threaded, or network programming.

• Highly Parallel yet Abstracted: The most impor-
tant contribution of Map-Reduce is perhaps its auto-
matic parallelization and execution. Even though it
might not be optimized for a specific task, the produc-
tivity gain from developing an application with Map-
Reduce is far higher than doing it from scratch on the
same requirements. Map-Reduce allows developers to
focus mainly on the problem at hand rather than wor-
rying about the administrative details.

• High Throughput: Deployed on low-cost hardware
and modeled in simplified, generic frameworks, Map-
Reduce systems are hardly optimized to perform like
a massively parallel processing systems deployed with
the same number of nodes. However, these disadvan-
tages (or advantages) allow Map-Reduce jobs to run on
thousands of nodes at relatively low cost. A schedul-
ing system places each Map and Reduce task at a near-
optimal node (considering the vicinity to data and load
balancing), so that many Map-Reduce tasks can share
the same cluster.

• High Performance by the Large: Even though
Map-Reduce systems are generic, and not usually tuned
to be high performance for specific tasks, they still can
achieve high performance simply by being deployed on
a large number of nodes. In [6], the authors mentioned
a then world-record Terabyte [11] sorting benchmark
by using Map-Reduce on thousands of machines. In
short, sheer parallelism can generate high performance,
and Map-Reduce programs can take advantage of it.

• Shared-Disk Storage yet Shared-Nothing Com-
puting: In a Map-Reduce environment, every node
has its own local hard drives. Mappers and reduc-
ers use these local disks to store intermediate files and
these files are read remotely by reducers, i.e., Map-
Reduce is a shared-nothing architecture. However,
Map-Reduce jobs read input from and write output to
GFS, which is shared by every node. GFS replicates
disk chunks and uses pooled disks to support ultra
large files. Map-Reduce’s shared-nothing architecture
makes it much more scalable than one that shares disk
or memory. In the mean time, Map and Reduce tasks
share an integrated GFS that makes thousands of disks
behave like one.

• Set-Oriented Keys and Values; File Abstracted:
With GFS’s help, Map-Reduce can process thousands
of file chunks in parallel. The volume can be far beyond
the size limit set for an individual file by the underlying
OS file system. Developers see data as keys and values,
no longer raw bits and bytes, nor file descriptors.

• Functional Programming Primitives: The Map-
Reduce interface is based on two functional-progra-
mming primitives [6]. Their signatures are re-produced
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Figure 4: An Overview of The Map-Reduce-Merge Frame-
work [126].

• Per-split semi-join: This join approach tries to improve the
semi-join approach with a further step to address the fact that
not every record in the filtered version of the smaller relation
will join with a particular split of the larger relation. There-
fore, an extra process step is executed to determine the target
split(s) of each filtered join key.

Figure 3 illustrates a decision tree that summarizes the tradeoffs
of the studied join strategies according to the results of that study.
Based on statistics, such as the relative data size and the fraction of
the join key referenced, this decision tree tries to determine what
is the right join strategy for a given circumstance. If data is not
preprocessed, the right join strategy depends on the size of the data
transferred via the network. If the network cost of broadcasting an
input relation R to every node is less expensive than transferring
both R and projected L, then the broadcast join algorithm should
be used. When preprocessing is allowed, semi-join, per-split semi-
join and directed join with sufficient partitions are the best choices.
Semi-join and per-split semi-join offer further flexibility since their
preprocessing steps are insensitive to how the log table is orga-
nized, and thus suitable for any number of reference tables. In ad-
dition, the preprocessing steps of these two algorithms are cheaper
since there is no shuffling of the log data.

To tackle the limitation of the extra processing requirements for
performing join operations in the MapReduce framework, the Map-
Reduce-Merge model [126] have been introduced to enable the pro-
cessing of multiple datasets. Figure 4 illustrates the framework of
this model where the map phase transforms an input key/value pair
(k1,v1) into a list of intermediate key/value pairs [(k2,v2)]. The
reduce function aggregates the list of values [v2] associated with
k2 and produces a list of values [v3] which is also associated with
k2. Note that inputs and outputs of both functions belong to the
same lineage (α). Another pair of map and reduce functions pro-
duce the intermediate output (k3, [v4]) from another lineage (β ).
Based on keys k2 and k3, the merge function combines the two
reduced outputs from different lineages into a list of key/value out-
puts [(k4,v5)]. This final output becomes a new lineage (γ). If α

= β then this merge function does a self-merge which is similar to
self-join in relational algebra. The main differences between the
processing model of this framework and the original MapReduce is
the production of a key/value list from the reduce function instead
of just that of values. This change is introduced because the merge
function requires input datasets to be organized (partitioned, then



Figure 3: Example to join Employee and Depart-
ment tables and compute employee bonuses (see
§ 3.1).

Algorithm 1 Map function for the Employee dataset.

1: map(const Key& key, /* emp id */
2: const Value& value /* emp info */) {
3: emp id = key;
4: dept id = value.dept id;
5: /* compute bonus using emp info */
6: output key = (dept id, emp id);
7: output value = (bonus);
8: Emit(output key, output value);
9: }

others are packed into a dept info “value.” One example
query is to join these two datasets and compute employee
bonuses.

Before these two datasets are joined in a merger, they are
first processed by a pair of mappers and reducers. A com-
plete data flow is shown in Fig. 3. On the left hand side, a
mapper reads Employee entries and computes a bonus for
each entry. A reducer then sums up these bonuses for ev-
ery employee and sorts them by dept id, then emp id. On
the right hand side, a mapper reads Department entries and
computes bonus adjustments. A reducer then sorts these de-
partment entries. At the end, a merger matches the output
records from the two reducers on dept id using the sort-
merge algorithm, applies a department-based bonus adjust-
ment on employee bonuses. Pseudocode for these mappers
and reducers are shown in Alg. 1, 2, 3, and 4.

After these two pairs of Map-Reduce tasks are finished,
a merger task takes their intermediate outputs, and joins
them on dept id. We will describe the details of major merge
components in following sections.

3.2 Implementation
We have implemented a Map-Reduce-Merge framework,

in which Map and Reduce components are inherited from
Google Map-Reduce except minor signature changes. The
new Merge module includes several new components: merge

Algorithm 2 Map function for the Department dataset.

1: map(const Key& key, /* dept id */
2: const Value& value /* dept info */) {
3: dept id = key;
4: bonus adjustment = value.bonus adjustment;
5: Emit((dept id), (bonus adjustment));
6: }

Algorithm 3 Reduce function for the Employee dataset.

1: reduce(const Key& key, /* (dept id, emp id) */
2: const ValueIterator& value
3: /* an iterator for a bonuses collection */) {
4: bonus sum = /* sum up bonuses for each emp id */
5: Emit(key, (bonus sum));
6: }

function, processor function, partition selector, and config-
urable iterator. We will use the employee-bonus example to
explain the data and control flow of this framework and how
these components collaborate.
The merge function (merger) is like map or reduce, in

which developers can implement user-defined data process-
ing logic. While a call to a map function (mapper) processes
a key/value pair, and a call to a reduce function (reducer)
processes a key-grouped value collection, a merger processes
two pairs of key/values, that each comes from a distinguish-
able source.
At the Merge phase, users might want to apply different

data-processing logic on data based on their sources. An
example is the build and probe phases of a hash join, where
build programming logic is applied on one table then probe
the other. To accommodate this pattern, a processor is a
user-defined function that processes data from one source
only. Users can define two processors in Merge.
After map and reduce tasks are about done, a Map-Reduce-

Merge coordinator launches mergers on a cluster of nodes
(see Fig. 2). When a merger starts up, it is assigned with a
merger number. Using this number, a user-definable module
called partition selector can determine from which reducers
this merger retrieves its input data. Mappers and reducers
are also assigned with a number. For mappers, this num-
ber represents the input file split. For reducers, this number
represents an input bucket, in which mappers partition and
store their output data to. For Map-Reduce users, these
numbers are simply system implementation detail, but in
Map-Reduce-Merge, users utilize these numbers to associate
input/output between mergers and reducers in partition se-
lectors.
Like mappers and reducers, a merger can be considered

as having logical iterators that read data from inputs. Each
mapper and reducer have one logical iterator and it moves
from the begin to the end of a data stream, which is an
input file split for a mapper, or a merge-sorted stream for
a reducer. A merger reads data from two sources, so it
can be viewed as having two logical iterators. These iter-
ators usually move forward as their mapper/reducer coun-
terparts, but their relative movement against each others
can be instrumented to implement a user-defined merge al-
gorithm. Our Map-Reduce-Merge framework provides a
user-configurable module (iterator-manager) that it is called
for the information that controls the movement of these con-
figurable iterators. Later, we will describe several iteration
patterns from relational join algorithms. A Merge phase
driver, as shown in Alg. 5, is needed to coordinate these
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Figure 5: A Sample Execution of The Map-Reduce-Merge
Framework [126].

either sorted or hashed) by keys and these keys have to be passed
into the function to be merged. In the original framework, the re-
duced output is final. Hence, users pack whatever is needed in [v3]
while passing k2 for the next stage is not required. Figure 5 illus-
trates a sample execution of the Map-Reduce-Merge framework.
In this example, there are two datasets Employee and Department
where Employee’s key attribute is emp-id and the Department’s
key is dept-id. The execution of this example query aims to
join these two datasets and compute employee bonuses. On the
left hand side of Figure 5, a mapper reads Employee entries and
computes a bonus for each entry. A reducer then sums up these
bonuses for every employee and sorts them by dept-id, then
emp-id. On the right hand side, a mapper reads Department en-
tries and computes bonus adjustments. A reducer then sorts these
department entries. At the end, a merger matches the output records
from the two reducers on dept-id and applies a department-
based bonus adjustment on employee bonuses. Yang et al. [127]
have also proposed an approach for improving the Map-Reduce-
Merge framework by adding a new primitive called Traverse. This
primitive can process index file entries recursively, select data par-
titions based on query conditions and feed only selected partitions
to other primitives.

The Map-Join-Reduce [68] represents another approach that has
been introduced with a filtering-join-aggregation programming model
as an extension of the standard MapReduce’s filtering-aggregation
programming model. In particular, in addition to the standard map-
per and reducer operation of the standard MapReduce framework,
they introduce a third operation, join (called joiner), to the frame-
work. Hence, to join multiple datasets for aggregation, users spec-
ify a set of join() functions and the join order between them. Then,
the runtime system automatically joins the multiple input datasets
according to the join order and invoke join() functions to process
the joined records. They have also introduced a one-to-many shuf-
fling strategy which shuffles each intermediate key/value pair to
many joiners at one time. Using a tailored partition strategy, they
can utilize the one-to-many shuffling scheme to join multiple datasets
in one phase instead of a sequence of MapReduce jobs. The run-

time system for executing a Map-Join-Reduce job launches two
kinds of processes: MapTask, and ReduceTask. Mappers run inside
the MapTask process while joiners and reducers are invoked inside
the ReduceTask process. Therefore, Map-Join-Reduce’s process
model allows for the pipelining of intermediate results between
joiners and reducers since joiners and reducers are run inside the
same ReduceTask process.

[5, 7] have presented another approach to improve the join phase
in the MapReduce framework. The approach aims to optimize the
communication cost by focusing on selecting the most appropriate
attributes that are used to partition and replicate the data among the
reduce process. Therefore, it begins by identifying the map-key the
set of attributes that identify the Reduce process to which a Map
process must send a particular tuple. Each attribute of the map-key
gets a "share" which is the number of buckets into which its val-
ues are hashed, to form a component of the identifier of a Reduce
process. Relations have their tuples replicated in limited fashion
of which the degree of replication depends on the shares for those
map-key attributes that are missing from their schema. The ap-
proach consider two important special join cases: chain joins (rep-
resents a sequence of 2-way join operations where the output of
one operation in this sequence is used as an input to another op-
eration in a pipelined fashion) and star joins (represents joining of
a large fact table with several smaller dimension tables). In each
case, the proposed algorithm is able to determine the map-key and
determine the shares that yield the least replication. The proposed
approach is not always superior to the conventional way of using
map-reduce to implement joins. However, there are some cases
where the proposed approach results in clear wins such as: 1) Ana-
lytic queries in which a very large fact table is joined with smaller
dimension tables. 2) Queries involving paths through graphs with
high out-degree, such as the Web or a social network.

3.2 Supporting Iterative Processing
The basic MapReduce framework does not directly support these

iterative data analysis applications. Instead, programmers must im-
plement iterative programs by manually issuing multiple MapRe-
duce jobs and orchestrating their execution using a driver program.
In practice, there are two key problems with manually orchestrating
an iterative program in MapReduce:
• Even though much of the data may be unchanged from itera-

tion to iteration, the data must be re-loaded and re-processed
at each iteration, wasting I/O, network bandwidth and CPU
resources.

• The termination condition may involve the detection of when
a fixpoint has been reached. This condition may itself require
an extra MapReduce job on each iteration, again incurring
overhead in terms of scheduling extra tasks, reading extra
data from disk and moving data across the network.

The HaLoop system [24] is designed to support iterative process-
ing on the MapReduce framework by extending the basic MapRe-
duce framework with two main functionalities:

1. Caching the invariant data in the first iteration and then reusing
them in later iterations.

2. Caching the reducer outputs, which makes checking for a
fixpoint more efficient, without an extra MapReduce job.

In order to accommodate the requirements of iterative data anal-
ysis applications, HaLoop has incorporated the following changes
to the basic Hadoop MapReduce framework:
• It exposes a new application programming interface to users

that simplifies the expression of iterative MapReduce pro-
grams.
• HaLoop’s master node contains a new loop control module



that repeatedly starts new map-reduce steps that compose the
loop body until a user-specified stopping condition is met.
• It uses a new task scheduler that leverages data locality.
• It caches and indices application data on slave nodes. In

principle, the task tracker not only manages task execution
but also manages caches and indices on the slave node and
redirects each task’s cache and index accesses to local file
system.

In principle, HaLoop relies on the same file system and has the
same task queue structure as Hadoop but the task scheduler and task
tracker modules are modified, and the loop control, caching, and in-
dexing modules are newly introduced to the architecture. The task
tracker not only manages task execution but also manages caches
and indices on the slave node, and redirects each task’s cache and
index accesses to local file system.

In the MapReduce framework, each map or reduce task contains
its portion of the input data and the task runs by performing the
map/reduce function on its input data records where the life cycle
of the task ends when finishing the processing of all the input data
records has been completed. The iMapReduce framework [133]
supports the feature of iterative processing by keeping alive each
map and reduce task during the whole iterative process. In partic-
ular, when all of the input data of a persistent task are parsed and
processed, the task becomes dormant, waiting for the new updated
input data. For a map task, it waits for the results from the reduce
tasks and is activated to work on the new input records when the re-
quired data from the reduce tasks arrive. For the reduce tasks, they
wait for the map tasks’ output and are activated synchronously as
in MapReduce. Jobs can terminate their iterative process in one of
two ways:

1. Defining fixed number of iterations: Iterative algorithm stops
after it iterates n times.

2. Bounding the distance between two consecutive iterations:
Iterative algorithm stops when the distance is less than a
threshold.

The iMapReduce runtime system does the termination check after
each iteration. To terminate the iterations by a fixed number of
iterations, the persistent map/reduce task records its iteration num-
ber and terminates itself when the number exceeds a threshold. To
bound the distance between the output from two consecutive iter-
ations, the reduce tasks can save the output from two consecutive
iterations and compute the distance. If the termination condition
is satisfied, the master will notify all the map and reduce tasks to
terminate their execution.

Other projects have been implemented for supporting iterative
processing on the MapReduce framework. For example, Twister12

is a MapReduce runtime with an extended programming model
that supports iterative MapReduce computations efficiently [42].
It uses a publish/subscribe messaging infrastructure for communi-
cation and data transfers, and supports long running map/reduce
tasks. In particular, it provides programming extensions to MapRe-
duce with broadcast and scatter type data transfers. Microsoft has
also developed a project that provides an iterative MapReduce run-
time for Windows Azure called Daytona13.

3.3 Data and Process Sharing
With the emergence of cloud computing, the use of an analyti-

cal query processing infrastructure (e.g., Amazon EC2) can be di-
rectly mapped to monetary value. Taking into account that different
MapReduce jobs can perform similar work, there could be many

12http://www.iterativemapreduce.org/
13http://research.microsoft.com/en-us/projects/daytona/

opportunities for sharing the execution of their work. Thus, this
sharing can reduce the overall amount of work which consequently
leads to the reduction of the monetary charges incurred while uti-
lizing the resources of the processing infrastructure. The MRShare
system [98] have been presented as a sharing framework which is
tailored to transform a batch of queries into a new batch that will
be executed more efficiently by merging jobs into groups and eval-
uating each group as a single query. Based on a defined cost model,
they described an optimization problem that aims to derive the op-
timal grouping of queries in order to avoid performing redundant
work and thus resulting in significant savings on both processing
time and money. In particular, the approach considers exploiting
the following sharing opportunities:
• Sharing Scans. To share scans between two mapping pipelines

Mi and M j, the input data must be the same. In addition,
the key/value pairs should be of the same type. Given that,
it becomes possible to merge the two pipelines into a sin-
gle pipeline and scan the input data only once. However, it
should be noted that such combined mapping will produce
two streams of output tuples (one for each mapping pipeline
Mi and M j) . In order to distinguish the streams at the re-
ducer stage, each tuple is tagged with a tag() part. This
tagging part is used to indicate the origin mapping pipeline
during the reduce phase.

• Sharing Map Output. If the map output key and value types
are the same for two mapping pipelines Mi and M j then the
map output streams for Mi and M j can be shared. In particu-
lar, if Mapi and Map j are applied to each input tuple. Then,
the map output tuples coming only from Mapi are tagged
with tag(i) only. If a map output tuple was produced from
an input tuple by both Mapi and Map j, it is then tagged by
tag(i)+tag(j). Therefore, any overlapping parts of the
map output will be shared. In principle, producing a smaller
map output leads to savings on sorting and copying interme-
diate data over the network.
• Sharing Map Functions. Sometimes the map functions are

identical and thus they can be executed once. At the end of
the map stage two streams are produced, each tagged with
its job tag. If the map output is shared, then clearly only
one stream needs to be generated. Even if only some filters
are common in both jobs, it is possible to share parts of map
functions.

In practice, sharing scans and sharing map-output yield I/O sav-
ings while sharing map functions (or parts of them) additionally
yield CPU savings.

While the MRShare system focus on sharing the processing be-
tween queries that are executed concurrently, the ReStore system [43,
44] has been introduced so that it can enable the queries that are
submitted at different times to share the intermediate results of pre-
viously executed jobs and reusing them for future submitted jobs
to the system. In particular, each MapReduce job produces output
that is stored in the distributed file system used by the MapReduce
system (e.g. HDFS). These intermediate results are kept (for a de-
fined period) and managed so that they can be used as input by
subsequent jobs. ReStore can make use of whole jobs or sub-jobs
reuse opportunities. To achieve this goal, the ReStore consists of
two main components:
• Repository of MapReduce job outputs: It stores the outputs of

previously executed MapReduce jobs and the physical plans
of these jobs.
• Plan matcher and rewriter: Its aim is to find physical plans

in the repository that can be used to rewrite the input jobs
using the available matching intermediate results.



In principle, the approach of the ReStore system can be viewed as
analogous to the steps of building and using materialized views for
relational databases [55].

3.4 Support of Data Indices and Column Stor-
age

One of the main limitations of the original implementation of
the MapReduce framework is that it is designed in a way that the
jobs can only scan the input data in a sequential-oriented fash-
ion. Hence, the query processing performance of the MapReduce
framework is unable to match the performance of a well-configured
parallel DBMS [104]. In order to tackle this challenge, [41] have
presented the Hadoop++ system which aims to boost the query
performance of the Hadoop system without changing any of the
system internals. They achieved this goal by injecting their changes
through user-defined function (UDFs) which only affect the Hadoop
system from inside without any external effect. In particular, they
introduce the following main changes:
• Trojan Index: The original Hadoop implementation does not

provide index access due to the lack of a priori knowledge of
the schema and the MapReduce jobs being executed. Hence,
the Hadoop++ system is based on the assumption that if we
know the schema and the anticipated MapReduce jobs, then
we can create appropriate indices for the Hadoop tasks. In
particular, trojan index is an approach to integrate indexing
capability into Hadoop in a non-invasive way. These indices
are created during the data loading time and thus have no
penalty at query time. Each trojan Index provides an optional
index access path which can be used for selective MapRe-
duce jobs. The scan access path can still be used for other
MapReduce jobs. These indices are created by injecting ap-
propriate UDFs inside the Hadoop implementation. Specifi-
cally, the main features of trojan indices can be summarized
as follows:

– No External Library or Engine: Trojan indices inte-
grate indexing capability natively into the Hadoop frame-
work without imposing a distributed SQL-query engine
on top of it.

– Non-Invasive: They do not change the existing Hadoop
framework. The index structure is implemented by pro-
viding the right UDFs.

– Optional Access Path: They provide an optional index
access path which can be used for selective MapReduce
jobs. However, the scan access path can still be used for
other MapReduce jobs.

– Seamless Splitting: Data indexing adds an index over-
head for each data split. Therefore, the logical split in-
cludes the data as well as the index as it automatically
splits the indexed data at logical split boundaries.

– Partial Index: Trojan Index need not be built on the
entire split. However, it can be built on any contiguous
subset of the split as well.

– Multiple Indexes: Several Trojan Indexes can be built
on the same split. However, only one of them can be
the primary index. During query processing, an appro-
priate index can be chosen for data access based on the
logical query plan and the cost model.

• Trojan Join: Similar to the idea of the trojan index, the Hadoop++
system assumes that if we know the schema and the expected
workload, then we can co-partition the input data during the
loading time. In particular, given any two input relations,
they apply the same partitioning function on the join attributes
of both the relations at data loading time and place the co-

group pairs, having the same join key from the two relations,
on the same split and hence on the same node. As a result,
join operations can be then processed locally within each
node at query time. Implementing the trojan joins do not
require any changes to be made to the existing implementa-
tion of the Hadoop framework. The only changes are made
on the internal management of the data splitting process. In
addition, trojan indices can be freely combined with trojan
joins.

The design and implementation of a column-oriented and binary
backend storage format for Hadoop has been presented in [48].
In general, a straightforward way to implement a column-oriented
storage format for Hadoop is to store each column of the input
dataset in a separate file. However, this raises two main challenges:
• It requires generating roughly equal sized splits so that a job

can be effectively parallelized over the cluster.
• It needs to ensure that the corresponding values from differ-

ent columns in the dataset are co-located on the same node
running the map task.

The first challenge can be tackled by horizontally partitioning the
dataset and storing each partition in a separate subdirectory. The
second challenge is harder to tackle because of the default 3-way
block-level replication strategy of HDFS that provides fault toler-
ance on commodity servers but does not provide any co-location
guarantees. [48] tackle this challenge by implementing a modified
HDFS block placement policy which guarantees that the files cor-
responding to the different columns of a split are always co-located
across replicas. Hence, when reading a dataset, the column input
format can actually assign one or more split-directories to a single
split and the column files of a split-directory are scanned sequen-
tially where the records are reassembled using values from corre-
sponding positions in the files. A lazy record construction tech-
nique is used to mitigate the deserialization overhead in Hadoop,
as well as eliminate unnecessary disk I/O. The basic idea behind
lazy record construction is to deserialize only those columns of a
record that are actually accessed in a map function. Each column
of the input dataset can be compressed using one of the following
compression schemes:

1. Compressed Blocks: This scheme uses a standard compres-
sion algorithm to compress a block of contiguous column
values. Multiple compressed blocks may fit into a single
HDFS block. A header indicates the number of records in
a compressed block and the block’s size. This allows the
block to be skipped if no values are accessed in it. However,
when a value in the block is accessed, the entire block needs
to be decompressed.

2. Dictionary Compressed Skip List: This scheme is tailored
for map-typed columns. It takes advantage of the fact that
the keys used in maps are often strings that are drawn from a
limited universe. Such strings are well suited for dictionary
compression. A dictionary is built of keys for each block of
map values and store the compressed keys in a map using a
skip list format. The main advantage of this scheme is that
a value can be accessed without having to decompress an
entire block of values.

One advantage of this approach is that adding a column to a
dataset is not an expensive operation. This can be done by sim-
ply placing an additional file for the new column in each of the
split-directories. On the other hand, a potential disadvantage of
this approach is that the available parallelism may be limited for
smaller datasets. Maximum parallelism is achieved for a MapRe-
duce job when the number of splits is at least equal to the number
of map tasks.



Figure 6: An Example Structure of CFile [84].

The Llama system [84] have introduced another approach of
providing column storage support for the MapReduce framework.
In this approach, each imported table is transformed into column
groups where each group contains a set of files representing one
or more columns. Llama introduced a column-wise format for
Hadoop, called CFile, where each file can contain multiple data
blocks and each block of the file contains a fixed number of records
(Figure 6). However, the size of each logical block may vary since
records can be variable-sized. Each file includes a block index,
which is stored after all data blocks, stores the offset of each block
and is used to locate a specific block. In order to achieve storage
efficiency, Llama uses block-level compression by using any of the
well-known compression schemes. In order to improve the query
processing and the performance of join operations, Llama columns
are formed into correlation groups to provide the basis for the ver-
tical partitioning of tables. In particular, it creates multiple vertical
groups where each group is defined by a collection of columns,
one of them is specified as the sorting column. Initially, when a
new table is imported into the system, a basic vertical group is cre-
ated which contains all the columns of the table and sorted by the
table’s primary key by default. In addition, based on statistics of
query patterns, some auxiliary groups are dynamically created or
discarded to improve the query performance. The Clydesdale sys-
tem [70, 12], a system which has been implemented for targeting
workloads where the data fits a star schema, uses CFile for stor-
ing its fact tables. It also relies on tailored join plans and block
iteration mechanism [135] for optimizing the execution of its target
workloads.

RCFile [56] (Record Columnar File) is another data placement
structure that provides column-wise storage for Hadoop file system
(HDFS). In RCFile, each table is firstly stored as horizontally parti-
tioned into multiple row groups where each row group is then ver-
tically partitioned so that each column is stored independently. In
particular, each table can have multiple HDFS blocks where each
block organizes records with the basic unit of a row group. De-
pending on the row group size and the HDFS block size, an HDFS
block can have only one or multiple row groups. In particular, a
row group contains the following three sections:

1. The sync marker which is placed in the beginning of the
row group and mainly used to separate two continuous row
groups in an HDFS block.

2. A metadata header which stores the information items on
how many records are in this row group, how many bytes
are in each column and how many bytes are in each field in a
column.

3. The table data section which is actually a column-store where
all the fields in the same column are stored continuously to-
gether.

RCFile utilizes a column-wise data compression within each row
group and provides a lazy decompression technique to avoid unnec-
essary column decompression during query execution. In particu-
lar, the metadata header section is compressed using the RLE (Run
Length Encoding) algorithm. The table data section is not com-
pressed as a whole unit. However, each column is independently
compressed with the Gzip compression algorithm. When process-
ing a row group, RCFile does not need to fully read the whole con-
tent of the row group into memory. However, it only reads the
metadata header and the needed columns in the row group for a
given query and thus it can skip unnecessary columns and gain the
I/O advantages of a column-store. The metadata header is always
decompressed and held in memory until RCFile processes the next
row group. However, RCFile does not decompress all the loaded
columns and uses a lazy decompression technique where a column
will not be decompressed in memory until RCFile has determined
that the data in the column will be really useful for query execution.

The notion of Trojan Data Layout has been coined in [69] which
exploits the existing data block replication in HDFS to create dif-
ferent Trojan Layouts on a per-replica basis. This means that rather
than keeping all data block replicas in the same layout, it uses dif-
ferent Trojan Layouts for each replica which is optimized for a dif-
ferent subclass of queries. As a result, every incoming query can be
scheduled to the most suitable data block replica. In particular, Tro-
jan Layouts change the internal organization of a data block and not
among data blocks. They co-locate attributes together according to
query workloads by applying a column grouping algorithm which
uses an interestingness measure that denotes how well a set of at-
tributes speeds up most or all queries in a workload. The column
groups are then packed in order to maximize the total interesting-
ness of data blocks. At query time, an incoming MapReduce job
is transparently adapted to query the data block replica that mini-
mizes the data access time. The map tasks are then routed of the
MapReduce job to the data nodes storing such data block replicas.

3.5 Effective Data Placement
In the basic implementation of the Hadoop project, the objective

of the data placement policy is to achieve good load balance by
distributing the data evenly across the data servers, independently
of the intended use of the data. This simple data placement policy
works well with most Hadoop applications that access just a single
file. However, there are some other applications that process data
from multiple files which can get a significant boost in performance
with customized strategies. In these applications, the absence of
data colocation increases the data shuffling costs, increases the net-
work overhead and reduces the effectiveness of data partitioning.
CoHadoop [45] is a lightweight extension to Hadoop which is de-
signed to enable colocating related files at the file system level
while at the same time retaining the good load balancing and fault
tolerance properties. It introduces a new file property to identify
related data files and modify the data placement policy of Hadoop
to colocate copies of those related files in the same server. These
changes are designed in a way to retain the benefits of Hadoop, in-
cluding load balancing and fault tolerance. In principle, CoHadoop
provides a generic mechanism that allows applications to control
data placement at the file-system level. In particular, a new file-
level property called a locator is introduced and the Hadoop’s data
placement policy is modified so that it makes use of this locator
property. Each locator is represented by a unique value (ID) where
each file in HDFS is assigned to at most one locator and many files
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Figure 7: Example file colocation in CoHadoop [45].

can be assigned to the same locator. Files with the same locator are
placed on the same set of datanodes, whereas files with no locator
are placed via Hadoop’s default strategy. It should be noted that
this colocation process involves all data blocks, including replicas.
Figure 7 shows an example of colocating two files, A and B, via a
common locator. All of A’s two HDFS blocks and B’s three blocks
are stored on the same set of datanodes. To manage the locator in-
formation and keep track of collocated files, CoHadoop introduces
a new data structure, the locator table, which stores a mapping of
locators to the list of files that share this locator. In practice, the Co-
Hadoop extension enables a wide variety of applications to exploit
data colocation by simply specifying related files such as: colo-
cating log files with reference files for joins, collocating partitions
for grouping and aggregation, colocating index files with their data
files and colocating columns of a table.

3.6 Pipelining and Streaming Operations
The original implementation of the MapReduce framework has

been designed in a way that the entire output of each map and
reduce task to be materialized into a local file before it can be
consumed by the next stage. This materialization step allows for
the implementation of a simple and elegant checkpoint/restart fault
tolerance mechanism. The MapReduce Online approach. [33, 34]
have been proposed as a modified architecture of the MapReduce
framework in which intermediate data is pipelined between oper-
ators while preserving the programming interfaces and fault toler-
ance models of previous MapReduce frameworks. This pipelining
approach provides important advantages to the MapReduce frame-
work such as:
• The reducers can begin their processing of the data as soon

as it is produced by mappers. Therefore, they can generate
and refine an approximation of their final answer during the
course of execution. In addition, they can provide initial es-
timates of the results several orders of magnitude faster than
the final results.
• It widens the domain of problems to which MapReduce can

be applied. For example, it facilitates the ability to design
MapReduce jobs that run continuously, accepting new data
as it arrives and analyzing it immediately (continuous queries).
This allows MapReduce to be used for applications such as
event monitoring and stream processing.
• Pipelining delivers data to downstream operators more promptly,

which can increase opportunities for parallelism, improve
utilization and reduce response time.

In this approach, each reduce task contacts every map task upon
initiation of the job and opens a TCP socket which will be used to
pipeline the output of the map function. As each map output record
is produced, the mapper determines which partition (reduce task)

the record should be sent to, and immediately sends it via the appro-
priate socket. A reduce task accepts the pipelined data it receives
from each map task and stores it in an in-memory buffer. Once the
reduce task learns that every map task has completed, it performs
a final merge of all the sorted runs. In addition, the reduce tasks of
one job can optionally pipeline their output directly to the map tasks
of the next job, sidestepping the need for expensive fault-tolerant
storage in HDFS for what amounts to a temporary file. However,
the computation of the reduce function from the previous job and
the map function of the next job cannot be overlapped as the final
result of the reduce step cannot be produced until all map tasks have
completed, which prevents effective pipelining. Therefore, the re-
ducer treats the output of a pipelined map task as tentative until the
JobTracker informs the reducer that the map task has committed
successfully. The reducer can merge together spill files generated
by the same uncommitted mapper, but will not combine those spill
files with the output of other map tasks until it has been notified
that the map task has committed. Thus, if a map task fails, each re-
duce task can ignore any tentative spill files produced by the failed
map attempt. The JobTracker will take care of scheduling a new
map task attempt, as in standard Hadoop. In principle, the main
limitation of the MapReduce Online approach is that it is based
on HDFS. Therefore, it is not suitable for streaming applications,
in which data streams have to be processed without any disk in-
volvement. A similar approach has been presented in [85] which
defines an incremental MapReduce job as one that processes data
in large batches of tuples and runs continuously according to a spe-
cific window range and slide of increment. In particular, it produces
a MapReduce result that includes all data within a window (of time
or data size) every slide and considers landmark MapReduce jobs
where the trailing edge of the window is fixed and the system incor-
porates new data into the existing result. Map functions are trivially
continuous, and process data on a tuple-by-tuple basis. However,
before the reduce function may process the mapped data, the data
must be partitioned across the reduce operators and sorted. When
the map operator first receives a new key-value pair, it calls the map
function and inserts the result into the latest increment in the map
results. The operator then assigns output key-value pairs to reduce
tasks, grouping them according to the partition function. Continu-
ous reduce operators participate in the sort as well, grouping values
by their keys before calling the reduce function.

The Incoop system [17] has been introduced as a MapReduce
implementation that has been adapted for incremental computa-
tions which detects the changes on the input datasets and enables
the automatic update of the outputs of the MapReduce jobs by em-
ploying a fine-grained result reuse mechanism. In particular, it al-
lows MapReduce programs which are not designed for incremental
processing to be executed transparently in an incremental manner.
To achieve this goal, the design of Incoop introduces new tech-
niques that are incorporated into the Hadoop MapReduce frame-
work. For example, instead of relying on HDFS to store the input
to MapReduce jobs, Incoop devises a file system called Inc-HDFS
(Incremental HDFS) that provides mechanisms to identify similar-
ities in the input data of consecutive job runs. In particular, Inc-
HDFS splits the input into chunks whose boundaries depend on the
file contents so that small changes to input do not change all chunk
boundaries. Therefore, this partitioning mechanism can maximize
the opportunities for reusing results from previous computations,
while preserving compatibility with HDFS by offering the same
interface and semantics. In addition, Incoop controls the granular-
ity of tasks so that large tasks can be divided into smaller subtasks
that can be re-used even when the large tasks cannot. Therefore, it
introduces a new Contraction phase that leverages Combiner func-



tions to reduce the network traffic by anticipating a small part of the
processing done by the Reducer tasks and control their granularity.
Furthermore, Incoop improves the effectiveness of memoization by
implementing an affinity-based scheduler that applies a work steal-
ing algorithm to minimize the amount of data movement across
machines. This modified scheduler strikes a balance between ex-
ploiting the locality of previously computed results and executing
tasks on any available machine to prevent straggling effects. On
the runtime, instances of incremental Map tasks take advantage of
previously stored results by querying the memoization server. If
they find that the result has already been computed, they fetch the
result from the location of their memoized output and conclude.
Similarly, the results of a Reduce task are remembered by storing
them persistently and locally where a mapping from a collision-
resistant hash of the input to the location of the output is inserted in
the memoization server.

The DEDUCE system [79] has been presented as a middleware
that attempts to combine real-time stream processing with the ca-
pabilities of a large scale data analysis framework like MapReduce.
In particular, it extends the IBM’s System S stream processing en-
gine and augments its capabilities with those of the MapReduce
framework. In this approach, the input data set to the MapReduce
operator can be either pre-specified at compilation time or could
be provided at runtime as a punctuated list of files or directories.
Once the input data is available, the MapReduce operator spawns a
MapReduce job and produces a list of punctuated list of files or di-
rectories, which point to the output data. Therefore, a MapReduce
operator can potentially spawn multiple MapReduce jobs over the
application lifespan but such jobs are spawned only when the pre-
ceding job (if any) has completed its execution. Hence, multiple
jobs can be cascaded together to create a data-flow of MapReduce
operators where the output from the MapReduce operators can be
read to provide updates to the stream processing operators.

3.7 System Optimizations
In general, running a single program in a MapReduce framework

may require tuning a number of parameters by users or system ad-
ministrators. The settings of these parameters control various as-
pects of job behavior during execution such as memory allocation
and usage, concurrency, I/O optimization, and network bandwidth
usage. The submitter of a Hadoop job has the option to set these
parameters either using a program-level interface or through XML
configuration files. For any parameter whose value is not speci-
fied explicitly during job submission, default values, either shipped
along with the system or specified by the system administrator, are
used [11]. Users can run into performance problems because they
do not know how to set these parameters correctly, or because they
do not even know that these parameters exist. [58] have focused
on the optimization opportunities presented by the large space of
configuration parameters for these programs. They introduced a
Profiler component to collect detailed statistical information from
unmodified MapReduce programs and a What-if Engine for fine-
grained cost estimation. In particular, the Profiler component is
responsible for two main aspects:

1. Capturing information at the fine granularity of phases within
the map and reduce tasks of a MapReduce job execution.
This information is crucial to the accuracy of decisions made
by the What-if Engine and the Cost-based Optimizer compo-
nents.

2. Using dynamic instrumentation to collect run-time monitor-
ing information from unmodified MapReduce programs. The
dynamic nature means that monitoring can be turned on or
off on demand.

The What-if Engine’s accuracy come from how it uses a mix of
simulation and model-based estimation at the phase level of MapRe-
duce job execution [57, 59, 60]. For a given MapReduce program,
the role of the cost-based optimizer component is to enumerate and
search efficiently through the high dimensional space of configu-
ration parameter settings, making appropriate calls to the What-if
Engine, in order to find a good configuration setting, it clusters pa-
rameters into lower-dimensional subspaces such that the globally-
optimal parameter setting in the high-dimensional space can be
generated by composing the optimal settings found for the sub-
spaces. Stubby [82] has been presented as a cost-based optimizer
for MapReduce workflows that searches through the subspace of
the full plan space that can be enumerated correctly and costed
based on the information available in any given setting. Stubby
enumerates the plan space based on plan-to-plan transformations
and an efficient search algorithm.

The Manimal system [66, 25] is designed as a static analysis-
style mechanism for detecting opportunities for applying relational
style optimizations in MapReduce programs. Like most programming-
language optimizers, it is a best-effort system where it does not
guarantee that it will find every possible optimization and it only
indicates an optimization when it is entirely safe to do so. In partic-
ular, the analyzer component of the system is responsible for exam-
ining the MapReduce program and sends the resulting optimization
descriptor to the optimizer component. In addition, the analyzer
also emits an index generation program that can yield a B+Tree
of the input file. The optimizer uses the optimization descriptor,
plus a catalog of pre-computed indexes, to choose an optimized ex-
ecution plan, called an execution descriptor. This descriptor, plus
a potentially-modified copy of the user’s original program, is then
sent for execution on the Hadoop cluster. These steps are performed
transparently from the user where the submitted program does not
need to be modified by the programmer in any way. In particular,
the main task of the analyzer is to produce a set of optimization
descriptors which enable the system to carry out a phase roughly
akin to logical rewriting of query plans in a relational database.
The descriptors characterize a set of potential modifications that
remain logically identical to the original plan. The catalog is a sim-
ple mapping from a filename to zero or more (X ,O) pairs where
X is an index file and O is an optimization descriptor. The opti-
mizer examines the catalog to see if there is any entry for input file.
If not, then it simply indicates that Manimal should run the un-
changed user program without any optimization. If there is at least
one entry for the input file, and a catalog-associated optimization
descriptor is compatible with analyzer-output, then the optimizer
can choose an execution plan that takes advantage of the associated
index file.

A key feature of MapReduce is that it automatically handles fail-
ures, hiding the complexity of fault-tolerance from the program-
mer. In particular, if a node crashes, MapReduce automatically
restart the execution of its tasks. In addition, if a node is available
but is performing poorly, MapReduce runs a speculative copy of
its task (backup task) on another machine to finish the computa-
tion faster. Without this mechanism of speculative execution, a job
would be as slow as the misbehaving task. This situation can arise
for many reasons, including faulty hardware and system misconfig-
uration. On the other hand, launching too many speculative tasks
may take away resources from useful tasks. Therefore, the accu-
racy in estimating the progress and time-remaining long running
jobs is an important challenge for a runtime environment like the
MapReduce framework. In particular, this information can play an
important role in improving resource allocation, enhancing the task
scheduling, enabling query debugging or tuning the cluster con-



figuration. The ParaTimer system [94, 95] has been proposed to
tackle this challenge. In particular, ParaTimer provides techniques
for handling several challenges including failures and data skew.
To handle unexpected changes in query execution times such as
those due to failures, ParaTimer provides users with a set of time-
remaining estimates that correspond to the predicted query execu-
tion times in different scenarios (i.e., a single worst-case failure, or
data skew at an operator). Each of these indicators can be annotated
with the scenario to which it corresponds, giving users a detailed
picture of possible expected behaviors. To achieve this goal, Para-
Timer estimates time-remaining by breaking queries into pipelines
where the time-remaining for each pipeline is estimated by consid-
ering the work to be done and the speed at which that work will be
performed, taking (time-varying) parallelism into account. To get
processing speeds, ParaTimer relies on earlier debug runs of the
same query on input data samples generated by the user. In addi-
tion, ParaTimer identifies the critical path in a query plan where it
then estimates progress along that path, effectively ignoring other
paths. [129] have presented an approach to estimate the progress of
MapReduce tasks within environments of clusters with heteroge-
nous hardware configuration. In these environments, choosing the
node on which to run a speculative task is as important as choos-
ing the task. They proposed an algorithm for speculative execution
called LATE (Longest Approximate Time to End) which is based on
three principles: prioritizing tasks to speculate, selecting fast nodes
on which to run and capping speculative tasks to prevent thrash-
ing. In particular, the algorithm speculatively execute the task that
it suspects will finish farthest into the future, because this task pro-
vides the greatest opportunity for a speculative copy to overtake
the original and reduce the job’s response time. To really get the
best chance of beating the original task with the speculative task,
the algorithm only launches speculative tasks on fast nodes (and
not the first available node). The RAFT (Recovery Algorithms for
Fast-Tracking) system [107, 108] has been introduced, as a part of
the Hadoop++ system [41], for tracking and recovering MapRe-
duce jobs under task or node failures. In particular, RAFT uses two
main checkpointing mechanisms: local checkpointing and query
metadata checkpointing. On the one hand, the main idea of local
checkpointing is to utilize intermediate results, which are by default
persisted by Hadoop, as checkpoints of ongoing task progress com-
putation. In general, map tasks spill buffered intermediate results
to local disk whenever the output buffer is on the verge to over-
flow. RAFT exploits this spilling phase to piggy-back checkpoint-
ing metadata on the latest spill of each map task. For each check-
point, RAFT stores a triplet of metadata that includes the taskID
which represents a unique task identifier, spillID which represents
the local path to the spilled data and offset which specifies the last
byte of input data that was processed in that spill. To recover from
a task failure, the RAFT scheduler reallocates the failed task to the
same node that was running the task. Then, the node resumes the
task from the last checkpoint and reuses the spills previously pro-
duced for the same task. This simulates a situation where previous
spills appear as if they were just produced by the task. In case
that there is no local checkpoint available, the node recomputes the
task from the beginning. On the other hand, the idea behind query
metadata checkpointing is to push intermediate results to reducers
as soon as map tasks are completed and to keep track of those in-
coming key-value pairs that produce local partitions and hence that
are not shipped to another node for processing. Therefore, in case
of a node failure, the RAFT scheduler can recompute local parti-
tions.

count: table sum of int;
total: table sum of float;
sumOfSquares: table sum of float;
x: float = input;
emit count $<$- 1;
emit total $<$- x;
emit sumOfSquares $<$- x * x;

Figure 8: An Example Sawzall Program

4. SYSTEMS OF DECLARATIVE INTERFACES
FOR THE MAPREDUCE FRAMEWORK

For programmers, a key appealing feature in the MapReduce
framework is that there are only two main high-level declarative
primitives (map and reduce) that can be written in any program-
ming language of choice and without worrying about the details of
their parallel execution. On the other hand, the MapReduce pro-
gramming model has its own limitations such as:
• Its one-input data format (key/value pairs) and two-stage data

flow is extremely rigid. As we have previously discussed, to
perform tasks that have a different data flow (e.g. joins or n
stages) would require the need to devise inelegant workarounds.
• Custom code has to be written for even the most common

operations (e.g. projection and filtering) which leads to the
fact that the code is usually difficult to reuse and maintain
unless the users build and maintain their own libraries with
the common functions they use for processing their data.

Moreover, many programmers could be unfamiliar with the MapRe-
duce framework and they would prefer to use SQL (in which they
are more proficient) as a high level declarative language to express
their task while leaving all of the execution optimization details to
the backend engine. In addition, it is beyond doubt that high level
language abstractions enable the underlying system to perform au-
tomatic optimization. In the following subsection we discuss re-
search efforts that have been proposed to tackle these problems and
add SQL-like interfaces on top of the MapReduce framework.

4.1 Sawzall
Sawzall [105] is a scripting language used at Google on top of

MapReduce. A Sawzall program defines the operations to be per-
formed on a single record of the data. There is nothing in the lan-
guage to enable examining multiple input records simultaneously,
or even to have the contents of one input record influence the pro-
cessing of another. The only output primitive in the language is
the emit statement, which sends data to an external aggregator (e.g.
Sum, Average, Maximum, Minimum) that gathers the results from
each record after which the results are then correlated and pro-
cessed. The authors argue that aggregation is done outside the lan-
guage for a couple of reasons: 1) A more traditional language can
use the language to correlate results but some of the aggregation
algorithms are sophisticated and are best implemented in a native
language and packaged in some form. 2) Drawing an explicit line
between filtering and aggregation enables a high degree of paral-
lelism and hides the parallelism from the language itself.

Figure ?? depicts an example Sawzall program where the first
three lines declare the aggregators count, total and sum of squares.
The keyword table introduces an aggregator type which are called
tables in Sawzall even though they may be singletons. These par-
ticular tables are sum tables which add up the values emitted to
them, ints or floats as appropriate. The Sawzall language is imple-



mented as a conventional compiler, written in C++, whose target
language is an interpreted instruction set, or byte-code. The com-
piler and the byte-code interpreter are part of the same binary, so
the user presents source code to Sawzall and the system executes it
directly. It is structured as a library with an external interface that
accepts source code which is then compiled and executed, along
with bindings to connect to externally-provided aggregators. The
datasets of Sawzall programs are often stored in Google File Sys-
tem (GFS) [52]. The business of scheduling a job to run on a cluster
of machines is handled by a software called Workqueue which cre-
ates a large-scale time sharing system out of an array of computers
and their disks. It schedules jobs, allocates resources, reports status
and collects the results.

Google has also developed FlumeJava [28], a Java library for de-
veloping and running data-parallel pipelines on top of MapReduce.
FlumeJava is centered around a few classes that represent paral-
lel collections. Parallel collections support a modest number of
parallel operations which are composed to implement data-parallel
computations where an entire pipeline, or even multiple pipelines,
can be translated into a single Java program using the FlumeJava
abstractions. To achieve good performance, FlumeJava internally
implements parallel operations using deferred evaluation. The in-
vocation of a parallel operation does not actually run the operation,
but instead simply records the operation and its arguments in an
internal execution plan graph structure. Once the execution plan
for the whole computation has been constructed, FlumeJava op-
timizes the execution plan and then runs the optimized execution
plan. When running the execution plan, FlumeJava chooses which
strategy to use to implement each operation (e.g., local sequential
loop vs. remote parallel MapReduce) based in part on the size of
the data being processed, places remote computations near the data
on which they operate and performs independent operations in par-
allel.

4.2 Pig Latin
Olston et al. [100] have presented a language called Pig Latin

that takes a middle position between expressing task using the high-
level declarative querying model in the spirit of SQL and the low-
level/procedural programming model using MapReduce. Pig Latin
is implemented in the scope of the Apache Pig project14 and is
used by programmers at Yahoo! for developing data analysis tasks.
Writing a Pig Latin program is similar to specifying a query ex-
ecution plan (e.g. a data flow graph). To experienced program-
mers, this method is more appealing than encoding their task as
an SQL query and then coercing the system to choose the desired
plan through optimizer hints. In general, automatic query optimiza-
tion has its limits especially with uncataloged data, prevalent user-
defined functions and parallel execution, which are all features of
the data analysis tasks targeted by the MapReduce framework. Fig-
ure 9 shows an example SQL query and its equivalent Pig Latin pro-
gram. Given a URL table with the structure (url,category, pagerank),
the task of the SQL query is to find each large category and its aver-
age pagerank of high-pagerank urls (> 0.2). A Pig Latin program is
described as a sequence of steps where each step represents a single
data transformation. This characteristic is appealing to many pro-
grammers. At the same time, the transformation steps are described
using high-level primitives (e.g. filtering, grouping, aggregation)
much like in SQL.

Pig Latin has several other features that are important for casual
ad-hoc data analysis tasks. These features include support for a
flexible, fully nested data model, extensive support for user-defined

14http://incubator.apache.org/pig

SQL

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP BY category 

HAVING COUNT(*) > 106

Pig Latin
good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>106;

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank);

Figure 9: An Example SQL Query and Its Equivalent Pig Latin
Program [50].
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Figure 10: Pig compilation and execution steps [100].

functions and the ability to operate over plain input files without
any schema information [51]. In particular, Pig Latin has a simple
data model consisting of the following four types:

1. Atom: An atom contains a simple atomic value such as a
string or a number, e.g. "alice".

2. Tuple: A tuple is a sequence of fields, each of which can be
any of the data types, e.g. ("alice", "lakers").

3. Bag: A bag is a collection of tuples with possible duplicates.
The schema of the constituent tuples is flexible where not all
tuples in a bag need to have the same number and type of
fields

e.g.
{

("alice", "lakers")
("alice", ("iPod", "apple"))

}
4. Map: A map is a collection of data items, where each item

has an associated key through which it can be looked up.
As with bags, the schema of the constituent data items is
flexible However, the keys are required to be data atoms, e.g.{

"k1"→ ("alice", "lakers")
"k2"→ "20"

}
To accommodate specialized data processing tasks, Pig Latin has

extensive support for user-defined functions (UDFs). The input and
output of UDFs in Pig Latin follow its fully nested data model. Pig
Latin is architected such that the parsing of the Pig Latin program
and the logical plan construction is independent of the execution
platform. Only the compilation of the logical plan into a physi-
cal plan depends on the specific execution platform chosen. Cur-
rently, Pig Latin programs are compiled into sequences of MapRe-
duce jobs which are executed using the Hadoop MapReduce envi-
ronment. In particular, a Pig Latin program goes through a series
of transformation steps [100] before being executed as depicted in
Figure 10. The parsing steps verifies that the program is syntac-
tically correct and that all referenced variables are defined. The



FROM (
MAP doctext USING ’python wc_mapper.py’ AS (word, cnt)
FROM docs
CLUSTER BY word

) a
REDUCE word, cnt USING ’python wc_reduce.py’;

Figure 11: An Example HiveQl Query [116].

output of the parser is a canonical logical plan with a one-to-one
correspondence between Pig Latin statements and logical operators
which are arranged in a directed acyclic graph (DAG). The logical
plan generated by the parser is passed through a logical optimizer.
In this stage, logical optimizations such as projection pushdown
are carried out. The optimized logical plan is then compiled into a
series of MapReduce jobs which are then passed through another
optimization phase. The DAG of optimized MapReduce jobs is
then topologically sorted and jobs are submitted to Hadoop for ex-
ecution.

4.3 Hive
The Hive project15 is an open-source data warehousing solution

which has been built by the Facebook Data Infrastructure Team on
top of the Hadoop environment [116]. The main goal of this project
is to bring the familiar relational database concepts (e.g. tables,
columns, partitions) and a subset of SQL to the unstructured world
of Hadoop while still maintaining the extensibility and flexibility
that Hadoop provides. Thus, it supports all the major primitive
types (e.g. integers, floats, strings) as well as complex types (e.g.
maps, lists, structs). Hive supports queries expressed in an SQL-
like declarative language, HiveQL16, and therefore can be easily
understood by anyone who is familiar with SQL. These queries are
compiled into MapReduce jobs that are executed using Hadoop.
In addition, HiveQL enables users to plug in custom MapReduce
scripts into queries [118]. For example, the canonical MapReduce
word count example on a table of documents (Figure 1) can be ex-
pressed in HiveQL as depicted in Figure 11 where the MAP clause
indicates how the input columns (doctext) can be transformed us-
ing a user program (’python wc_mapper.py’) into output columns
(word and cnt). The REDUCE clause specifies the user program
to invoke (’python wc_reduce.py’) on the output columns of the
subquery.

HiveQL supports Data Definition Language (DDL) statements
which can be used to create, drop and alter tables in a database [117].
It allows users to load data from external sources and insert query
results into Hive tables via the load and insert Data Manipulation
Language (DML) statements respectively. However, HiveQL cur-
rently does not support the update and deletion of rows in exist-
ing tables (in particular, INSERT INTO, UPDATE and DELETE
statements) which allows the use of very simple mechanisms to
deal with concurrent read and write operations without implement-
ing complex locking protocols. The metastore component is the
Hive’s system catalog which stores metadata about the underlying
table. This metadata is specified during table creation and reused
every time the table is referenced in HiveQL. The metastore dis-
tinguishes Hive as a traditional warehousing solution when com-
pared with similar data processing systems that are built on top of
MapReduce-like architectures like Pig Latin [100].

15http://hadoop.apache.org/hive/
16http://wiki.apache.org/hadoop/Hive/LanguageManual

4.4 Tenzing
The Tenzing system [30] has been presented by Google as an

SQL query execution engine which is built on top of MapReduce
and provides a comprehensive SQL92 implementation with some
SQL99 extensions (e.g. ROLLUP() and CUBE() OLAP exten-
sions). Tenzing also supports querying data in different formats
such as: row stores (e.g. MySQL database), column stores, Bigtable
(Google’s built in key-value store) [29], GFS (Google File Sys-
tem) [52], text and protocol buffers. In particular, the Tenzing sys-
tem has four major components:
• The distributed worker pool: represents the execution system

which takes a query execution plan and executes the MapRe-
duce jobs. The pool consists of master and worker nodes plus
an overall gatekeeper called the master watcher. The workers
manipulate the data for all the tables defined in the metadata
layer.
• The query server: serves as the gateway between the client

and the pool. The query server parses the query, applies dif-
ferent optimization mechanisms and sends the plan to the
master for execution. In principle, the Tenzing optimizer ap-
plies some basic rule and cost-based optimizations to create
an optimal execution plan.
• Client interfaces: Tenzing has several client interfaces in-

cluding a command line client (CLI) and a Web UI. The CLI
is a more powerful interface that supports complex script-
ing while the Web UI supports easier-to-use features such as
query and table browsers tools. There is also an API to di-
rectly execute queries on the pool and a standalone binary
which does not need any server side components but rather
can launch its own MapReduce jobs.
• The metadata server: provides an API to store and fetch

metadata such as table names and schemas and pointers to
the underlying data.

A typical Tenzing query is submitted to the query server (through
the Web UI, CLI or API) which is responsible for parsing the query
into an intermediate parse tree and fetching the required metadata
from the metadata server. The query optimizer goes through the
intermediate format, applies various optimizations and generates a
query execution plan that consists of one or more MapReduce jobs.
For each MapReduce, the query server finds an available master
using the master watcher and submits the query to it. At this stage,
the execution is physically partitioned into multiple units of work
where idle workers poll the masters for available work. The query
server monitors the generated intermediate results, gathers them as
they arrive and streams the output back to the client. In order to
increase throughput, decrease latency and execute SQL operators
more efficiently, Tenzing has enhanced the MapReduce implemen-
tation with the following main changes:
• Streaming and In-memory Chaining: The implementation of

Tenzing does not serialize the intermediate results of MapRe-
duce jobs to GFS. Instead, it streams the intermediate results



that can be used at function creation time to defer a decision
on a particular data type; at query plan-time, the function
will be asked to describe the type. This idea appears also
in Microsoft’s SCOPE data processing system [5], in partic-
ular to support extraction of structured data from flat files.
SQL/MR functions fully embrace and extend this approach:
they avoid the need for create-time configuration of a func-
tion, allow polymorphism of the input schema, and also en-
able the optional use of custom argument clauses (more on
these in Section 3) to provide additional query plan-time pa-
rameters to the function. These query-time customization
features allow SQL/MR functions to operate over a wide
range of inputs and behave more like general purpose library
functions than conventional UDFs.

Recently, interest in distributed parallel data processing
frameworks has increased. Examples include Google’s Map-
Reduce [7], Microsoft’s Dryad [13], and the open source
Hadoop project [1]. These frameworks are powerful tools
for parallel data processing because users need only to im-
plement well-defined procedural methods. The framework
then handles the parallel execution of those methods on data
distributed over a large cluster of servers. A key advantage
of these systems is that developers write simple procedu-
ral methods that are then applied in parallel using a well-
defined data partitioning and aggregation procedure. A dis-
advantage of these frameworks is that developers must often
write code to accomplish tasks that could easily have been
expressed in SQL or another query language. In particu-
lar, code reuse for ad hoc queries is limited as there is no
higher-level language than the procedural code.

Higher level systems for MapReduce-like infrastructures
have been proposed, including Pig [17], Hive [2], and SCOPE
[5]. Both combine the high-level declarative nature of SQL
while also exposing the lower level procedural, parallel capa-
bilities of a MapReduce framework. While Hive and SCOPE
seek for SQL compatibility or at least familiarity, to inte-
grate with MapReduce code, these systems introduce signif-
icant new syntax to normal SQL; for instance, in addition
to the usual SELECT, SCOPE adds PROCESS, REDUCE, and
COMBINE. By contrast, SQL/MR introduces a small amount
of new syntax and semantics by representing parallel func-
tions as a table. Overall, these languages represent good im-
provements to MapReduce, by introducing a form of declar-
ative query language. We have taken the complementary
approach of enhancing a massively-parallel, SQL-compliant
database with a MapReduce-like programming model. This
approach enables SQL/MR functions to leverage the struc-
ture of data that is inherent in relational databases via
schemas, and enables optimization by cost-based query op-
timizers that leverage relational algebra and statistics for
query-rewriting.

3. SYNTAX AND FUNCTIONALITY
In this section we present the syntax of invoking our

SQL/MR functions from within a standard SQL query (Sec-
tion 3.1), the execution model provided by SQL/MR func-
tions (Section 3.2), and the API provided for implementing
SQL/MR functions (Section 3.3). We also discuss the in-
stallation of SQL/MR functions (Section 3.4) and the use of
other files during SQL/MR execution (Section 3.5).

3.1 Query Syntax
The syntax for using a SQL/MR function is shown in Fig-

SELECT ...

FROM functionname(

ON table-or-query

[PARTITION BY expr, ...]

[ORDER BY expr, ...]

[clausename(arg, ...) ...]

)

...

Figure 4: SQL/MR function query syntax.

ure 4. The SQL/MR function invocation appears in the SQL
FROM clause and consists of the function name followed by a
parenthetically enclosed set of clauses. The first, and only
strictly required clause, is the ON clause, which specifies the
input to this invocation of the SQL/MR function. The ON

clause must contain a valid query. A table reference is also
valid, but can really be thought of as syntactic sugar for
a query that selects all columns from the specified table.
When a query is used, it must be contained within paren-
theses just as a subquery appearing in the FROM clause must
be parenthesized. It is important to note that the input
schema to the SQL/MR function is specified implicitly at
query plan-time in the form of the output schema for the
query used in the ON clause.

3.1.1 Partitioning

The next clause in the SQL/MR invocation is PARTITION
BY, which specifies a comma-separated list of expressions
used to partition the input to the SQL/MR function. These
expressions may reference any attributes in the schema of
the query or table reference specified by the ON clause. Sec-
tion 3.3 will describe the role of the PARTITION BY clause in
greater detail.

3.1.2 Sorting

The ORDER BY clause follows the PARTITION BY clause and
specifies a sort order for the input to the SQL/MR function.
The ORDER BY clause is only valid if a PARTITION BY clause
has also been used. The ORDER BY clause may reference any
attributes in the schema of the query or table reference con-
tained in the ON clause and accepts a comma-separated list
of any expressions that are valid in a standard SQL ORDER

BY clause. The data within each unique partition specified
by the PARTITION BY clause will be sorted independently
using the sort order specified in the ORDER BY clause.

3.1.3 Custom Argument Clauses

Following the ORDER BY clause, the user may add any num-
ber of custom argument clauses. The form of a custom argu-
ment clause is the clause name followed by a parenthesized
list of comma-separated literal arguments. The SQL/MR
function will receive a key-value map of these clause names
and arguments when it is initialized. The use of custom ar-
gument clauses allows query-time customization of SQL/MR
functionality and is one way in which SQL/MR enables dy-
namic polymorphism.

3.1.4 Usage as a Relation

The result of a SQL/MR function is a relation; therefore,
that result may participate in a query in exactly the same
way as any other valid table reference or subquery that can

Figure 12: Basic Syntax of SQL/MR Query Function [49].

between the Map and Reduce tasks using the network and
uses GFS only for backup purposes. In addition, it uses
memory chaining mechanism where the reducer and the map-
per of the same intermediate results are co-located in the
same process.
• Sort Avoidance: Certain operators such as hash join and hash

aggregation require shuffling but not sorting. The MapRe-
duce API was enhanced to automatically turn off sorting for
these operations, when possible, so that the mapper feeds
data to the reducer which automatically bypasses the inter-
mediate sorting step. Tenzing also implements a block-based
shuffle mechanism that combines many small rows into com-
pressed blocks which is treated as one row in order to avoid
reducer side sorting and avoid some of the overhead associ-
ated with row serialization and deserialization in the under-
lying MapReduce framework code.

4.5 SQL/MapReduce
In general, a user-defined function (UDF) is a powerful database

feature that allows users to customize database functionality. Fried-
man et al. [49] introduced the SQL/MapReduce (SQL/MR) UDF
framework which is designed to facilitate parallel computation of
procedural functions across hundreds of servers working together
as a single relational database. The framework is implemented
as part of the Aster Data Systems17 nCluster shared-nothing rela-
tional database. The framework leverage ideas from the MapRe-
duce programming paradigm to provide users with a straightfor-
ward API through which they can implement a UDF in the lan-
guage of their choice. Moreover, it allows maximum flexibility as
the output schema of the UDF is specified by the function itself
at query plan-time. This means that a SQL/MR function is poly-
morphic as it can process arbitrary input because its behavior as
well as output schema are dynamically determined by information
available at query plan-time. This also increases reusability as the
same SQL/MR function can be used on inputs with many different
schemas or with different user-specified parameters. In particular,
SQL/MR allows the user to write custom-defined functions in any
programming language and insert them into queries that leverage
traditional SQL functionality. A SQL/MR function is defined in a
manner that is similar to MapReduce’s map and reduce functions.

The syntax for using a SQL/MR function is depicted in Fig-
ure 12 where the SQL/MR function invocation appears in the SQL
FROM clause and consists of the function name followed by a set
of clauses that are enclosed in parentheses. The ON clause specifies
the input to the invocation of the SQL/MR function. It is important
to note that the input schema to the SQL/MR function is specified
implicitly at query plan-time in the form of the output schema for
the query used in the ON clause.

In practice, a SQL/MR function can be either a mapper (Row

17http://www.asterdata.com/

function) or a reducer (Partition function). The definitions of row
and partition functions ensure that they can be executed in parallel
in a scalable manner. In the Row Function, each row from the input
table or query will be operated on by exactly one instance of the
SQL/MR function. Semantically, each row is processed indepen-
dently, allowing the execution engine to control parallelism. For
each input row, the row function may emit zero or more rows. In
the Partition Function, each group of rows as defined by the PAR-
TITION BY clause will be operated on by exactly one instance of
the SQL/MR function. If the ORDER BY clause is provided, the
rows within each partition are provided to the function instance in
the specified sort order. Semantically, each partition is processed
independently, allowing parallelization by the execution engine at
the level of a partition. For each input partition, the SQL/MR par-
tition function may output zero or more rows.

4.6 HadoopDB
There has been a long debate on the comparison between MapRe-

duce framework and parallel database systems18 [114]. Pavlo et
al. [104] have conducted a large scale comparison between the
Hadoop implementation of MapReduce framework and parallel SQL
database management systems in terms of performance and devel-
opment complexity. The results of this comparison have shown
that parallel database systems displayed a significant performance
advantage over MapReduce in executing a variety of data inten-
sive analysis tasks. On the other hand, the Hadoop implementation
was very much easier and more straightforward to set up and use
in comparison to that of the parallel database systems. MapReduce
have also shown to have superior performance in minimizing the
amount of work that is lost when a hardware failure occurs. In
addition, MapReduce (with its open source implementations) rep-
resents a very cheap solution in comparison to the very financially
expensive parallel DBMS solutions (the price of an installation of
a parallel DBMS cluster usually consists of 7 figures of U.S. Dol-
lars)[114].

The HadoopDB project19 is a hybrid system that tries to combine
the scalability advantages of MapReduce with the performance and
efficiency advantages of parallel databases [3]. The basic idea be-
hind HadoopDB is to connect multiple single node database sys-
tems (PostgreSQL) using Hadoop as the task coordinator and net-
work communication layer. Queries are expressed in SQL but their
execution are parallelized across nodes using the MapReduce frame-
work, however, as much of the single node query work as possi-
ble is pushed inside of the corresponding node databases. Thus,
HadoopDB tries to achieve fault tolerance and the ability to op-
erate in heterogeneous environments by inheriting the scheduling
and job tracking implementation from Hadoop. Parallely, it tries
to achieve the performance of parallel databases by doing most of
the query processing inside the database engine. Figure 13 illus-
trates the architecture of HadoopDB which consists of two layers:
1) A data storage layer or the Hadoop Distributed File System20

(HDFS). 2) A data processing layer or the MapReduce Frame-
work. In this architecture, HDFS is a block-structured file system
managed by a central NameNode. Individual files are broken into
blocks of a fixed size and distributed across multiple DataNodes
in the cluster. The NameNode maintains metadata about the size
and location of blocks and their replicas. The MapReduce Frame-
work follows a simple master-slave architecture. The master is a
single JobTracker and the slaves or worker nodes are TaskTrackers.

18http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-major-step-backwards/

19http://db.cs.yale.edu/hadoopdb/hadoopdb.html
20http://hadoop.apache.org/hdfs/



MapReduce best meets the fault tolerance and ability to operate in
heterogeneous environment properties. It achieves fault tolerance
by detecting and reassigning Map tasks of failed nodes to other
nodes in the cluster (preferably nodes with replicas of the input Map
data). It achieves the ability to operate in a heterogeneous environ-
ment via redundant task execution. Tasks that are taking a long time
to complete on slow nodes get redundantly executed on other nodes
that have completed their assigned tasks. The time to complete the
task becomes equal to the time for the fastest node to complete the
redundantly executed task. By breaking tasks into small, granular
tasks, the effect of faults and “straggler” nodes can be minimized.

MapReduce has a flexible query interface; Map and Reduce func-
tions are just arbitrary computations written in a general-purpose
language. Therefore, it is possible for each task to do anything on
its input, just as long as its output follows the conventions defined
by the model. In general, most MapReduce-based systems (such as
Hadoop, which directly implements the systems-level details of the
MapReduce paper) do not accept declarative SQL. However, there
are some exceptions (such as Hive).

As shown in previous work, the biggest issue with MapReduce
is performance [23]. By not requiring the user to first model and
load data before processing, many of the performance enhancing
tools listed above that are used by database systems are not possible.
Traditional business data analytical processing, that have standard
reports and many repeated queries, is particularly, poorly suited for
the one-time query processing model of MapReduce.

Ideally, the fault tolerance and ability to operate in heterogeneous
environment properties of MapReduce could be combined with the
performance of parallel databases systems. In the following sec-
tions, we will describe our attempt to build such a hybrid system.

5. HADOOPDB
In this section, we describe the design of HadoopDB. The goal of

this design is to achieve all of the properties described in Section 3.
The basic idea behind HadoopDB is to connect multiple single-

node database systems using Hadoop as the task coordinator and
network communication layer. Queries are parallelized across
nodes using the MapReduce framework; however, as much of
the single node query work as possible is pushed inside of the
corresponding node databases. HadoopDB achieves fault tolerance
and the ability to operate in heterogeneous environments by
inheriting the scheduling and job tracking implementation from
Hadoop, yet it achieves the performance of parallel databases by
doing much of the query processing inside of the database engine.

5.1 Hadoop Implementation Background
At the heart of HadoopDB is the Hadoop framework. Hadoop

consits of two layers: (i) a data storage layer or the Hadoop Dis-
tributed File System (HDFS) and (ii) a data processing layer or the
MapReduce Framework.

HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size
and distributed across multiple DataNodes in the cluster. The
NameNode maintains metadata about the size and location of
blocks and their replicas.

The MapReduce Framework follows a simple master-slave ar-
chitecture. The master is a single JobTracker and the slaves or
worker nodes are TaskTrackers. The JobTracker handles the run-
time scheduling of MapReduce jobs and maintains information on
each TaskTracker’s load and available resources. Each job is bro-
ken down into Map tasks based on the number of data blocks that
require processing, and Reduce tasks. The JobTracker assigns tasks
to TaskTrackers based on locality and load balancing. It achieves
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Figure 1: The Architecture of HadoopDB

locality by matching a TaskTracker to Map tasks that process data
local to it. It load-balances by ensuring all available TaskTrackers
are assigned tasks. TaskTrackers regularly update the JobTracker
with their status through heartbeat messages.

The InputFormat library represents the interface between the
storage and processing layers. InputFormat implementations parse
text/binary files (or connect to arbitrary data sources) and transform
the data into key-value pairs that Map tasks can process. Hadoop
provides several InputFormat implementations including one that
allows a single JDBC-compliant database to be accessed by all
tasks in one job in a given cluster.

5.2 HadoopDB’s Components
HadoopDB extends the Hadoop framework (see Fig. 1) by pro-

viding the following four components:

5.2.1 Database Connector
The Database Connector is the interface between independent

database systems residing on nodes in the cluster and TaskTrack-
ers. It extends Hadoop’s InputFormat class and is part of the Input-
Format Implementations library. Each MapReduce job supplies the
Connector with an SQL query and connection parameters such as:
which JDBC driver to use, query fetch size and other query tuning
parameters. The Connector connects to the database, executes the
SQL query and returns results as key-value pairs. The Connector
could theoretically connect to any JDBC-compliant database that
resides in the cluster. However, different databases require different
read query optimizations. We implemented connectors for MySQL
and PostgreSQL. In the future we plan to integrate other databases
including open-source column-store databases such as MonetDB
and InfoBright. By extending Hadoop’s InputFormat, we integrate
seamlessly with Hadoop’s MapReduce Framework. To the frame-
work, the databases are data sources similar to data blocks in HDFS.

5.2.2 Catalog
The catalog maintains metainformation about the databases. This

includes the following: (i) connection parameters such as database
location, driver class and credentials, (ii) metadata such as data
sets contained in the cluster, replica locations, and data partition-
ing properties.

The current implementation of the HadoopDB catalog stores its
metainformation as an XML file in HDFS. This file is accessed by
the JobTracker and TaskTrackers to retrieve information necessary

Figure 13: The Architecture of HadoopDB [3].

The JobTracker handles the runtime scheduling of MapReduce jobs
and maintains information on each TaskTracker’s load and avail-
able resources. The Database Connector is the interface between
independent database systems residing on nodes in the cluster and
TaskTrackers. The Connector connects to the database, executes
the SQL query and returns results as key-value pairs. The Catalog
component maintains metadata about the databases, their location,
replica locations and data partitioning properties. The Data Loader
component is responsible for globally repartitioning data on a given
partition key upon loading and breaking apart single node data into
multiple smaller partitions or chunks. The SMS planner extends
the HiveQL translator [116] (Section 4.3) and transforms SQL into
MapReduce jobs that connect to tables stored as files in HDFS.
Abouzeid et al. [4] have demonstrated HadoopDB in action run-
ning the following two different application types: 1) A semantic
web application that provides biological data analysis of protein
sequences. 2) A classical business data warehouse.

4.7 Jaql
Jaql21 is a query language which is designed for Javascript Ob-

ject Notation (JSON)22, a data format that has become popular be-
cause of its simplicity and modeling flexibility. JSON is a simple,
yet flexible way to represent data that ranges from flat, relational
data to semi-structured, XML data. Jaql is primarily used to ana-
lyze large-scale semi-structured data. It is a functional, declarative
query language which rewrites high-level queries when appropri-
ate into a low-level query consisting of Map-Reduce jobs that are
evaluated using the Apache Hadoop project. Core features include
user extensibility and parallelism. Jaql consists of a scripting lan-
guage and compiler, as well as a runtime component [16]. It is
able to process data with no schema or only with a partial schema.
However, Jaql can also exploit rigid schema information when it is
available, for both type checking and improved performance. Jaql
uses a very simple data model, a JDM value is either an atom, an ar-
ray or a record. Most common atomic types are supported, includ-
ing strings, numbers, nulls and dates. Arrays and records are com-

21http://code.google.com/p/jaql/
22http://www.json.org/

mapper’s split, then all records would be processed. Fortunately,
Hadoop’s API’s are very flexible, making it easy to re-define how a
given input is partitioned into splits. tumblingWindows was par-
allelized by a new function called ptumblingWindow which directly
accesses the splits to pair them into consecutive splits as shown by
S′
0 − S′

2. This allows mappers to peek into the “next” split.
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Figure 4: A partitioned log file with “success” (white) and “ex-
ception” (shaded) records.

Example 7 The following script is very similar to the previous one
that is shown n Example 6, but the read and tumblingWindow have
been composed into a single function, ptumblingWindow, that has
been designed to run in parallel:

ptumblingWindow(lines(’log’), isHeader)
-> transform cleanRec($)
-> write(lines(’clean’));

The new script remains at a fairly high level, but uses a new
parallel version of tumblingWindow implemented in Jaql using
low–level primitives for split manipulation. Next, we describe the
low level operations needed for ptumblingWindow, but omit the full
Jaql source for conciseness.

Building Blocks: Split manipulation in Jaql is accom-
plished through three low-level functions: 1) inputSplits, 2)
readSplit, and 3) worklist. The inputSplits function takes
an I/O descriptor as input (see Section 7.1) and returns an array of
split descriptors. The readSplit function takes a split descriptor
as input and returns an iterator over the split’s content. So far, these
two functions emulate how a map task iterates over its partition
of the input. The missing piece is to assign splits to map tasks.
The worklist gives us such control by providing a virtual input
to MapReduce where the user controls the number of map tasks
to run and what data to pass to each map task. A worklist takes
an array as input—given n values, n map tasks will be started
where the ith map task, 0 ≤ i < n, is assigned the array’s ith
input value. For example, worklist is used for synthetic data
generation where all that is needed for a given map task is a seed
value and distribution parameters.

Putting it Together: inputSplits is used to obtain the phys-
ical splits (e.g., S0 − S3). These splits are paired into logical splits
(e.g., S′

0 = (S0, S1), S′
1 = (S1, S2), . . . )) that are given as input

to worklist. For each such split, the map task uses readSplit
to read the first physical split while running tumblingWindow se-
quentially. If needed, the mapper will peek into the first part of the
next physical split to find the end of its last record. While we as-
sume that a log record does not span more than two physical splits,
it would be straightforward to generalize to larger log records.

While the implementation of ptumblingWindow consists of a
handful of simple functions, these functions access very low-level
Hadoop API’s so it is unlikely to be understood by the casual
user. The level of abstraction that is needed is comparable to
directly programming a MapReduce job. However, physical
transparency enabled a solution to the problem and functions
allowed these details to be hidden in the implementation of the
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Figure 5: System architecture.

top-level ptumblingWindow function. In addition, ptumbling-
window is sufficiently abstract so that it can be applied to any
collection. Using features like the ones described here, we have
built parallel enumeration, sliding windows, sampling, and various
join algorithms, to name a few.

7. JAQL’S SYSTEM IMPLEMENTATION
At a high-level, the Jaql architecture depicted in Figure 5 is sim-

ilar to most database systems. Scripts are passed into the system
from the interpreter or an application, compiled by the parser and
rewrite engine, and either explained or evaluated over data from the
I/O layer. Jaql modules provide organization and abstraction over
reusable components, which are introspected during compilation.
Scripts may bind variables to values, or more often to expressions
that serve as temporary views. This section describes the major
components of the architecture, starting from the lowest layer.

7.1 I/O Layer
The storage layer is similar to a federated database. Rather than

requiring data to be loaded into a system-specific storage format
based on a pre-defined schema, the storage layer provides an API to
access data in-situ in other systems, including local or distributed
file systems (e.g., Hadoop’s HDFS, IBM’s GPFS), database sys-
tems (e.g., DB2, Netezza, HBase), or from streamed sources like
the Web. Unlike federated databases, however, most of the ac-
cessed data is stored within the same cluster and the I/O API de-
scribes data partitioning, which enables parallelism with data affin-
ity during evaluation. Jaql derives much of this flexibility from
Hadoop’s I/O API.

Jaql reads and writes many common file formats (e.g., delimited
files, JSON text, Hadoop Sequence files). Custom adapters are eas-
ily written to map a data set to or from Jaql’s data model. The input
can even simply be values constructed in the script itself. Adapaters
are parameterized through descriptor records which exploit Jaql’s
flexible data model to represent a wide variety of configurations.

7.2 Evaluation
The Jaql interpreter evaluates the script locally on the computer

that compiled the script, but spawns interpreters on remote nodes
using MapReduce. A Jaql script may directly invoke MapReduce
jobs using Jaql’s mapReduceFn, but more often, developers use
high-level Jaql and depend on the compiler to rewrite the Jaql script
into one or more MapReduce jobs, as described in Section 7.3.2.

The mapReduceFn function is higher-order; it expects in-
put/output descriptors, a map function, and an optional reduce
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Figure 14: Jaql System Architecture [16].

pound types that can be arbitrarily nested. In more detail, an array is
an ordered collection of values and can be used to model data struc-
tures such as vectors, lists, sets or bags. A record is an unordered
collection of name-value pairs and can model structs, dictionaries
and maps. Despite its simplicity, JDM is very flexible. It allows
Jaql to operate with a variety of different data representations for
both input and output, including delimited text files, JSON files, bi-
nary files, Hadoop’s SequenceFiles, relational databases, key-value
stores or XML documents. Functions are first-class values in Jaql.
They can be assigned to a variable and are high-order in that they
can be passed as parameters or used as a return value. Functions
are the key ingredient for reusability as any Jaql expression can be
encapsulated in a function, and a function can be parameterized in
powerful ways.

At a high-level, the Jaql architecture depicted in Figure 14 is
similar to most database systems. Scripts are passed into the sys-
tem from the interpreter or an application, compiled by the parser
and rewrite engine, and either explained or evaluated over data from
the I/O layer. The storage layer is similar to a federated database.
It provides an API to access data of different systems including
local or distributed file systems (e.g., Hadoop’s HDFS), database
systems (e.g., DB2, Netezza, HBase), or from streamed sources
like the Web. Unlike federated databases, however, most of the
accessed data is stored within the same cluster and the I/O API de-
scribes data partitioning, which enables parallelism with data affin-
ity during evaluation. Jaql derives much of this flexibility from
Hadoop’s I/O API. It reads and writes many common file formats
(e.g., delimited files, JSON text, Hadoop Sequence files). Custom
adapters are easily written to map a data set to or from Jaql’s data
model. The input can even simply be values constructed in the
script itself. The Jaql interpreter evaluates the script locally on the
computer that compiled the script, but spawns interpreters on re-
mote nodes using MapReduce. The Jaql compiler automatically
detects parallelization opportunities in a Jaql script and translates it
to a set of MapReduce jobs.

5. RELATED LARGE SCALE DATA PRO-
CESSING SYSTEMS

In this section, we give an overview of several large scale data
processing systems that resemble some of the ideas of the MapRe-
duce framework for different purposes and application scenarios.
It must be noted, however, the design architectures and the imple-
mentations of these systems do not follow the architecture of the
MapReduce framework and thus, they do not utilize and nor are



SQL-Like

SELECT query, 

COUNT(*) AS count 

FROM "search.log" 

USING LogExtractor

GROUP BY query 

HAVING count > 1000 

ORDER BY count DESC; 

OUTPUT TO "qcount.result";

MapReduce-Like
e = EXTRACT query 

FROM “search.log" USING LogExtractor; 

s1 = SELECT query, COUNT(*) as count  FROM e 

GROUP BY query; 

s2 = SELECT query, count FROM s1 

WHERE count > 1000; 

s3 = SELECT query, count FROM s2 

ORDER BY count DESC; 

OUTPUT s3 TO “qcount.result";OUTPUT TO "qcount.result"; OUTPUT s3 TO “qcount.result";

Figure 15: Two Equivalent SCOPE Scripts in SQL-like Style
and MapReduce-Like Style [27].

they related to the infrastructure of the framework’s open source
implementations such as Hadoop.

5.1 SCOPE
SCOPE (Structured Computations Optimized for Parallel Execu-

tion) is a scripting language which is targeted for large-scale data
analysis and is used daily for a variety of data analysis and data
mining applications inside Microsoft [27]. SCOPE is a declarative
language. It allows users to focus on the data transformations re-
quired to solve the problem at hand and hides the complexity of
the underlying platform and implementation details. The SCOPE
compiler and optimizer are responsible for generating an efficient
execution plan and the runtime for executing the plan with minimal
overhead.

Like SQL, data is modeled as sets of rows composed of typed
columns. SCOPE is highly extensible. Users can easily define
their own functions and implement their own versions of operators:
extractors (parsing and constructing rows from a file), processors
(row-wise processing), reducers (group-wise processing) and com-
biners (combining rows from two inputs). This flexibility greatly
extends the scope of the language and allows users to solve prob-
lems that cannot be easily expressed in traditional SQL. SCOPE
provides a functionality which is similar to that of SQL views. This
feature enhances modularity and code reusability. It is also used to
restrict access to sensitive data. SCOPE supports writing a pro-
gram using traditional SQL expressions or as a series of simple
data transformations. Figure 15 illustrates two equivalent scripts
in the two different styles (SQL-like and MapReduce-Like) to find
from the search log the popular queries that have been requested
at least 1000 times. In the MapReduce-Like style, the EXTRACT
command extracts all query string from the log file. The first SE-
LECT command counts the number of occurrences of each query
string. The second SELECT command retains only rows with a
count greater than 1000. The third SELECT command sorts the
rows on count. Finally, the OUTPUT command writes the result to
the file "qcount.result".

Microsoft has developed a distributed computing platform, called
Cosmos, for storing and analyzing massive data sets. Cosmos is de-
signed to run on large clusters consisting of thousands of commod-
ity servers. Figure 16 shows the main components of the Cosmos
platform which is described as follows:
• Cosmos Storage: A distributed storage subsystem designed

to reliably and efficiently store extremely large sequential
files.
• Cosmos Execution Environment: An environment for deploy-

ing, executing and debugging distributed applications.
• SCOPE: A high-level scripting language for writing data anal-

ysis jobs. The SCOPE compiler and optimizer translate scripts
to efficient parallel execution plans.

 

SCOPE is highly extensible. Users can easily define their own 

functions and implement their own versions of operators: extrac-

tors (parsing and constructing rows from a file), processors (row-

wise processing), reducers (group-wise processing), and combin-

ers (combining rows from two inputs). This flexibility greatly 

extends the scope of the language and allows users to solve prob-

lems that cannot be easily expressed in traditional SQL. 

SCOPE provides functionality similar to views in SQL. This fea-

ture greatly enhances modularity and code reusability. It can also 

be used to restrict access to sensitive data. 

SCOPE supports writing a program using traditional nested SQL 

expressions or as a series of simple data transformations. The 

latter style is often preferred by programmers who are used to 

thinking of a computation as a series of steps. We illustrate the 

usage of SCOPE by the following example. 

Example 1: A QCount query computes search query frequencies: 

how many times different query strings have occurred. There are 

several variants of QCount queries, for example, a QCount query 

may return only the top N most frequent queries or it may return 

queries that have occurred more than M times. Nevertheless, all 

QCount queries involve simple aggregation over a large data set, 

followed by some filtering conditions.  

In this example, we want to find from the search log the popular 

queries that have been requested at least 1000 times. Expressing 

this in SCOPE is very easy. 

SELECT query, COUNT(*) AS count 

FROM "search.log" USING LogExtractor 

GROUP BY query 

HAVING count > 1000 

ORDER BY count DESC; 

OUTPUT TO "qcount.result"; 

The select command is similar to SQL’s select command except 

that it uses a built-in extractor, LogExtractor, which parses each 

log record and extracts the requested columns. By default, a 

command takes the output of the previous command as its input. 

In this case, the output command writes the result of the select to 

the file “qcount.result”. 

The same query can also be written in SCOPE as a step-by-step 

computation. 

e = EXTRACT query  

    FROM “search.log" 

    USING LogExtractor; 

s1 = SELECT query, COUNT(*) as count 

     FROM e  

     GROUP BY query; 

s2 = SELECT query, count 

     FROM s1  

     WHERE count > 1000; 

s3 = SELECT query, count 

     FROM s2  

     ORDER BY count DESC; 

OUTPUT s3 TO “qcount.result"; 

The script is also easy to understand. The extract command ex-

tracts all query string from the log file. The first select command 

counts the number of occurrences of each query string. The 

second select command retains only rows with a count greater 

than 1000. The third select command sorts the rows on count. 

Finally, the output command writes the result to the file 

“qcount.result”. 

 

In either case, users do not need to implement any operators or 

wonder how to efficiently execute the query on a large cluster. 

The SCOPE compiler and optimizer are responsible for translating 

a script into an efficient, parallel execution plan.  

 

The rest of the paper is organized as follows. We first give an 

brief overview of the software platform developed at Microsoft 

for storing and analyzing massive data sets in Section 2. We 

present the SCOPE scripting language in more detail in Section 3. 

In Section 4, we describe other SCOPE components and show 

how a SCOPE script is compiled, optimized, and executed. Expe-

rimental evaluation using TPC-H queries is provided in Section 5. 

We discuss related work in Section 6 and conclude in Section 7. 

2. PLATFORM OVERVIEW 
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Figure 1: Cosmos Software Layers 

Microsoft has developed a distributed computing platform, called 

Cosmos, for storing and analyzing massive data sets. Cosmos is 

designed to run on large clusters consisting of thousands of com-

modity servers. Disk storage is distributed with each server having 

one or more direct-attached disks.  

High-level design objectives for the Cosmos platform include: 

1. Availability: Cosmos is resilient to multiple hardware fail-

ures to avoid whole system outages. File data is replicated 

many times throughout the system and file meta-data is ma-

naged by a quorum group of 2f+1 servers so as to tolerate f 

failures.  

2. Reliability: Cosmos is architected to recognize transient 

hardware conditions to avoid corrupting the system. System 

components are check-summed end-to-end and apply me-

chanisms to crash faulty components. The on-disk data is pe-

riodically scrubbed to detect corrupt or bit rot data before it 

is used by the system. 

3. Scalability:  Cosmos is designed from the ground up to be a 

scalable system, capable of storing and processing petabytes 

of data.  Storage and compute capacity is easily increased by 

adding more servers to the cluster.   

4. Performance:  Cosmos runs on clusters comprised of thou-

sands of individual servers. Data is distributed among the 

Figure 16: SCOPE/Cosmos Execution Platform [27].

The Cosmos Storage System is an append-only file system that
reliably stores petabytes of data. The system is optimized for large
sequential I/O. All writes are append-only and concurrent writers
are serialized by the system. Data is distributed and replicated for
fault tolerance and compressed to save storage and increase I/O
throughput. In Cosmos, an application is modeled as a dataflow
graph: a directed acyclic graph (DAG) with vertices representing
processes and edges representing data flows. The runtime com-
ponent of the execution engine is called the Job Manager which
represents the central and coordinating process for all processing
vertices within an application.

The SCOPE scripting language resembles SQL but with C# ex-
pressions. Thus, it reduces the learning curve for users and eases
the porting of existing SQL scripts into SCOPE. Moreover, SCOPE
expressions can use C# libraries where custom C# classes can com-
pute functions of scalar values, or manipulate whole rowsets. A
SCOPE script consists of a sequence of commands which are data
transformation operators that take one or more rowsets as input,
perform some operation on the data and output a rowset. Every
rowset has a well-defined schema to which all its rows must ad-
here. The SCOPE compiler parses the script, checks the syntax
and resolves names. The result of the compilation is an internal
parse tree which is then translated to a physical execution plan. A
physical execution plan is a specification of Cosmos job which de-
scribes a data flow DAG where each vertex is a program and each
edge represents a data channel. The translation into an execution
plan is performed by traversing the parse tree in a bottom-up man-
ner. For each operator, SCOPE has an associated default imple-
mentation rules. Many of the traditional optimization rules from
database systems are clearly also applicable in this new context,
for example, removing unnecessary columns, pushing down selec-
tion predicates and pre-aggregating when possible. However, the
highly distributed execution environment offers new opportunities
and challenges, making it necessary to explicitly consider the ef-
fects of large-scale parallelism during optimization. For example,
choosing the right partition scheme and deciding when to partition
are crucial for finding an optimal plan. It is also important to cor-
rectly reason about partitioning, grouping and sorting properties
and their interaction, to avoid unnecessary computations [134].



5.2 Dryad/DryadLinq
Dryad is a general-purpose distributed execution engine intro-

duced by Microsoft for coarse-grain data-parallel applications [65].
A Dryad application combines computational vertices with com-
munication channels to form a dataflow graph. Dryad runs the ap-
plication by executing the vertices of this graph on a set of avail-
able computers, communicating as appropriate through files, TCP
pipes and shared-memory FIFOs. The Dryad system allows the
developer fine control over the communication graph as well as
the subroutines that live at its vertices. A Dryad application devel-
oper can specify an arbitrary directed acyclic graph to describe the
applicationŠs communication patterns and express the data trans-
port mechanisms (files, TCP pipes and shared-memory FIFOs) be-
tween the computation vertices. This direct specification of the
graph gives the developer greater flexibility to easily compose ba-
sic common operations, leading to a distributed analogue of piping
together traditional Unix utilities such as grep, sort and head.

Dryad is notable for allowing graph vertices to use an arbitrary
number of inputs and outputs. The overall structure of a Dryad
job is determined by its communication flow. A job is a directed
acyclic graph where each vertex is a program and edges represent
data channels. It is a logical computation graph that is automati-
cally mapped onto physical resources by the runtime. At run time
each channel is used to transport a finite sequence of structured
items. A Dryad job is coordinated by a process called the job
manager that runs either within the cluster or on a user’s worksta-
tion with network access to the cluster. The job manager contains
the application-specific code to construct the job’s communication
graph along with library code to schedule the work across the avail-
able resources. All data is sent directly between vertices and thus
the job manager is only responsible for control decisions and is not
a bottleneck for any data transfers. Therefore, much of the simplic-
ity of the Dryad scheduler and fault-tolerance model come from the
assumption that vertices are deterministic.

Dryad has its own high-level language called DryadLINQ [128].
It generalizes execution environments such as SQL and MapRe-
duce in two ways: 1) Adopting an expressive data model of strongly
typed .NET objects. 2) Supporting general-purpose imperative and
declarative operations on datasets within a traditional high-level
programming language. DryadLINQ23 exploits LINQ (Language
INtegrated Query24, a set of .NET constructs for programming with
datasets) to provide a powerful hybrid of declarative and impera-
tive programming. The system is designed to provide flexible and
efficient distributed computation in any LINQ-enabled program-
ming language including C#, VB and F#25. Objects in DryadLINQ
datasets can be of any .NET type, making it easy to compute with
data such as image patches, vectors and matrices. In practice, a
DryadLINQ program is a sequential program composed of LINQ
expressions that perform arbitrary side-effect-free transformations
on datasets and can be written and debugged using standard .NET
development tools. The DryadLINQ system automatically trans-
lates the data-parallel portions of the program into a distributed ex-
ecution plan which is then passed to the Dryad execution platform.
A commercial implementation of Dryad and DryadLINQ was re-
leased in 2011 under the name LINQ to HPC26.

23http://research.microsoft.com/en-us/projects/dryadlinq/
24http://msdn.microsoft.com/en-

us/netframework/aa904594.aspx
25http://research.microsoft.com/en-

us/um/cambridge/projects/fsharp/
26http://msdn.microsoft.com/en-us/library/hh378101.aspx

5.3 Spark
The Spark system [131, 132] have been proposed to support the

applications which need to reuse a working set of data across mul-
tiple parallel operations (e.g. iterative machine learning algorithms
and interactive data analytic) while retaining the scalability and
fault tolerance of MapReduce. To achieve these goals, Spark intro-
duces an abstraction called resilient distributed datasets (RDDs).
An RDD is a read-only collection of objects partitioned across a
set of machines that can be rebuilt if a partition is lost. Therefore,
users can explicitly cache an RDD in memory across machines and
reuse it in multiple MapReduce-like parallel operations. RDDs do
not need to be materialized at all times. RDDs achieve fault tol-
erance through a notion of lineage. In particular, each RDD ob-
ject contains a pointer to its parent and information about how the
parent was transformed. Hence, if a partition of an RDD is lost,
the RDD has sufficient information about how it was derived from
other RDDs to be able to rebuild just that partition.

Spark is implemented in the Scala programming language27 [99].
It is built on top of Mesos [62], a cluster operating system that
lets multiple parallel frameworks share a cluster in a fine-grained
manner and provides an API for applications to launch tasks on a
cluster. It provides isolation and efficient resource sharing across
frameworks running on the same cluster while giving each frame-
work freedom to implement its own programming model and fully
control the execution of its jobs. Mesos uses two main abstractions:
tasks and slots. A task represents a unit of work. A slot repre-
sents a computing resource in which a framework may run a task,
such as a core and some associated memory on a multicore ma-
chine. It employs the two-level scheduling mechanism. At the first
level, Mesos allocates slots between frameworks using fair sharing.
At the second level, each framework is responsible for dividing its
work into tasks, selecting which tasks to run in each slot. This lets
frameworks perform application-specific optimizations. For exam-
ple Spark’s scheduler tries to send each task to one of its preferred
locations using a technique called delay scheduling [130]

To use Spark, developers need to write a driver program that im-
plements the high-level control flow of their application and launches
various operations in parallel. Spark provides two main abstrac-
tions for parallel programming: resilient distributed datasets and
parallel operations on these datasets (invoked by passing a function
to apply on a dataset). In particular, each RDD is represented by a
Scala object which can be constructed in different ways:
• From a file in a shared file system (e.g HDFS).
• By parallelizing a Scala collection (e.g., an array) in the driver

program which means dividing it into a number of slices that
will be sent to multiple nodes.

• By transforming an existing RDD. A dataset with elements
of type A can be transformed into a dataset with elements of
type B using an operation called f latMap.
• By changing the persistence of an existing RDD. A user can

alter the persistence of an RDD through two actions:
– The cache action leaves the dataset lazy but hints that

it should be kept in memory after the first time it is
computed because it will be reused.

– The save action evaluates the dataset and writes it to a
distributed filesystem such as HDFS. The saved version
is used in future operations on it.

Different parallel operations can be performed on RDDs:
• The reduce operation which combines dataset elements us-

ing an associative function to produce a result at the driver
program.

27http://www.scala-lang.org/
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Figure 17: The Nephele/PACT System Architecture [8].

• The collect operation which sends all elements of the dataset
to the driver program.
• The foreach which passes each element through a user pro-

vided function.
Spark does not currently support a grouped reduce operation as in
MapReduce. The results of reduce operations are only collected at
the driver process.

5.4 Nephle/Pact
The Nephele/PACT system [13, 8] has been presented as a par-

allel data processor centered around a programming model of so-
called Parallelization Contracts (PACTs) and the scalable paral-
lel execution engine Nephele. The PACT programming model is
a generalization of map/reduce as it is based on a key/value data
model and the concept of Parallelization Contracts (PACTs). A
PACT consists of exactly one second-order function which is called
Input Contract and an optional Output Contract. An Input Contract
takes a first-order function with task-specific user code and one or
more data sets as input parameters. The Input Contract invokes its
associated first-order function with independent subsets of its input
data in a data-parallel fashion. In this context, the two functions
of map and reduce are just examples of the Input Contracts. Other
example of Input Contracts include:
• The Cross contract which operates on multiple inputs and

builds a distributed Cartesian product over its input sets.
• The CoGroup contract partitions each of its multiple inputs

along the key. Independent subsets are built by combining
equal keys of all inputs.
• The Match contract operates on multiple inputs. It matches

key/value pairs from all input data sets with the same key
(equivalent to the inner join operation).

An Output Contract is an optional component of a PACT and
gives guarantees about the data that is generated by the assigned
user function. The set of Output Contracts include:
• The Same-Key contract where each key/value pair that is gen-

erated by the function has the same key as the key/value
pair(s) from which it was generated. This means the func-
tion will preserve any partitioning and order property on the
keys.
• The Super-Key where each key/value pair that is generated

by the function has a superkey of the key/value pair(s) from
which it was generated. This means the function will pre-

serve the partitioning and the partial order on the keys.
• The Unique-Key where each key/value pair that is produced

has a unique key. The key must be unique across all parallel
instances. Any produced data is therefore partitioned and
grouped by the key.
• The Partitioned-by-Key where key/value pairs are partitioned

by key. This contract has similar implications as the Super-
Key contract, specifically that a partitioning by the keys is
given, but there is no order inside the partitions.

Figure 17 illustrate the system architecture of Nephele/PACT
where a PACT program is submitted to the PACT Compiler which
translates the program into a data flow execution plan which is then
handed to the Nephele system for parallel execution. Hadoop dis-
tributed filesystem (HDFS) is used for storing both the input and
the output data.

Due to the declarative character of the PACT programming model,
the PACT compiler can apply different optimization mechanisms
and select from several execution plans with varying costs for a
single PACT program. For example, the Match contract can be
satisfied using either a repartition strategy which partitions all in-
puts by keys or a broadcast strategy that fully replicates one input
to every partition of the other input. Choosing the right strategy
can dramatically reduce network traffic and execution time. There-
fore, the PACT compiler applies standard SQL optimization tech-
niques [112] where it exploits information provided by the Output
Contracts and apply different cost-based optimization techniques.
In particular, the optimizer generates a set of candidate execution
plans in a bottom-up fashion (starting from the data sources) where
the more expensive plans are pruned using a set of interesting prop-
erties for the operators. These properties are also used to spare
plans from pruning that come with an additional property that may
amortize their cost overhead later.

5.5 Boom Analytics
The BOOM Analytics (Berkeley Orders of Magnitude) [9] is an

API-compliant reimplementation of the HDFS distributed file sys-
tem (BOOM-FS) and the Hadoop MapReduce engine (BOOM-MR).
The implementation of BOOM Analytics uses the Overlog logic
language [86] which has been originally presented as an event-
driven language and evolved a semantics more carefully grounded
in Datalog, the standard deductive query language from database
theory [119]. In general, the Datalog language is defined over re-
lational tables as a purely logical query language that makes no
changes to the stored tables. Overlog extends Datalog in three main
features [32]:

1. It adds notation to specify the location of data.
2. It provides some SQL-style extensions such as primary keys

and aggregation.
3. It defines a model for processing and generating changes to

tables.
When Overlog tuples arrive at a node either through rule evalua-
tion or external events, they are handled in an atomic local Datalog
timestep. Within a timestep, each node sees only locally-stored
tuples. Communication between Datalog and the rest of the sys-
tem (Java code, networks, and clocks) is modeled using events cor-
responding to insertions or deletions of tuples in Datalog tables.
BOOM Analytics uses a Java-based Overlog runtime called JOL
which compiles Overlog programs into pipelined dataflow graphs
of operators. In particular, JOL provides metaprogramming sup-
port where each Overlog program is compiled into a representa-
tion that is captured in rows of tables. In BOOM Analytics, every-
thing is data. This includes traditional persistent information like
file system metadata, runtime state like TaskTracker status, sum-



mary statistics like those used by the JobTracker’s scheduling pol-
icy, communication messages, system events and execution state of
the system.

The BOOM-FS component represents the file system metadata
as a collection of relations (file, fqpath, fchunk, datanode, hbchunk)
where file system operations are implemented by writing queries
over these tables. The file relation contains a row for each file or
directory stored in BOOM-FS. The set of chunks in a file is iden-
tified by the corresponding rows in the fchunk relation. The datan-
ode and hbchunk relations contain the set of live DataNodes and
the chunks stored by each DataNode, respectively. The NameNode
updates these relations as new heartbeats arrive. If the NameN-
ode does not receive a heartbeat from a DataNode within a con-
figurable amount of time, it assumes that the DataNode has failed
and removes the corresponding rows from these tables. Since a file
system is naturally hierarchical, the file system queries that needed
to traverse it are recursive. Therefore, the parent-child relationship
of files is used to compute the transitive closure of each file and
store its fully-qualified path in the fqpath relation. Because path in-
formation is accessed frequently, the fqpath relation is configured
to be cached after it is computed. Overlog will automatically up-
date fqpath when a file is changed, using standard relational view
maintenance logic [119]. BOOM-FS also defines several views to
compute derived file system metadata such as the total size of each
file and the contents of each directory. The materialization of each
view can be changed via simple Overlog table definition statements
without altering the semantics of the program. In general, HDFS
uses three different communication protocols: the metadata proto-
col which is used by clients and NameNodes to exchange file meta-
data, the heartbeat protocol which is used by the DataNodes to no-
tify the NameNode about chunk locations and DataNode liveness,
and the data protocol which is used by the clients and DataNodes
to exchange chunks. BOOM-FS re-implemented these three pro-
tocols using a set of Overlog rules. BOOM-FS also achieves the
high availability failover mechanism by using Overlog to imple-
ment the hot standby NameNodes feature using Lamport’s Paxos
algorithm [80]

BOOM-MR re-implements the MapReduce framework by re-
placing Hadoop’s core scheduling logic with Overlog. The Job-
Tracker tracks the ongoing status of the system and transient state
in the form of messages sent and received by the JobTracker by
capturing this information in four Overlog tables: job, task, taskAt-
tempt and taskTracker. The job relation contains a single row for
each job submitted to the JobTracker. The task relation identifies
each task within a job. The attributes of this relation identify the
task type (map or reduce), the input partition (a chunk for map
tasks, a bucket for reduce tasks) and the current running status.
The taskAttempt relation maintains the state of each task attempt
(A task may be attempted more than once due to speculation or if
the initial execution attempt failed). The taskTracker relation iden-
tifies each TaskTracker in the cluster with a unique name. Over-
log rules are used to update the JobTracker’s tables by converting
inbound messages into tuples of the four Overlog tables. Schedul-
ing decisions are encoded in the taskAttempt table which assigns
tasks to TaskTrackers. A scheduling policy is simply a set of rules
that join against the taskTracker relation to find TaskTrackers with
unassigned slots and schedules tasks by inserting tuples into taskAt-
tempt. This architecture allows new scheduling policies to be de-
fined easily.

5.6 Hyracks/ASTERIX
Hyracks is presented as a partitioned-parallel dataflow execution

platform that runs on shared-nothing clusters of computers [21].

Figure 18: The ASTERIX System Architecture [14].

Large collections of data items are stored as local partitions dis-
tributed across the nodes of the cluster. A Hyracks job is submitted
by a client and processes one or more collections of data to pro-
duce one or more output collections (partitions). Hyracks provides
a programming model and an accompanying infrastructure to ef-
ficiently divide computations on large data collections (spanning
multiple machines) into computations that work on each partition
of the data separately. Every Hyracks cluster is managed by a Clus-
ter Controller process. The Cluster Controller accepts job execu-
tion requests from clients, plans their evaluation strategies and then
schedules the jobs’ tasks to run on selected machines in the cluster.
In addition, it is responsible for monitoring the state of the cluster
to keep track of the resource loads at the various worker machines.
The Cluster Controller is also responsible for re-planning and re-
executing some or all of the tasks of a job in the event of a failure.
On the task execution side, each worker machine that participates in
a Hyracks cluster runs a Node Controller process. The Node Con-
troller accepts task execution requests from the Cluster Controller
and also reports on its health via a heartbeat mechanism.

In principle, Hyracks has been designed with the goal of being a
runtime platform where users can create their jobs and also to serve
as an efficient target for the compilers of higher-level programming
languages such as Pig, Hive or Jaql. The ASTERIX project [14, 20]
uses this feature with the aim of building a scalable information
management system that supports the storage, querying and analy-
sis of large collections of semi-structured nested data objects. The
ASTERIX data storage and query processing are based on its own
semistructured model called the ASTERIX Data Model (ADM).
Each individual ADM data instance is typed and self-describing.
All data instances live in datasets (the ASTERIX analogy to tables)
and datasets can be indexed, partitioned and possibly replicated
to achieve the scalability and availability goals. External datasets
which reside in files that are not under ASTERIX control are also
supported. An instance of the ASTERIX data model can either be
a primitive type (e.g., integer, string, time) or a derived type, which
may include:
• Enum: an enumeration type, whose domain is defined by list-

ing the sequence of possible values.
• Record: a set of fields where each field is described by its

name and type. A record can be either an open record where
it contains fields that are not part of the type definition or a
closed record which cannot.
• Ordered list: a sequence of values for which the order is de-

termined by creation or insertion.



• Unordered list: an unordered sequence of values which is
similar to bags in SQL.
• Union: describes a choice between a finite set of types.

A dataset is a target for AQL queries and updates and is also the
attachment point for indexes. A collection of datasets related to an
application are grouped into a namespace called a dataverse which
is analogous to a database in the relational world. In particular,
data is accessed and manipulated through the use of the ASTERIX
Query Language (AQL) which is designed to cleanly match and
handle the data structuring constructs of ADM. It borrows from
XQuery and Jaql their programmer-friendly declarative syntax that
describes bulk operations such as iteration, filtering and sorting.
Therefore, AQL is comparable to those languages in terms of ex-
pressive power. The major difference with respect to XQuery is
AQL’s focus on data-centric use cases at the expense of built-in
support for mixed content for document-centric use cases. In AS-
TERIX, there is no notion of document order or node identity for
data instances. Differences between AQL and Jaql stem from the
usage of the languages. While ASTERIX data is stored in and man-
aged by the ASTERIX system, Jaql runs against data that are stored
externally in Hadoop files or in the local file system. Figure 18
presents an overview of the ASTERIX system architecture. AQL
requests are compiled into jobs for an ASTERIX execution layer,
Hyracks. ASTERIX concerns itself with the data details of AQL
and ADM, turning AQL requests into Hyracks jobs while Hyracks
determines and oversees the utilization of parallelism based on in-
formation and constraints associated with the resulting jobs’ oper-
ators as well as on the runtime state of the cluster.

6. CONCLUSIONS
The database community has been always focusing on dealing

with the challenges of Big Data management, although the mean-
ing of "Big" has been evolving continuously to represent differ-
ent scales over the time [22]. According to IBM, we are currently
creating 2.5 quintillion bytes of data, everyday. This data comes
from many different sources and in different formats including dig-
ital pictures, videos, posts to social media sites, intelligent sensors,
purchase transaction records and cell phone GPS signals. This is a
new scale of Big Data which is attracting a huge interest from both
the industrial and research communities with the aim of creating
the best means to process and analyze this data in order to make
the best use of it. In the last decade, the MapReduce framework
has emerged as a popular mechanism to harness the power of large
clusters of computers. It allows programmers to think in a data-
centric fashion where they can focus on applying transformations
to sets of data records while the details of distributed execution
and fault tolerance are transparently managed by the MapReduce
framework.

In this article, we presented a survey of the MapReduce family of
approaches for developing scalable data processing systems and so-
lutions. In general we noticed that although the MapReduce frame-
work, and its open source implementation of Hadoop, are now con-
sidered to be sufficiently mature such that they are widely used for
developing many solutions by academia and industry in different
application domains. We believe that it is unlikely that MapReduce
will substitute database systems even for data warehousing appli-
cations. We expect that they will always coexist and complement
each others in different scenarios. We are also convinced that there
is still room for further optimization and advancement in different
directions on the spectrum of the MapReduce framework that is
required to bring forward the vision of providing large scale data
analysis as a commodity for novice end-users. For example, en-
ergy efficiency in the MapReduce is an important problem which

has not attracted enough attention from the research community,
yet. The traditional challenge of debugging large scale computa-
tions on distributed system has not been considered as a research
priority by the MapReduce research community. Related with the
issue of the power of expressiveness of the programming model,
we feel that this is an area that requires more investigation. We also
noticed that the over simplicity of the MapReduce programming
model have raised some key challenges on dealing with complex
data models (e.g., nested models, XML and hierarchical model ,
RDF and graphs) efficiently. This limitation has called for the need
of next-generation of big data architectures and systems that can
provide the required scale and performance attributes for these do-
main. For example, Google has created the Dremel system [91],
commercialized under the name of BigQuery28, to support interac-
tive analysis of nested data. Google has also presented the Pregel
system [89], open sourced by Apache Giraph and Apache Hama
projects, that uses a BSP-based programming model for efficient
and scalable processing of massive graphs on distributed clusters of
commodity machines. Recently, Twitter has announced the release
of the Storm29 system as a distributed and fault-tolerant platform
for implementing continuous and realtime processing applications
of streamed data. We believe that more of these domain-specific
systems will be introduced in the future to form the new generation
of big data systems. Defining the right and most convenient pro-
gramming abstractions and declarative interfaces of these domain-
specific Big Data systems is another important research direction
that will need to be deeply investigated.
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APPENDIX
A. APPLICATION OF THE MAPREDUCE

FRAMEWORK
MapReduce-based systems are increasingly being used for large-

scale data analysis. There are several reasons for this such as [67]:
• The interface of MapReduce is simple yet expressive. Al-

though MapReduce only involves two functions map and re-
duce, a number of data analytical tasks including traditional
SQL query, data mining, machine learning and graph process-
ing can be expressed with a set of MapReduce jobs.
• MapReduce is flexible. It is designed to be independent of

storage systems and is able to analyze various kinds of data,
structured and unstructured.
• MapReduce is scalable. Installation of MapReduce can run

over thousands of nodes on a shared-nothing cluster while
keeping to provide fine-grain fault tolerance whereby only
tasks on failed nodes need to be restarted.

These main advantages have triggered several research efforts
with the aim of applying the MapReduce framework for solving
challenging data processing problem on large scale datasets in dif-
ferent domains. In this appendix, we provide an overview of sev-
eral research efforts of developing MapReduce-based solutions for
data-intensive applications of different data models such as XML
(Appendix A.1), RDF (Appendix A.2) and graphs (Appendix A.3).
Appendix A.4 provides an overview of several approaches of devel-
oping MapReduce-based solutions in different data-intensive and
computationally expensive operations.

A.1 MapReduce for Large Scale XML Pro-
cessing

XML (eXtensible Markup Language) [23] has been acknowl-
edged as the defacto standard for data representation and exchange
over the World Wide Web. It has found practical application in
numerous domains including data interchange, streaming data and
data storage. In addition, it has been considered as a standard
format for many industries such as government30, finance31, elec-
tronic business32 and science33. However, so far, the problem of
large XML processing using the MapReduce framework has not
been extensively considered in the research literature. Some pre-
liminary works have been presented to tackle this problem. For ex-
ample, [47] have proposed an SQL-like query language for large-
scale analysis of XML data on a MapReduce platform, called MRQL
(the Map-Reduce Query Language). The evaluation system of MRQL
leverages the relational query optimization techniques and com-
piles MRQL queries to an algebra which is then translated to phys-
ical plans using cost-based optimizations. In particular, the query
plans are represented trees that are evaluated using a plan inter-
preter where each physical operator is implemented with a single
MapReduce job which is parameterized by the functional parame-
ters of the physical operator. The data fragmentation technique of
MRQL is built on top of the general Hadoop XML input format
which is based on a single XML tag name. Hence, given a data

30http://www.irs.gov/efile/
31http://www.fpml.org/
32http://ebxml.org./
33http://www.w3.org/TR/2010/REC-MathML3-20101021/
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Figure 19: The Word Count Example Program in ChuQL [75]

split of an XML document, Hadoop’s input format allows reading
the document as a stream of string fragments, so that each string
will contain a single complete element that has the requested XML
tag name. ChuQL [75] is another language that have been pro-
posed to support distributed XML processing using the MapRe-
duce framework. It presents a MapReduce-based extension for the
syntax, grammar and semantics of XQuery [19], the standard W3C
language for querying XML documents. In particular, the ChuQL
implementation takes care of distributing the computation to multi-
ple XQuery engines running in Hadoop nodes, as described by one
or more ChuQL MapReduce expressions. Figure 19 illustrates the
representation of the word count example program in the ChuQL
language using its extended expressions where the mapreduce ex-
pression is used to describe a MapReduce job. The input and out-
put clauses are respectively used to read and write onto HDFS. The
rr and rw clauses are respectively used for describing the record
reader and writer. The map and reduce clauses represent the stan-
dard map and reduce phases of the framework where they pro-
cess XML values or key/value pairs of XML values to match the
MapReduce model which are specified using XQuery expressions.

A.2 MapReduce for Large Scale RDF Process-
ing

RDF (Resource Description Framework) is the standard W3C
recommendation for expressing and exchanging semantic metadata
about remote information sources [90]. It represent a core compo-
nent of the Semantic Web initiatives as it defines a model for de-
scribing relationships among resources in terms of uniquely iden-
tified attributes and values. The basic building block in RDF is a
simple tuple model, (sub ject, predicate,ob ject), to express differ-
ent types of knowledge in the form of fact statements. The inter-
pretation of each statement is that subject S has property P with
value O, where S and P are resource URIs and O is either a URI or
a literal value. Thus, any object from one triple can play the role of
a subject in another triple which amounts to chaining two labeled
edges in a graph-based structure. The SPARQL query language is
the official W3C standard for querying and extracting information
from RDF graphs [106]. It is based on a powerful graph matching
facility which allows binding variables to components in the in-
put RDF graph and supports conjunctions and disjunctions of triple
patterns.

Some research efforts have been proposed for achieving scalable
RDF processing using the MapReduce framework. PigSPARQL [111]
is a system that have been introduced to process SPARQL queries
using the MapReduce framework by translating them into Pig Latin
programs where each Pig Latin program is executed by a series of
MapReduce jobs on a Hadoop cluster. [96] have presented a pre-
liminary algorithm for SPARQL graph pattern matching by adopt-
ing the traditional multi-way join of the RDF triples and selecting
a good join-key to avoid unnecessary iterations. [64] have de-
scribed a storage scheme for RDF data using HDFS where the in-
put data are partitioned into multiple files using two main steps:

1) The Predicate Split which partitions the RDF triples accord-
ing to their predicates. 2) The Predicate Object Split (POS) which
uses the explicit type information in the RDF triples to denote that
a resource is an instance of a specific class while the remaining
predicate files are partitioned according to the type of their ob-
jects. Using summary statistics for estimating the selectivities of
join operations, the authors proposed an algorithm that generates a
query plan whose cost is bounded by the log of the total number
of variables in the given SPARQL query. An approach for optimiz-
ing RDF graph pattern matching by reinterpreting certain join tree
structures as grouping operations have been presented in [76, 109].
The proposed approach represents the intermediate results as sets of
groups of triples called TripleGroups and uses Nested TripleGroup
Algebra for manipulating them. [4] have demonstrated an approach
for storing and querying RDF data using the HadoopDB system in
conjunction with a column-oriented database [2] that can provide
a promising solution for supporting efficient and scalable semantic
web applications. A similar approach have been presented in [63]
where it replaced the column-oriented back-end database with the
state-of-the-art of RDF query processors, RDF-3X [97].

A.3 MapReduce for Large Scale Graph Pro-
cessing

Graphs are popular data structures which are used to model struc-
tural relationship between objects. Recently, they have been receiv-
ing increasing research attention as they are used in a wide vari-
ety of high impact applications such as social networks, computer
networks, telecommunication networks, recommendation systems,
protein-protein interaction networks and the World Wide Web. Some
research efforts have been proposed for providing scalable process-
ing mechanisms for massive graph datasets. For example, Surfer [31]
is a large scale graph processing engine which is designed to pro-
vide two basic primitives for programmers: MapReduce and prop-
agation. In this engine, MapReduce processes different key-value
pairs in parallel, and propagation is an iterative computational pat-
tern that transfers information along the edges from a vertex to its
neighbors in the graph. In principle, these two primitives are com-
plementary in graph processing where MapReduce is suitable for
processing flat data structures (e.g. vertex-oriented tasks) while
propagation is optimized for edge-oriented tasks on partitioned graphs. [81]
presented a set of MapReduce-based algorithms for a variety of
fundamental graph problems such as minimum spanning trees, max-
imal matchings, approximate weighted matchings, approximate ver-
tex and edge covers, and minimum cuts. All of the presented algo-
rithms are parameterized by the amount of memory available on the
machines which are used to determine the number of MapReduce
rounds.

GBASE [72] has been introduced as a scalable and general graph
management system. It uses graph storage method, called block
compression, to efficiently store homogeneous regions of graphs.
In particular, given the original raw graph which is stored as a
big edge file, GBASE first partitions it into several homogeneous
blocks. According to the partition results, it reshuffles the nodes so
that the nodes belonging to the same partition are put nearby after
which it compresses all non-empty block through standard com-
pression such as GZip34. Finally, it stores the compressed blocks
together with some meta information into the graph databases. GBASE
supports different types of graph queries including neighborhood,
induced subgraph, egonet, K-core and cross-edges. To achieve this
goal, it applies a grid selection strategy to minimize disk accesses
and answer queries by applying a MapReduce-based algorithm that

34http://www.gzip.org/



supports incidence matrix based queries. The key of query execu-
tion engine is that it unifies the different types of inputs as query
vectors and unifies the different types of operations on the graph
by a unified matrix-vector multiplication. Hence, GBASE handles
queries by executing appropriate block matrix-vector multiplica-
tion modules. PEGASUS [73, 74] is another system which has been
introduced as a large scale graph mining library that is implemented
on the top of Hadoop and supports performing typical graph min-
ing tasks such as computing the diameter of the graph, computing
the radius of each node and finding the connected components via a
generalization of matrix-vector multiplication (GIM-V). [71] have
presented a MapReduce-based algorithm for discovering patterns
on near-cliques and triangles on large scale graphs which is built
on the top of Hadoop.

In general, graph algorithms can be written as a series of chained
MapReduce invocations that requires passing the entire state of
the graph from one stage to the next. However, this approach is
ill-suited for graph processing and can lead to suboptimal perfor-
mance due to the additional communication and associated serial-
ization overhead in addition to the need of coordinating the steps of
a chained MapReduce. The Pregel system [89] has been introduced
by Google as scalable platform for implementing graph algorithms.
It relies on a vertex-centric approach, which is inspired by the Bulk
Synchronous Parallel model (BSP) [120], where programs are ex-
pressed as a sequence of iterations, in each of which a vertex can
receive messages sent in the previous iteration, send messages to
other vertices and modify its own state as well as that of its outgo-
ing edges or mutate graph topology. In particular, Pregel computa-
tions consist of a sequence of iterations, called supersteps. During
a superstep the framework invokes a user-defined function for each
vertex, conceptually in parallel, which specifies the behavior at a
single vertex V and a single superstep S. It can read messages sent
to V in superstep S−1, send messages to other vertices that will be
received at superstep S+1, and modify the state of V and its outgo-
ing edges. Messages are typically sent along outgoing edges, but a
message may be sent to any vertex whose identifier is known. Sim-
ilar to the MapReduce framework, Pregel has been designed to be
efficient, scalable and fault-tolerant implementation on clusters of
thousands of commodity computers where the distribution-related
details are hidden behind an abstract. It keeps vertices and edges on
the machine that performs computation and uses network transfers
only for messages. Hence, the model is well suited for distributed
implementations as it doesn’t expose any mechanism for detect-
ing order of execution within a superstep, and all communication
is from superstep S to superstep S+ 1. The ideas of Pregel have
been cloned by many open source projects such as GoldenOrb35,
Apache Hama36 and Apache Giraph37. Both of Hama and Giraph
are implemented to be launched as a typical Hadoop job that can
leverage the Hadoop infrastructure. Other large scale graph pro-
cessing systems which have been introduced that neither follow the
MapReduce model nor leverage the Hadoop infrastructure include
GRACE [123], GraphLab [87, 88] and Signal/Collect [115].

A.4 Other MapReduce Applications
Several approaches have been proposed in the literature for tack-

ling different data-intensive and computationally expensive oper-
ations using the MapReduce framework. For example, The De-
doop system (Deduplication with Hadoop) [77, 78] has been pre-
sented as an entity resolution framework based on MapReduce.

35http://goldenorbos.org/
36http://hama.apache.org/
37http://giraph.apache.org/

It supports the ability to define complex entity resolution work-
flows that can include different matching steps and/or apply ma-
chine learning mechanisms for the automatic generation of match
classifiers. The defined workflows are then automatically trans-
lated into MapReduce jobs for parallel execution on Hadoop clus-
ters. The MapDupReducer [122] is another system that has been
proposed as a MapReduce-based solution which is developed for
supporting the problem of near duplicate detection over massive
datasets using the PPJoin (Positional and Prefix filtering) algo-
rithm [125].

An approach to efficiently perform set-similarity joins in paral-
lel using the MapReduce framework. In particular, they propose a
3-stage approach for end-to-end set-similarity joins have been have
proposed in [121]. The approach takes as input a set of records
and outputs a set of joined records based on a set-similarity con-
dition. It partitions the data across nodes in order to balance the
workload and minimize the need for replication. [83] has presented
three MapReduce algorithms for computing pairwise similarity on
document collections. The first algorithm is based on brute force,
the second algorithm treats the problem as a large-scale ad hoc re-
trieval and the third algorithm is based on the Cartesian product of
postings lists. V-SMART-Join [92] is a MapReduce-based frame-
work for discovering all pairs of similar entities which is applica-
ble to sets, multisets, and vectors. It presents a family of 2-stage
algorithms where the first stage computes and joins the partial re-
sults, and the second stage computes the similarity exactly for all
candidate pairs. [6] have provided a theoretical analysis of various
MapReduce-based similarity join algorithms in terms of various pa-
rameters including map and reduce costs, number of reducers and
communication cost.

The DisCo (Distributed Co-clustering) framework [102] has been
introduced as an approach for distributed data pre-processing and
co-clustering from the raw data to the end clusters using the MapRe-
duce framework. [35] have presented an approach for finding sub-
space clusters in very large moderate-to-high dimensional data that
is having typically more than 5 axes. [46] described the design
and the MapReduce-based implementations of the k-median and k-
center clustering algorithms. PLANET (Parallel Learner for Assembling
Numerous Ensemble Trees) is a distributed framework for learning
tree models over large datasets. It defines tree learning as a se-
ries of distributed computations and implements each one using the
MapReduce model [101]. The SystemML [54] provides a frame-
work for expressing machine learning algorithms using a declara-
tive higher-level language. The algorithms expressed in SystemML
are then automatically compiled and optimized into a set of MapRe-
duce jobs that can run on a cluster of machines. NIMBLE [53]
provides an infrastructure that has been specifically designed to
enable the rapid implementation of parallel machine learning and
data mining algorithms. The infrastructure allows its users to com-
pose parallel machine learning algorithms using reusable (serial
and parallel) building blocks that can be efficiently executed using
the MapReduce framework. Mahout38 is an Apache project which
is designed with the aim of building scalable machine learning li-
braries using the MapReduce framework. Ricardo [36] is presented
as a scalable platform for applying sophisticated statistical methods
over huge data repositories. It is designed to facilitate the trading
between R (a famous statistical software packages39) and Hadoop
where each trading partner performs the tasks that it does best. In
particular, this trading is done in a way where R sends aggregation-
processing queries to Hadoop while Hadoop sends aggregated data

38http://mahout.apache.org/
39http://www.r-project.org/



to R for advanced statistical processing or visualization.
[26] presented an approach for applying the MapReduce model

in the domain of spatial data management. In particular, they fo-
cus on the bulk-construction of R-Trees and aerial image quality
computation which involves vector and raster data. [93] have pre-
sented two matching algorithms, GreedyMR and StackMR, which
are geared for the MapReduce paradigm with the aim of distribut-
ing content from information suppliers to information consumers
on social media applications. In particular, they seek to maximize
the overall relevance of the matched content from suppliers to con-
sumers while regulating the overall activity.
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