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ABSTRACT
Preference queries aim at increasing personalized pertinence
of a selection. The most famous ones are the skyline queries
based on the concept of dominance introduced by Pareto.
Many other dominances have been proposed. In particu-
lar, many weaker forms of dominance aim at reducing the
size of the answer of the skyline query. In most cases, ap-
plying just one dominance is not satisfying as it is hard to
conciliate high pertinence, i.e. a strong dominance, and rea-
sonable size of the selection. We propose to allow the user
to decide what dominances are reliable, and what priorities
between those dominances should be respected. This can
be done by defining a sequence, eventually transfinite, of
dominances. According to that sequence, we propose opera-
tors that compute progressively the ranking of a dataset by
successive applications of the dominances without introduc-
ing inconsistencies. The principle of progressive refinement
provides a great flexibility to the user that can not only dy-
namically decide to stop the process whenever the results
satisfies his/her wishes, but can also navigates in the differ-
ent levels of ranking and be aware of the level of reliability
of each successive refinement.

1. INTRODUCTION
Considerable attention has recently been paid to prefer-

ence queries. Those queries aim to improve the pertinence
of information retrieval that may be different from one user
to another. They take into account user’s preferences and
have been studied following two different ways [4]. The first
approach personalizes a given query by expanding it to in-
clude preferences. The second approach uses explicit prefer-
ence operators in the query, such that the skyline operator
[1] which is based on the concept of dominance or efficiency
introduced by Pareto.
Considering a set of alternatives that can be compared

with respect to a finite set of criteria, Pareto defined an
alternative A to be more efficient than another one B (or to
dominate B) if there is at least one criterion that suggests
to prefer A to B while there exists none that suggests the

contrary. The set of optimal alternatives, i.e. those that
are not dominated by any other one, is called the frontier of
Pareto. The skyline operator computes that frontier.
In the context of high dimensional databases, skyline que-

ries alone do not provide an efficient decision support. It
is therefore necessary to refine the selection. Different ap-
proaches have been proposed to overcome that limitation.
The main idea consists in introducing more comparability
by defining other, mostly weaker, dominance relations. To
name a few : ε-dominance [5], K-dominance [2], dominance-
back [6] and quasi-dominance [3]. The relevance of the differ-
ent dominance relations is obviously disputable and depends
on the context and/or the user. More generally, the domi-
nance relation could even be defined by the user itself or be
obtained from queries to experts, communities of users or
web services. The dominance could even be obtained by the
integration of information coming from different, eventually
inconsistent, sources, using different combinations relying on
operators such as set operators or other specific operators
(e.g., see [4]). In fact, a dominance relation should simply
be defined as a binary relation over the set of tuples. We
propose to generalize that reasoning to any given set of bi-
nary relations over a same set of tuples. The user decides
of (a) a selection, eventually transfinite, in the set of domi-
nance relations of those he wants to use, (b) values for the
parameters of each dominance relation that requires some,
and (c) a strict total order, called preferences chain, over the
set of relations he selected. Guided by that chain, we apply
successively the dominance relations to refine progressively
the answer set. Each step may allow new comparisons be-
tween tuples, but only between tuples that were considered
incomparable and ranked at the same level by the precedent
step.
In this paper, we define an operator that computes pref-

erences chain guided rankings of a set of tuples (that can
eventually be the skyline set). It applies successive domi-
nance relations in a way that each application of one more
dominance refines the ranking provided by the precedent
one. The principle of progressive refinement provides a great
flexibility to the user that can not only determine priorities
between dominances he decides to rely on, but can also dy-
namically decide to stop the process whenever the results
satisfies his wishes, or even navigates in the different lev-
els of ranking, being aware of the level of reliability of each
successive refinement. Finally, we provide experimental re-
sults that show the effectiveness and the efficiency of our
algorithms.
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2. RANKING REFINEMENT
Let R(d1, ..., dn) denotes a database relation schema with

n attributes where each attribute di takes values from a
numerical domain dom(di). Let d = {d1, ...., dn} be the set
of attributes of R and dom(d) be the domain of d, defined
by dom(d) = dom(d1)× .....× dom(dn). We use t to denote
a tuple (u1, u2, ..., un) ∈ dom(d) of R, and r to denote a
relation or dataset on R, i.e. a set of tuples in dom(d). Let
R∗ be the set of datasets on R.

Definition 1 (Dominance relation). A dominance
relation over a dataset r is a binary relation over r × r.

Dominance relations are also called qualitative preference
relations. The dominance relation that leads to the skyline
set is called traditional dominance denoted TD [1].
For a given dominance relation θ, one usually selects as
"best" tuples with respect to θ those that are not domi-
nated by any other tuple with respect to θ. But we consider
a different definition of maximality. The usual definition as-
serts that a tuple is maximal if it is not dominated by any
other one. If this is acceptable for pre-orders such as TD,
it is not appropriate anymore for cyclic relations. For in-
stance, suppose that a small subset s of r form a cycle w.r.t.
a dominance relation and that no tuples in s is dominated
by a tuple in r \ s while any tuple in r \ s is dominated by
a tuple in s. In that case, there is no maximal tuple. We
believe that cycles should be seen as set of equivalent tu-
ples, i.e. elements that can not be preferred to each other
(in our example, s should be the set of maximal elements).
To this end, we will use the classical notion of transitive
closure in order to derive a pre-order from each dominance
relationships. The transitive closure is computed only for
the tuples belonging to the cycle.

Definition 2 (Partial transitive closure θ+). Let
θ be a dominance relation over a dataset r. The partial tran-
sitive closure of θ over s ⊂ r, denoted θ+

s , is the binary re-
lation over s such that ∀(t, t′) ∈ s2, θ+

s (t, t′) iff
∃(t1, . . . , tv) ∈ sv(t1 = t∧tv = t′∧ θ(t1, t2)∧. . .∧θ(tv−1, tv))).

Relying on the transitive closure of a relation, we propose
the definition of a new algebraic operator.

Definition 3 (maxθ: maximality-based selection).
Let θ be a dominance relation over a dataset r. An element
t in r is said to be maximal w.r.t. θ iff ∀t′ ∈ r (¬(θ+

r (t′, t))∨
θ+
r (t, t′)). The maximality-based selection w.r.t. θ in r is the
set of maximal elements of r w.r.t. θ is denoted maxθ(r).

A tuple is maximal with respect to a dominance relation θ
if and only if it dominates all the tuples that dominate it,
i.e. iff ∀t′ ∈ r (θ+

r (t′, t) ⇒ θ+
r (t, t′)). Of course, if it is not

dominated by any tuple, then it is maximal. It is immediate
that maxθ is a filter that selects some elements in r.

Theorem 1. Let θ be a dominance relation over a dataset
r. maxθ(r) ⊆ r holds.

First, we need to define the ranking with respect to a given
dominance relation. That ranking is defined as an ordered
partition of a dataset r, i.e. a list of disjoint subsets of r
whose union is equal to r.

Definition 4 (θ-decomposition operator Γθ). Let
θ be a dominance relation over a dataset r. The decompo-
sition of r w.r.t. θ, denoted Γθ(r), is defined as the ordered

partition 〈γ0, . . . , γp〉 of r, where γ0 = maxθ(r),

γi = maxθ(r \
i−1⋃
j=0

γj) for 1 ≤ i, and p = max{i | γi 6= ∅}

That operator first computes the set γ0 of maximal tuples
with respect to θ. That set is the first set of the ordered
partition. It represents the "first choice tuples" with re-
spect to θ. Then it removes those selected tuples from the
original set r. It computes the set γ1 of maximal tuples in
the remaining set r with respect to the partial transitive
closure over that set. The resulting set is the second set
of the partition and represents the "second choice tuples".
The computation is iterated until there is no more tuples
into the original set.

Example 1. Figure 1 shows the example of θ-decompo-
sition. Each arrow color represents a dominance relation
θi(θ1 is black, θ2 is red and θ3 is green). The decompo-
sition of r w.r.t θ1 (as illustrated by the blue shapes) is
γ0 = maxθ1(r) = {1, 10, 11}, γ1 = {2, 3, 4}, γ2 = {5, 13},
γ3 = {6, 7, 8, 9}, γ4 = {12}.
So, Γθ1 = 〈{1, 10, 11}, {2, 3, 4}, {5, 13}, {6, 7, 8, 9}, {12}〉.

The idea is to refine progressively the ranking of the set
of skyline tuples by successively applying the relations of a
preferences chain. Thus, once the decomposition of r with
respect to a dominance θi has been computed, we propose
to decompose the intermediate result using the next domi-
nance θi+1. As the dataset r has already be pre-sorted based
on θi, θi+1 should not be applied over the entire set r but
only within the different subsets of r in order to refine the
ranking.

Figure 1: Preference chain ranking process

Definition 5 (generalized θ-decomposition Γ̂θ).
Let 〈r0, . . . , rm〉 be an ordered partition of a dataset r. Let
θ be a dominance relation over r. The decomposition of
〈r0, . . . , rm〉 w.r.t. θ, denoted Γ̂θ(r0, . . . , rm), is the ordered
partition of r defined by Γ̂θ(r0, . . . , rm) = 〈Γθ(r0), . . . ,Γθ(rm)〉.

Let O(S) be the set of lists of disjoint subsets of a set S.
Note that if 〈x1, . . . , xn〉 in O(S) is such that

⋃
1≤i≤n xi =

S, then 〈x1, . . . , xn〉 is an ordered partition of S. Let the
order � over O(S) × O(S) be defined by 〈x1, . . . , xn〉 �
〈y1, . . . , ym〉, read 〈y1, . . . , ym〉 is finer than 〈x1, . . . , xn〉, iff
for all yi, yj in 〈y1, . . . , ym〉 such that i ≤ j, there exist
xj , xj′ in 〈x1, . . . , xn〉 such that yi ⊆ xj and yi′ ⊆ xj′ and
i′ ≤ j′. The following result asserts that the application of
the operator Γ̂θ on an ordered partition is a refinement of
that partition.

Theorem 2. Let 〈r0, . . . , rm〉 be an ordered partition of
a dataset r. Let θ be a dominance relation over r. Then
〈r0, . . . , rm〉 � Γ̂θ(r0, . . . , rm) holds.

Finally, applying successively the decomposition operator
will provide the user a global ranking as refined as possible
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with respect to the sequence of dominance relations that he
selected and ordered.

Example 2. Let γ = Γθ1(r) of example1.
Γ̂θ2(γ)= 〈Γθ2({1, 10, 11}),Γθ2({2, 3, 4}),Γθ2({5, 13}),
Γθ2({6, 7, 8, 9}),Γθ2({12})〉.
Γ̂θ2(γ) = 〈{10, 11}, {1}, {3, 4}, {2}, {5, 13}, {6, 7, 8, 9}, {12}〉

Definition 6 (Preferences chain guided ranking).
Let Θ =〈θ1, . . . , θl〉 be a preferences chain over a dataset r.
The preferences chain guided ranking of r w.r.t. Θ is de-
fined as the sequence 〈rankΘ

n 〉, where rankΘ
0 = r, rankΘ

n+1 =

Γ̂θn+1(rankΘ
n ) for any successor ordinal n, and rankΘ

α =

max�{rankΘ
n , n < α} for any limit ordinal α.

Relying on Theorem 2, the above ranking is a well-defined
concept.

Theorem 3. Let Θ be a preferences chain over a dataset
r. The preferences chain guided ranking 〈rankΘ

n 〉 of r w.r.t.
Θ is a non-decreasing sequence w.r.t. � that reaches its
limit, which is an ordered partition of r, in a finite number
of steps.

We can now define a new operator that computes an ordered
partition by progressive refinement.

Definition 7 (Preferences chain guided ranking).
Let Θ be a preferences chain over dom(d). The Θ-ranking
operator RankΘ associates to the relation r in R∗ the limit
of the preferences chain guided ranking 〈rankΘ

n 〉 of r w.r.t.
Θ.

Example 3. Let Θ = 〈θ1, θ2, θ3〉.
RankΘ(r) = Γ̂θ3(Γ̂θ2(Γθ1(r)))
= 〈{10, 11}, {1}, {3, 4}, {2}, {5}, {13}, {6}, {7, 9}, {8}, {12}〉

3. EXPERIMENTS
Experimental Settings. We evaluate the quality and the
cost of RankΘ using the NBA data, which are NBA player
statistics from 1946 to 2009 (http://databasesBasketball.com),
with 21671 records over 17 attributes. In our test, we use two
preferences chains: the one is based on the quasi-dominance
denoted QD, while the other is based on the k-dominance
denoted KD. Within each chain, we increase the indiffer-
ence threshold q for the QDn, and decrease the dimension
number k for the KDn.
Progressive filtering and ranking capacity. Figure 2
represents the decomposition of r after each step of the rank-
ing guided by the preferences chain QDn of a set of 28 sky-
line tuples computed on a sample of 100 tuples in the NBA
database. We can observe the progressive refinement of the
ordered partitioning of the data set. Each line, from TD
to QD(q*8), shows the more refined partition of the set ob-
tained after the application of one more dominance relation.
The user can stop at any step or continue the ranking. In
this figure, we chose to stop at QD(q*8) only for a better
illustration purpose. Figure 3 illustrate size of first subset
of the ranking after each step w.r.t QDn.
Performance. Figure 4 represents the overcost of the re-
finement step by Γ̂θ(ri) for each successive dominance in
QDn. The overcost decreases since just smaller subsets are
refined in each step. Figure 5 concerns the ranking guided
by the preferences chain KDn. The highest curve represents

Figure 2: Refinement Figure 3: Max Vs |DB|

Figure 4: Perf of Max(θ) Figure 5: Ranking Vs θ

the cost of the total cumulated runtime of computation for
each dominance in all the subsets of the ordered partition.
Similarly, the lowest curve represents the cost of the total
runtime for ranking all the subsets once the dominance is
computed. As expected from Theorem 3, the overcost of
each supplementary dominance converges to 0 as the or-
dered partition becomes progressively finer and the number
of comparisons to be tested smaller. Note that the most ex-
pensive part of the computation is for the first dominances
of the chain. While not necessary, it will be preferable for
the user, from a performance point of view, to begin its
chain with dominances such as Pareto dominance that satis-
fies some properties such as transitivity or anti-monotonicity
that can be used to optimize their computation.

4. CONCLUSION
We propose a formal framework for progressive ranking

of skylines sets with respect to users’ preferences. Our ap-
proach, is very flexible as it allows the user (a) to choose
and order different relations of preference according to the
reliability and priority he give to each of them, and (b) to
decide to stop the progressive filtering as soon as the result
satisfies him. We provide not only the formal framework
but also experimental results which validate our approach.

5. REFERENCES
[1] Stephan Börzsönyi, Donald Kossmann, and Konrad

Stocker. The skyline operator. ICDE, 2001.
[2] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan,

Anthony K. H. Tung, and Zhenjie Zhang. Finding
k-dominant skylines in high dimensional space.
SIGMOD, 2006.

[3] J. Figueira, V. Mousseau, and B. Roy. Electre methods.
Springer Verlag, 2005.

[4] Kostas Stefanidis, Georgia Koutrika, and Evaggelia
Pitoura. A survey on representation, composition and
application of preferences in database systems. ACM
TODS, 36(3):19, 2011.

[5] Tian Xia, Donghui Zhang, and Yufei Tao. On skylining
with flexible dominance relation. ICDE, 2008.

[6] Jing Yang, Gabriel Pui Fung, Wei Lu, Xiaofang Zhou,
Hong Chen, and Xiaoyong Du. Finding superior skyline
points for multidimensional recommendation
applications. WWW, 2012.

3


