
Towards Effective and Efficient Search-Based
Deterministic Replay

Manuel Bravo, Nuno Machado, Paolo Romano, Luís Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{angel.gestoso,nuno.machado,ler}@ist.utl.pt, romano@inesc-id.pt

ABSTRACT
Deterministic replay tools are a useful asset when it comes
to pinpoint hard-to-reproduce bugs. However, no sweet spot
has yet been found with respect to the trade-off between
recording overhead and bug reproducibility, especially in
the context of search-based deterministic replay techniques,
which rely on inference mechanisms.

In this paper, we argue that tracing the locking order,
along with the local control-flow path affected by shared
variables, allows to dramatically reduce the inference time
to find a fault-inducing trace, while imposing only a slight in-
crease in the overhead during production runs. Preliminary
evaluation with a micro-benchmark and third-party bench-
marks provides initial evidence that supports our claim.

Categories and Subject Descriptors
D.2.5 [Software Testing and Debugging]: Debugging
aids; Tracing

General Terms
Algorithms, Reliability, Performance

Keywords
concurrency, deterministic replay, symbolic execution

1. INTRODUCTION

1.1 Motivation
Parallel applications are difficult to design and implement,

but debugging their code can be even more challenging. To
start with, many concurrency errors (called heisenbugs) may
only appear when specific thread interleaving occur, and
these interleavings may be very hard to experience during
test runs. Furthermore, classical debugging techniques, such
as cyclic debugging, fall short for heisenbugs. In fact, repeat-
ing the faulty execution several times in an attempt to nar-
row down the root cause of the bug is not effective when the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotDep - Workshop on Hot Topics in Dependable Systems ’13, Nov. 3,
2013, Farmington, Pennsylvania, USA
Copyright 2013 ACM 978-1-4503-2457-1/13/11 ...$15.00.

error-inducing interleaving happens only in a few runs. As a
result, concurrent programs including widely used applica-
tions such as MySQL, Apache, Mozilla, and OpenOffice [9]
are commonly deployed with bugs.

Deterministic replay techniques have been designed to
overcome these obstacles. The goal is to log enough informa-
tion during the production run of the application such that,
if an error occurs, the development team can later repro-
duce the faulty run and re-enable cycling debugging. More
concretely, deterministic replay works by, first, capturing as
many non-deterministic events as possible during the pro-
duction run to, then, use the log to enforce the reproduction
of buggy execution.

Since the number of non-deterministic events can be ex-
tremely large, and the application may be required to ex-
ecute for a long period of time before a bug is found, the
main challenge of deterministic replay is to be able to re-
produce the bug while performing logging with small spatial
and time overhead. The early deterministic replay solutions,
that can be named order-based, have been designed to repro-
duce the bug on the first attempt [3, 6, 7, 14], as they track
every read and write access performed in shared memory lo-
cations. Although this provides guarantees on the success-
ful replay of the bug, these solutions induce a high spatial
and time overhead during the recording phase. To mitigate
the runtime slowdown, alternative approaches have been re-
cently attempted. In particular, search-based solutions avoid
recording all memory non-deterministic events and rely on
a post-recording inference phase to compute, starting from
a partial log, a feasible fault-inducing trace [15, 12, 1, 10, 8,
16]. The drawback is that replay determinism is not guar-
anteed, mainly because the lack of information on the exact
interleaving of threads shared accesses typically causes an
exponential growth of the search space during replay [11].

1.2 State of the Art
In this position paper, we argue that, despite the valu-

able progress that has been made towards more effective
and efficient search-based deterministic replay techniques,
no sweet spot has yet been found that poses a good balance
between recording overhead and replay guarantees. In par-
ticular, we are concerned with the following question: are
there any methods that can dramatically reduce the infer-
ence time of current solutions, while imposing the same or a
slightly greater recording overhead during production runs?
Figure 1 depicts this goal1 by plotting qualitatively some of

1Note that Figure 1 is not based on new measurements, but
rather on an approximate qualitative analysis regarding the

Inference''
Time'

Recording'Overhead'

ESD'

0

ODR'

CLAP'

STRIDE'
PRES'

CoopREP'
Any$solu)ons$

here?$

Figure 1: Tradeoff between inference time and
recording overhead for current search-based deter-
ministic replay solutions.

the state of the art approaches for search-based determinis-
tic replay.

On one hand, ESD [15], ODR [1], and CLAP [8] achieve
low recording overhead by not tracing any information with
respect to the order in which threads access to shared vari-
ables at runtime. Instead, during the search phase, these
solutions rely on symbolic execution and constraint solving
to infer the buggy interleaving.

In particular, ESD does not perform any recording at all
and strives to infer an execution that reproduces the original
failure by analyzing the program symbolically with hints
extracted from the bug report. In turn, ODR traces both
the program outputs and inputs, the execution path, and the
locking order to generate constraints that ease the search of a
thread interleaving capable of providing the same output as
the original run. CLAP improves ODR both by parallelizing
the constraint solving phase and by focusing on matching
shared reads to writes, rather than inferring concrete values
for the operations over shared variables.

On the other hand, PRES [12], CoopREP [10], and Stride [16]
incur smaller inference times, at a cost of recording, respec-
tively, the global execution order of every basic block con-
taining shared variables (PRES-BB), the local order of ac-
cess to a subset of shared program elements, and a relaxed
order between shared memory reads and writes.

1.3 Our Claim
In this paper, we move a step forward towards more ef-

fective and efficient search-based deterministic replay tech-
niques. Concretely, we argue that, in search-based solu-
tions, to trace the synchronization points can dramatically
decrease the time required for the inference phase, while in-
curring only a slight increase in the logging overhead. To
illustrate this point, we have extended CLAP [8], a search-
based solution that, from our perspective, offers the best
balance among the recording overhead, inference time, and
the information that is provided to the developers (how-
ever, other approaches, such as ESD, can also benefit from
our idea). Preliminary experiments with a prototype im-
plemented in Java support our claim: the inference time to
find a feasible buggy interleaving is reduced around 93x on

tradeoff between logging non-deterministic events and post-
recording search time, according to published results.

average, at a cost of increasing recording overhead by up to
27%.

2. CLAP OVERVIEW
CLAP [8] is a search-based deterministic replay system for

C/C++ multithreaded programs, which aims at reducing
the recording overhead via inference mechanisms (namely
symbolic execution and constraint solving). Like other search-
based record and replay solutions, CLAP consists of three
main phases: the recording phase, the inference phase, and
the replaying phase. The three phases are further described
in the following.

Record Phase. Instead of capturing information regarding
thread interleaving during the production run, CLAP traces
the path that each thread executes locally. The purpose of
tracing the control-flow choices is to guide the symbolic exe-
cution directly through the fault-inducing path, thus avoid-
ing the need to explore all the possible executions paths.
This approach accelerates the inference phase since there is
no need to backtrack to previous states, as ESD [15] does.

Inference Phase. This phase aims at computing a global
execution that follows the thread local path previously recorded
and is capable of triggering the error deterministically. The
inference phase can be divided in the following sub-phases:

a) Symbolic Execution. CLAP uses a concolic (concrete +
symbolic) execution, in the sense that only operations over
shared variables create fresh symbolic symbols, whereas op-
erations on other variables have concrete values as in a nor-
mal execution. Hence, during the symbolic execution, there
is no need to care about the data races since no concrete
values are assumed when reading from a shared variable. In
fact, the main goal of this phase is to gather enough informa-
tion for encoding a set of execution constraints representing
the buggy run.

b) Formula Generation. Once the symbolic execution has
finished, CLAP generates a formula composed by constraints
that represent the execution. The purpose of this formula
is to model the problem of finding the buggy schedule as
a constraint solving problem. The solution of this problem
will then indicate the order in which threads should access
shared memory positions such that the fault is reproduced.
In particular, the formula generated by CLAP is as follows.

φ = φpath ∧ φbug ∧ φso ∧ φrw ∧ φmo

where:

• φpath denotes the path constraints. These are gathered
by the symbolic execution. Each constraint represents
one symbolic branch decision, that consists of an if
statement in which, at least, one operand is symbolic.

• φbug represents the bug constraint. It is usually an
assertion of the condition that must be verified in order
to manifest the bug. For instance, division by zero
exception in the instruction val = 1/x can be defined
as the following read constraint Rx == 0.

• φso denotes the synchronization order constraints, which
are divided in two types, namely locking constraints

and partial order constraints. The former are con-
cerned with lock and unlock operations, and stipulate
that two blocks of read/write operations protected by
the same lock should not be interleaved. In turn, par-
tial order constraints are related to start, exit, fork,
join, wait, and signal operations. These constraints
further help to determine the happens-before relation
between two shared access points (i.e. a read, write,
or synchronization).

• φrw are called read-write constraints. They represent
the linkage between read and write operations (poten-
tially from different threads) and restrict the execution
order of those instructions. In particular, read-write
constraints can be written as follows:

(Vr = init
∧

∀wj∈W

Or < Owj
)

∨
∀wi∈W

(Vr = wi ∧ Owi
< Or

∧
∀wj 6=wi

Owj
< Owi

∨ Owj
> Or)

where Vr is the value returned by a read r on a given
shared variable s, init the initial value of s, and W
the write set for s. In turn, Or and Ow determine,
respectively, the order of r and the order of the write
wi in W.

Thereby, if the value read by r is init, then r must pre-
cede all write operations wi ∈W (i.e. Or < Owi , ∀wi ∈
W). Otherwise, r must follow a particular write wi

(i.e. ∃wi ∈ W : Owi < Or) and the read value is
the result of that write (Vr = wi). Finally, the last
condition states that no other write is between them.

• φmo denotes the memory-order constraints, i.e. the
order in which instructions are executed in a specific
thread, according to the memory consistency model.
For sequential consistency, for instance, if a thread ex-
ecutes ri prior to wb and after wa, the corresponding
memory order constraint will be: Owa < Ori < Owb .
However, CLAP not only supports the sequential con-
sistent memory model, but also both partial store or-
dering and total store ordering (in case they are sup-
ported by the hardware).

c) Constraint Solving. CLAP does not try to feed a con-
straint solver with the whole formula. Instead, it first lever-
ages a technique, denoted preemption-bounding, to gener-
ate a set of candidate schedules with an increasing number
of thread context switches, that also satisfy memory order
constraints (φmo). For each candidate schedule, the context
switches are then translated into ordering constraints and
added to the global formula. This scheme allows not only to
bound the search space (and generate schedules with a min-
imal number of context switches), but also to speed up the
formula constraint solving, as CLAP can fork a new process
to validate each single candidate schedule. Also, minimizing
the number of thread preemptions might further help devel-
opers to find the cause of the bug since a thread schedule
with few context switches should be easier to understand
than a thread schedule with more context switches.

Replay Phase. Once the solver has found a solution, the

produced thread interleaving is used to enforce the bug re-
production. In practice, CLAP runs a previously instru-
mented version of the program that, before each shared
memory access, checks the schedule to see whether the run-
ning thread is the one that should execute the operation
at that moment. If it is, the execution proceeds normally,
whereas if it not, the thread is blocked and waits until its
turn.

3. BENEFITS OF TRACING SYNC ORDER
Our work is motivated by the insight that the inference

phase of search-based replayers such as CLAP can be dra-
matically improved by tracing the program locking order,
i.e. the global order of synchronization operations, such as
wait/signal or lock/unlock. The rationale for this approach
is the following. First, previous work has shown that record-
ing the thread access order to synchronization points comes
with a relatively low overhead during the production run [1,
13]. Second, it allows to remove the synchronization order
constraints (φso) from CLAP’s global formula, which cor-
responds to discarding a cubic formula in the number of
lock/unlock pairs per lock object. This also results in a sub-
stantial decrease of the number of solutions to be checked,
as the correct locking order is known a priori and, therefore,
does not have to be inferred. In fact, according to our ex-
periments, the first solution suggested by the solver always
corresponds to a buggy schedule.

In the following, we present a simple example to better
understand the impact of tracing the synchronization order
in CLAP’s constraint model.

3.1 Example
Let us consider CLAP? as a version of CLAP that records

the locking order at runtime, in addition to the execution
path. Figure 2.a) shows a simple example that helps to vi-
sualize the benefits of CLAP? in comparison to CLAP. It
represents a multithreaded program that contains both syn-
chronized and non-synchronized accesses to a shared vari-
able x. Assuming that the production run follows the execu-
tion depicted by the arrows, CLAP? will track that thread t1
acquired the lock before thread t2 (this can be easily done by
inserting a probe right after the lock operations, thus avoid-
ing the need for extra synchronization). Conversely, CLAP
will not record anything, since the program does not contain
any conditional instructions.

Afterwards, during the symbolic execution phase, shared
read/write accesses are identified and logged. These opera-

initially: x == 0

 -- T1 --
lock()
x = x+1

unlock()
y = x+2

1:

2:

 -- T2 --
lock()
x = 3

unlock()
x = x+1

3:

4:

Rx1 = SYM_1
Wx1 = SYM_1 + 1
Rx2 = SYM_2
Wx3 = 3
Rx4 = SYM_3
Wx4 = SYM_3 + 1

a) Execution b) Symbolic Execution

Figure 2: Simple multithreaded program. Rxn
(Wxn) denotes a symbolic read (write) operation on
shared variable x in line n.

((SYM_1 = 0 & (ORx1<OWx1) & (ORx1<OWx3) & (ORx1<OWx4)) |
(SYM_1 = 3 & (OWx3<ORx1) & (OWx1<OWx3 | OWx1>ORx1) & (OWx4<OWx3 | OWx4>ORx1)) |
(SYM_1 = SYM_3+1 & (OWx4<ORx1) & (OWx1<OWx4 | OWx1>ORx1) & (OWx3<OWx4 | OWx3>ORx1)))

&&
((SYM_2 = SYM_1+1 & (OWx1<ORx2) & (OWx3<OWx1 | OWx3>ORx2) & (OWx4<OWx1 | OWx4>ORx2)) |
(SYM_2 = 3 & (OWx3<ORx2) & (OWx1<OWx3 | OWx1>ORx2) & (OWx4<OWx3 | OWx4>ORx2)) |
(SYM_2 = SYM_3+1 & (OWx4<ORx2) & (OWx1<OWx4 | OWx1>ORx2) & (OWx3<OWx4 | OWx3>ORx2)))

&&
((SYM_3 = SYM_1+1 & (OWx1<ORx4) & (OWx3<OWx1 | OWx3>ORx4) & (OWx4<OWx1 | OWx4>ORx4)) |
(SYM_3 = 3 & (OWx3<ORx4) & (OWx1<OWx3 | OWx1>ORx4) & (OWx4<OWx3 | OWx4>ORx4)))

read/write constraints

(ORx1 < OWx1 < ORx2) &&
(OWx3 < ORx4 < OWx4)

memory-order constraints
(ORx1 < OWx1 < ORx2) &&
(OWx3 < ORx4 < OWx4)

(SYM_1 = 0 & (ORx1<OWx1) & (ORx1<OWx3) & (ORx1<OWx4))
&&

((SYM_2 = SYM_1+1 & (OWx1<ORx2) & (OWx3<OWx1 | OWx3>ORx2) & (OWx4<OWx1 | OWx4>ORx2)) |
(SYM_2 = 3 & (OWx3<ORx2) & (OWx1<OWx3 | OWx1>ORx2) & (OWx4<OWx3 | OWx4>ORx2)) |
(SYM_2 = SYM_3+1 & (OWx4<ORx2) & (OWx1<OWx4 | OWx1>ORx2) & (OWx3<OWx4 | OWx3>ORx2)))

&&
(SYM_3 = 3 & (OWx3<ORx4) & (OWx1<OWx3 | OWx1>ORx4) & (OWx4<OWx3 | OWx4>ORx4))

(ORx1 < OWx1 < OWx3)

memory-order constraints

a) CLAP

read/write constraints

synchronization constraints

b) CLAP* (tracing locking order)

Figure 3: Constraints generated by CLAP and CLAP? for the example program shown in the Figure 2.

tions are depicted in Figure 2.b), where Rxn (Wxn) denotes
a read (write) operation over the shared variable x in line n.
In particular, each shared read creates a new fresh symbolic
symbol (e.g. the operation Rx1 creates the symbolic symbol
SYM 1).

Once the symbolic execution has finished, both CLAP and
CLAP? generate a set of constraints that helps to infer the
original execution. Figure 3 presents a simplified version
of the formula that CLAP and CLAP? would generate for
this example. Here, ORxn denotes the order of the cor-
responding operation (Rxn) in the to-be-computed thread
schedule. In turn, memory-order constraints represent the
order in which the operations have been locally executed by
each thread.

Figure 3 shows that the read-write constraints produced
by CLAP? are simpler than the constraints generated by
CLAP. For instance, according to CLAP’s constraint model,
SYM 1 can be equal to 0, 3, or SYM 3+1, while for CLAP?

SYM 1 can only be equal to 0.
This is due to the fact that CLAP must consider all possi-

ble execution interleavings between instructions in lines 1,3,
and 4, which means that Rx1 can be matched either with
the initial value of x, write Wx3, or Wx4. Conversely, since
CLAP?, apart from tracing the local execution path, also
logs the order in which locks are acquired, it can assume
that the instruction x++ was executed before the instruc-
tion x = 3. As a result, CLAP? is able to trivially correspond
Rx1 to the initial value.

In summary, by guiding the symbolic execution accord-
ing the synchronization order, CLAP? can simplify both the
read-write constraints and the number of possible solutions.
In fact, for the example in Figure 2, CLAP?’s read-write
constraints only have 3 solutions versus 12 of CLAP. Fur-
thermore, CLAP also needs to infer the order in which the
locks were acquired during the original execution (for the
sake of simplicity, these constraints were omitted in Fig-
ure 3.a), which in some cases may not be a trivial task.

4. PRELIMINARY EXPERIMENTS
To provide initial evidence of our hypothesis, we per-

formed some preliminary experiments. In particular, our
assessment focused on the following two criteria:

i) Recording Overhead. We are interested in demonstrat-
ing that tracing the locking order incurs a slightly larger
recording overhead with respect to CLAP, but is still com-
petitive in comparison to the baseline.

ii) Inference Time. We want to show that the information
regarding the order of thread accesses to synchronization
points allows to substantially reduce the inference time to
find a bug-reproducing execution schedule.

To perform the experiments, we implemented a prototype
in Java supporting both CLAP’s constraint model and our
extended version containing the locking order (CLAP?). We
used Soot2 to instrument the target applications in order to
record information at runtime, Java PathFinder3 to perform
symbolic execution, and Z3[4] to solve the constraint model4.

As test subjects, we used a micro-benchmark and four
programs from the IBM ConTest benchmark suite [5]. All
experiments were conducted in a machine with an Intel Core
2 Duo at 2.26 Ghz, with 4 GB of RAM and running Mac
OS X.

4.1 Recording Overhead
We developed a micro-benchmark to intensively assess

how the recording and space overhead of both CLAP and
CLAP? varies when increasing: i) the number of branches,
ii) the number synchronization operations, and iii) the ra-
tio between synchronized and non-synchronized accesses. In
particular, the micro-benchmark consists of a simple a mul-
tithreaded program with four threads that perform 107 con-
current accesses to four shared variables, where some of
the accesses are synchronized some are not. The purpose
of the micro-benchmark is allowing us to easily tune ei-
ther the number of branches or the number of synchroniza-
tion accesses, while keeping the other parameter constant.
Thereby, when we vary the number of branches, the number
of synchronization operations is constant, whereas, when we
increase the latter, both the amount of branches and ac-
cesses to shared variables are kept at 107. Finally, for the
ratio between synchronized and non-synchronized accesses,
we simply vary the percentage of shared operations that are
synchronized among the total 107 concurrent accesses. The
results are plotted in Figure 4 (Baseline indicates the non-
instrumented version of the program).

As we can see in Figure 4.a), by increasing solely the
number of conditional instructions, both CLAP and CLAP?

exhibit practically the same recording overhead, which is
only 38% for 25 millions branches5. The slightly larger logs

2http://www.sable.mcgill.ca/soot/
3http://babelfish.arc.nasa.gov/trac/jpf
4We did not employ parallelization in the solving process.
5Note that more efficient path tracing algorithms (e.g. Ball-

Program LOC #Th #SV #BR
#Unknown Variables #Constraints Inference Time

CLAP CLAP? Red. CLAP CLAP? Red. CLAP CLAP?

TwoStage 136 16 3 164 873 453 ↓48.1% 2592851 1119124 ↓71.4% >2h 61s
Piper 165 21 4 160 2132 539 ↓74.7% 737478 225244 ↓69.5% >2h 30s

TicketOrder 161 4 6 232 620 548 ↓11.6% 199799 172033 ↓13.9% 95s 40s
Manager 180 4 4 613 1286 1115 ↓13.3% 60824 59370 ↓2.4% >2h 743s

Table 1: Results for the IBM ConTest benchmarks. Shaded cells indicate that no solution was found within
2 hours.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

Ex
ec

ut
io

n
Ti

m
e

(s
)

Branches (millions)

a) Recording Overhead

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25

Lo
g

Si
ze

 (M
b)

Branches (millions)

b) Log Size

Baseline
CLAP

CLAP*

 0

 50

 100

 150

 200

 1000 10000 100000 1e+06 1e+07

Ex
ec

ut
io

n
Ti

m
e

(s
)

Synchronization Operations

c) Recording Overhead

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000 10000 100000 1e+06 1e+07

Lo
g

Si
ze

 (M
b)

Synchronization Operations

d) Log Size

 0

 10

 20

 30

 40

 50

 60

100%-0% 75%-25% 50%-50% 25%-75% 0%-100%

Ex
ec

ut
io

n
Ti

m
e

(s
)

%Non-Sync. Ops - %Sync. Ops

e) Recording overhead

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100%-0% 75%-25% 50%-50% 25%-75% 0%-100%

Lo
g

Si
ze

 (M
b)

%Non-Sync. Ops - %Sync. Ops

f) Log Size

Figure 4: Recording overhead and log sizes for
micro-benchmark.

produced by CLAP? in this test are due to the fixed small
amount of synchronization operations executed.

Regarding the test aimed at assessing the impact of syn-
chronization operations (Figure 4.c), we can verify that,
as their number grows, CLAP?’s performance degradation
slightly increases with respect to that of CLAP, although
their difference is almost negligible (up to 6%). The same
applies for the log sizes, with exception for the case with 10
million synchronization operations, where CLAP?’s log has
250KB and and CLAP’s only 92KB. Despite that, these re-
sults confirm that, even for large amounts of synchronization
operations, our hypothesis is still competitive in comparison
to CLAP.

Larus [2]) can be later added to our prototype.

Finally, Figures 4.e) and f) show, respectively, the run-
time overhead and the space cost for the micro-benchmark
test when increasing the percentage of synchronized shared
accesses in the program. As expected, as the percentage
grows, CLAP? and CLAP start diverging, with the former
achieving a performance slowdown up to 22.5% higher. In
terms of space cost, the size of the trace files produced by
CLAP? ranges from 92KB to 263KB, whereas CLAP con-
stantly generates logs of 92KB, given that it traces only
the thread local path. Once again, these results highlight
the potential of our approach, although they also show that
the amount of synchronized operations can have a negative
impact in both time and space overhead, especially for pro-
grams where this kind of operations accounts for the major-
ity of shared accesses.

4.2 Inference Time
To compare CLAP? against CLAP in terms of inference

time, we used four programs from the IBM ConTest bench-
mark suite [5]. This benchmark suite is composed by mul-
tiple applications that contain concurrency bugs. Columns
2-5 of Table 1 characterize the used programs in terms of
lines of code (LOC), number of threads (#Th), number of
shared variables (#SV), and number of branches (#BR).

In turn, columns 6-13 present the results regarding the
comparison between CLAP and CLAP? with respect to the
number of unknown variables generated, number of con-
straints, and inference time (which encompasses both the
time to build the constraint formula and the time to solve
it). For the former two criteria, Table 1 also indicates the
respective achieved reduction (Red.).

Analyzing the results for the amount of both unknown
variables and constraints produced, we see that tracing the
locking order provides a maximum reduction of 74.7% and
71.4%, respectively. As expected, this fact results in a sub-
stantial decrease of the inference time (both in terms of
constraint generation and formula solving). In particular,
CLAP? was able to find the buggy execution in less than
61s for TicketOrder, TwoStage, and Piper, whereas, for the
latter two programs, the solver could not find a solution for
CLAP’s set of constraints within 2 hours. Note that, even
if CLAP had found solution in this amount of time, CLAP?

would have been 118x and 240x faster solving the formula,
respectively for TwoStage and Piper. It should also be noted
that these reductions in the inference time come at a cost
of an increment of 27% and 13% in the runtime overhead,
respectively. This further supports our claim regarding the
benefits of recording the locking order at runtime.

On the other hand, for program Manager, CLAP? de-
creased the number of constraints and unknown variables
by only 2.4%. Despite that, we can see that the reduction
of the solving time is still significant.

Finally, it should be noted that, considering the same in-

put, CLAP? was always able to reproduce the bug at the
first attempt (i.e. with the first obtained solution).

5. CONCLUSIONS AND FUTURE WORK
In this paper we explore an interesting tradeoff between

recording overhead and efficiency of the inference phase, in
the context of search-based deterministic replay. In partic-
ular, we argue that extending search-based approaches such
as CLAP [8] to also trace the synchronization order results in
a significant reduction of the inference time, while imposing
a tolerable overhead during the production run. Prelimi-
nary experiments with a micro-benchmark and third-party
benchmarks support our claim, but need to be reinforced
with more complex real-world applications.

Although in its early stages, we believe that this work
paves the way for the exploration of novel trade-offs between
recording overhead and inference time.

6. ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers for

their valuable feedback. This work has been partially sup-
ported by FCT (INESC-ID multi-annual funding) through
the PEst-OE/EEI/LA0021 /2013 Program Funds.

7. REFERENCES
[1] G. Altekar and I. Stoica. Odr: output-deterministic

replay for multicore debugging. In ACM SOSP, pages
193–206, 2009.

[2] T. Ball and J. R. Larus. Efficient path profiling. In
ACM/IEEE MICRO, pages 46–57, 1996.

[3] J.-D. Choi and H. Srinivasan. Deterministic replay of
java multithreaded applications. In ACM SPDT, pages
48–59, 1998.

[4] L. De Moura and N. Bjørner. Z3: an efficient smt
solver. In TACAS, pages 337–340, 2008.

[5] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In IEEE IPDPS, pages
286–293, 2003.

[6] A. Georges, M. Christiaens, M. Ronsse, and
K. De Bosschere. Jarec: a portable record/replay
environment for multi-threaded java applications.
Software Practice and Experience, 40:523–547, May
2004.

[7] J. Huang, P. Liu, and C. Zhang. Leap: lightweight
deterministic multi-processor replay of concurrent java
programs. In ACM FSE, pages 385–386, 2010.

[8] J. Huang, C. Zhang, and J. Dolby. Clap: recording
local executions to reproduce concurrency failures. In
PLDI, pages 141–152, 2013.

[9] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. In ACM ASPLOS,
pages 329–339, 2008.

[10] N. Machado, P. Romano, and L. Rodrigues.
Lightweight cooperative logging for fault replication in
concurrent programs. In IEEE DSN, pages 1–12, 2012.

[11] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. In ACM PLDI, pages 446–455, 2007.

[12] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. Lee, and S. Lu. Pres: probabilistic replay with

execution sketching on multiprocessors. In ACM
SOSP, pages 177–192, 2009.

[13] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang,
P. Chen, J. Flinn, and S. Narayanasamy. Doubleplay:
parallelizing sequential logging and replay. In ACM
ASPLOS, pages 15–26, 2011.

[14] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang.
Order: object centric deterministic replay for java. In
USENIX ATC, 2011.

[15] C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debugging. In ACM
EuroSys, pages 321–334, 2010.

[16] J. Zhou, X. Xiao, and C. Zhang. Stride: search-based
deterministic replay in polynomial time via bounded
linkage. In ICSE, pages 892–902, 2012.

