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ABSTRACT
Understanding the locations of highly occluded paths on a
terrain is an important GIS problem. In this paper we present
a model and a fast algorithm for computing highly occluded
paths on a terrain. It does not assume the observer locations
to be known and yields a path likely to be occluded under a
rational observer strategy. We present experimental results
that examine several different observer strategies. The re-
peated visibility map computations necessary for our model
is expedited using a fast algorithm for calculating approxi-
mate visibility maps that models the decrease in observational
fidelity as distance increases. The algorithm computes a mul-
tiresolution approximate visibility map and makes use of a
graphics processing unit (GPU) to speed up computation. We
present experimental results on terrrain data sets with up to
144 million points.

Categories and Subject Descriptors: F.2.2 [Nonnumerical
Algorithms and Problems]: Geometrical problems and com-
putations; H.2.8 [Database Management]: Database Appli-
cations—Data Mining, Image Databases, Spatial Databases and
GIS

General Terms: Performance, Algorithms

Keywords: Terrain modeling, GIS, visibility, navigation

1. INTRODUCTION
In this paper we consider the problem of computing a highly
hidden or occluded path on a terrain Σ between two given
points a, b ∈ Σ, that is, a path that can be traversed with
minimal risk of exposure to a set O of observers placed on
Σ. The problem of finding a highly occluded path has a wide
range of applications, including military applications (e.g.
planning troop movements in enemy territory), city planning
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(e.g. planning the location of visually unappealing construc-
tion projects such as power lines), and virtual environments
(e.g. video games).

In many applications, the set O of observers is not known,
but given Σ we still want to compute a path from a to b that
is likely to be highly occluded. In such cases, the problem
can be considered in an adversary model where the (rational)
adversary chooses O to minimize the number of good hidden
paths. We assume that the adversary does not know a or b
in advance. Since the adversary is rational and Σ is known
in advance, it is possible to exploit information about the
topology and features of the terrain to find paths that are
likely to be well hidden from the adversary, regardless of his
choice of O.

This raises a closely related problem of guessing where
the observers are placed on Σ—guessing the strategies the
adversary can use to choose a good set of observers O such
that for any a, b ∈ Σ a good hidden path from a to b is unlikely
to exist. We can then compute the path from a to b on Σ that is
most hidden with respect to the guessed observers. If the set
O∗ of guessed observers is close to the actual set of observers,
then occluded paths with respect to O∗ will remain occluded
with respect to O. Even if O and O∗ differ, our hypothesis
is that if O∗ accurately captures the highly visible areas of Σ,
then paths that are occluded with respect to O∗ will remain
so with respect to O.

A terrain Σ in a GIS is stored as a digital elevation model
(DEM). Due to its simplicity the most popular type of DEM
is the grid DEM, represented as a two dimensional array
of points, in which elevation is specified at each grid point.
With the advances in sensing and mapping technology, very
large, high-resolution grid DEMs of terrains are becoming
easily available. For example, modern airborne laser altimetry
(LiDAR) technology can map the earth’s surface at a 15-25
cm horizontal resolution. While such high-resolution DEMs
provide unprecedented opportunities, their large size requires
the availability of efficient algorithms for terrain modeling
and analysis, and this is often the bottleneck in taking full
advantage of these applications. This is particularly true for
path planning and visibility analysis on terrains.

Computing visibility information on a grid DEM can be
costly. The visibility map Vo of an observer o ∈ O is, intuitively,
the region of Σ visible to o. The visibility map for a single
observer, Vo, can have linear complexity in the size of the grid
DEM representation of Σ and naive algorithms for computing
it are of worst case quadratic complexity. This is prohibitively
expensive when O is large.

We observe that observational fidelity decreases with dis-



tance, which implies that we can employ approximation al-
gorithms that use an appropriate level of detail based on the
features of the terrain and the distance between the terrain
and the observers. This will allow us to decrease, using terrain
simplification techniques, the amount of information about Σ
that we need to process far away from o which will speed up
the computation. Furthermore, we need not compute Vo itself
at a high resolution far away from o, which will further speed
up the computation.

Furthermore, over the last decade modern PCs have started
to become equipped with advanced and increasingly pow-
erful graphics processing units (GPUs). Although originally
designed for rapidly transforming 3D geometric scenes into
pixels on the image plane (screen) and extensively used in
video games, they can be regarded as massively parallel vec-
tor processors suitable for general purpose computing. To
speed up the computation of Vo we want to employ the GPU
which has the potential to significantly improve performance.

Related work. There is extensive work in computational ge-
ometry, robotics, GIS, and virtual environment communities
on path planning and visibility related problems. It is beyond
the scope of this paper to review all of them, even the work
on visibility based path planning. We therefore focus on the
work that is closely related to our results. We refer the reader
to the books [12, 22] for a review of visibility based planning
and related problems.

Most of the research on optimal path-planning on terrains
in computational geometry has focused on finding the paths
of minimum length. The best known algorithm takes quadratic
time [5] , and there are faster sampling based approximation
algorithms [24, 3]. There is also some work on the so-called
weighted-region problem, where a weighted planar subdivi-
sion is given and the goal is to find a path of the minimum
weighted length. The exact algorithms are quite expensive
in 2D, but faster approximation algorithms are known; see
[2] and references therein. One can assign the weights of a
region based on visibility of that region from a given set of ob-
servers and can formulate the problem of computing a highly
occluded path as a weighted-region problem. However, this
approach will be quite expensive because the number of re-
gions will be quite large, and the algorithm will be impractical
even for small-size terrains.

There are two variants of visibility-based path planning
problems that are extensively studied in computational ge-
ometry. First, the so-called shortest watchman tour problem—
find the shortest path π inside a polygonal environment P
so that every point of P is visible from at least one point of
π; see [18]. The other variant is the so-called visibility based
pursuer-evader games, where one or multiple pursuers wish
to catch an intruder inside a polygonal environment. Here
the objectives are—how many pursuers are needed to catch
an intruder, and how quickly can they catch them; see [10]
for some recent work and for a review of earlier work. The
so-called localization problem [20] and art gallery problem [19,
25] are also related.

The problem of visibility based exploration in an unknown
environment is widely studied in robotics and GIS. Here the
goal is to explore as much environment as possible with as lit-
tle motion as possible [12]. A commonly used approach is the
visibility based probabilistic road map approach, which care-
fully samples points in the environment, constructs a graph,
and traverses the graph to explore the environment [4, 23].

Another interesting approach is based on level-set methods
[11, 9]. See [16] for a comparison of different approaches.

Finally, there is some work in GIS and virtual environment
communities on finding paths that are occluded from a given
set of observers [8, 13, 14, 17]. All these papers sample a
set of points on the terrain or polygonal environment, assign
a weight to each point based on the visibility from a given
set of observers, and use a steepest-descent, A* search, or
Dijkstra’s algorithm to compute a desired path. However, all
these algorithms do not seem to scale to large terrains. For
example, the largest terrains on which the algorithms in [14]
were tested had size 257× 257. Franklin et. al [8] propose
a terrain compression algorithm and compute the paths on
the compressed terrain. They present experimental results on
terrains of sizes up to 160, 000 (400× 400) grid points.

Our contributions. The main contribution of our paper is
a scalable algorithm for computing a highly occluded path
between two points on a terrain, represented as a grid DEM;
our algorithm can handle large terrains by relying on ap-
proximation techniques and graphics processing units (GPUs)
available on modern PCs. There are three main ingredients of
our algorithm:

(i) We describe a model for highly occluded paths on an
arbitrary terrain, represented as a continuous height function,
with respect to a given set of observers (Section 2). Our model
unifies several previous models and implicitly optimizes both
the visibility and the length of the path. Although not de-
scribed explicitly, it can also incorporate other features of the
terrain in its cost function, such as slope. We then adapt this
model for terrains represented as a grid DEM.

(ii) Next, we present an algorithm for computing the visibil-
ity map of the terrain from a fixed viewpoint (Section 3). Since
our focus is on handling large terrains, we rely on approxima-
tion techniques and compute an approximate visibility map
by simplifying the geometry of the terrain progressively as we
move farther away from the viewpoint. Unlike some of the
previous work, our simplification algorithm is adaptive to the
location of the observer; similar ideas were previously used
in graphics [15]. We then describe an efficient implementation
of our algorithm using a GPU.

(iii) In many applications we do not know the location of
observers, so we describe two approaches to guess their loca-
tions (Section 4). The first approach is based on the topological
analysis of the algorithm—the idea being that observers are
likely to be on high maxima or saddle points of the terrain,
from which one can see most of the terrain. However, simply
choosing k highest maxima and/or saddle points is not suf-
ficient since they may be clustered and not cover the terrain
well. We therefore describe an algorithm based on topological
persistence [7]. The second algorithm is an efficient imple-
mentation of the so-called art gallery problem using our fast
visibility-map algorithm of Section 3. We also present a third
approach which is a hybrid of these two algorithms.

We have implemented our algorithm and Section 5 demon-
strates its effectiveness by detailed experimental results. We
show that our visibility map algorithm allows fast visibility
map calculations, with a trade-off between approximation
fidelity and speed. In fact, we compute a visibility map at a
reasonable level of approximation of a terrain with 144 mil-
lion points in about 40 seconds. We also examine the observer
selection strategies described in Section 4. We show that per-
sistence and coverage-based selection, as well as a hybrid of



the two, are significantly more effective than simple-minded
selection strategies, and that occluded paths calculated us-
ing these strategies are also highly occluded when observer
placements follow the trivial strategies.

2. OUR MODEL
In this section we describe our model for computing a highly
occluded path on a terrain. We begin by defining the notion
of visibility and hidden paths on an arbitrary terrain surface
and then tailor it to terrains represented by grid DEMs.

Continous model. Let M be a planar region, which, for sim-
plicity, we assume to be a square. Let h : M→ R be a height
function. The graph of the function h, denoted by Σ is called
a terrain, i.e., Σ = {(x, h(x)) | x ∈M}. For a point p ∈M, we
use p̂ = (p, h(p)) to denote the corresponding point on the
terrain Σ. For a pair of points ξ, η ∈ R3, ξ is visible from η,
and vice-versa, if no point on segment ξη lies below Σ, i.e., for
any (q, z) ∈ ξη where q ∈ R2 and z ∈ R, z ≥ h(q). Otherwise
ξ is occluded from η.

Given an observer o ∈ R3 lying above Σ, we define the
visibility map Vo : M→ {0, 1} as

Vo(p) =
{

1 if p̂ is visible from o,
0 otherwise.

With a slight abuse of notation we also use Vo to denote the
region Vo = {p ∈M | Vo(p) = 1}. Since an observer cannot
see faraway points and the quality of visibility deteriorates
with distance, we also introduce the notion of an attenuated vis-
ibility map. Let α : R≥0 → [0, 1] be a monotonically decreasing
function, which models the attenuation in visibility with dis-
tance; two typical examples of α are α(x) = max{0, 1− x/a}
or α(x) = e−ax2

for some constant a ∈ R. With a slight
abuse of notation, we define the attenuated visibility map as
Vo : M→ [0, 1], where

Vo(p) =
{

α(||p− o||) if p̂ is visible from o,
0 otherwise.

The unattenuated visibility map is a special case of the attenu-
ated one with α(·) = 1.

Let O = {o1, . . . , om} ⊆ R3 be a set of observers, each lying
above Σ. We define the aggregated visibility map VO : M →
[0, m] as

VO(p) =
m

∑
i=1

Voi (p) .

That is, how well the observers in O collectively can see the
point p. Instead of using a simple sum, one can use a more
sophisticated aggregation function.

Given O, we can use VO to model how visible each point
in M is from O. However, once the “visibility” of a point p
reaches a certain threshold, the increase in VO(p) does not
matter. Put differently, a change in VO(p) from 0 to 1 has a
much greater impact on the visibility of p than an increase
from 10 to 12. So we define another map, called the coverage
map, ωO : M→ R≥0 as follows:

ωO(p) = 1− e−cVO(p)

where c > 0 is a constant.

For a unit-velocity curve Π : [0, L]→M and a fixed set O
of observers, we define the cost of the curve to be:

c(Π) =
∫ L

0
ω(Π(t)) dt .

Given two points a, b ∈M, the cost of the most occluded path
between a and b is defined as

inf
Π

c(Π)

where inf is taken over all paths in M from a to b.

Grid DEM. As is common in terrain modeling, we use a grid
DEM to represent the terrain Σ. More precisely, we have a
parameter ρ > 0 and assume that M is a square of side length
ρ2L for some integer L ≥ 0. We partition M into 2L × 2L grid
cells, each of length ρ. For each grid cell (i, j), 0 ≤ i, j < L,
let qij denote its center. Set Q = {qij | 0 ≤ i, j < 2L}. We
sample the height of the center of each grid cell hij = h(qij)

and define q̂ij = (qij, hij). Set Q̂ = {q̂ij | qij ∈ Q}.
The surface Σ is defined from Q by linear interpolation

across a planar triangulation of Q. We triangulate Q by insert-
ing edges between grid points. For a point qij ∈ Q we insert
edges to horizontally adjacent grid point q(i+1)j if i < 2L − 1,

M

Σ

Q

h(p)

p

Figure 1. Terrain Σ on top
of the domain M.

to vertically adjacent grid
point qi(j+1) if j < 2L − 1,
and the diagonal between to
q(i+1)(j+1) if both i and j are
less than 2L − 1. Let ∆(Q) de-
note the resulting 2D triangu-
lation. We “lift” ∆(Q) to 3D
by associating the vertices with
the elevation values for the cor-
reponding points in Q̂. The
resulting polyhedral surface is
the terrain Σ.

We now construct a weighted
graph G = (Q, E), where each
grid point qij is connected to
its eight neighbors. The weight of an edge (q, q′) is

c(q, q′) =
ω(q) + ω(q′)

2
‖q− q′‖.

The cost of a path Π = v0v1 · · · vk in G is defined to be

c(Π) =
k−1

∑
i=0

c(vi, vi+1).

Given two grid points a, b ∈ Q, let H(a, b) denote the
minumum-cost path from a to b in G. We refer to H as the
most occluded path between a and b on Σ.

3. COMPUTING THE VISIBILITY MAP
Given a terrain Σ over a domain M and an observer o ∈ R3

lying above Σ, we wish to compute the visibility map of Σ
from o, as defined above. Computing Vo : M→ {0, 1} is ex-
pensive, especially when Σ is large, and we wish to compute
the map from various points, so we focus on computing an
approximate visibility map Ṽo : M → {0, 1}. The quality of
the approximation can be tuned by setting two parameters
appropriately. Although we need to compute Ṽo only at the



grid points in Q, it will be simpler for most of the discussion
to think that Ṽo is being computed over the entire domain M.

The approximation of Ṽo is performed in two stages. The
first stage approximates the terrain Σ to a simplified terrain Σ̃,
with significantly fewer vertices, and the second stage com-
putes an approximate visibility map of Σ̃. We first describe the
construction of Σ̃, then we describe the overall approach for
computing Ṽo, and finally we describe a GPU based algorithm
for constructing Ṽo. Throughout this section we assume that
the observer o is fixed, and we drop o from various notation.

3.1 Terrain simplification
Our approach for simplifying Σ is similar to the ones used in
computer graphics and GIS for visualizing large scenes [15],
the so-called levels of detail. Roughly speaking, we take ad-
vantage of the fact that it gets progressively harder to discern
detailed terrain features as the distance between o and these
features increase. We rely on a quadtree data structure to
represent Σ hierarchically and to compute an adaptive ap-
proximation of Σ.

Quad tree. We construct a quad tree T on M. T is a 4-way
tree, each of whose leaves is associated with a grid cell of M.
Each internal node, u, of T is also associated with a square
2u, which is the union of the squares associated with the four
children of u. The root of T is associated with the square
M itself. The squares associated with the children of u are
obtained by splitting each side of 2u into two halves. T has
L levels, with leaves being at level 0. For a node u, we set
Qu = Q ∩2u. If u is at level l, then the side length of 2u is
ρ2l and |Qu| = 22l . The nodes at level l partition M into a
2l × 2l grid.

We fix a parameter b and store a set Pu of at most b2 grid
points, as defined below1. We also store a set Ξu of triangles
at u, which form a triangulation of Pu. Abusing the notation,
we use Ξu to denote the set of triangles as well as the planar
subdivision induced by these triangles. For l ≤ log2 b, Pu =

Qu. For l > log2 b, we let Pu be a set of b2 grid points defined
recursively from its four children. Let c1, . . . , c4 be these four
children with cj corresponding to the j’th quadrant of 2u.
Each cj is averaged into a b/2× b/2 grid where the elevation
of grid point (α, β) for 0 ≤ α, β ≤ b is the average of the
elevation of the grid points (2α, 2β), (2α + 1, 2β), (2α, 2β +
1), and (2α + 1, 2β + 1) in Pcj . These four sub-grids are put
together to form Pu which has b× b vertices. Define ru, the
resolution of Pu, to be the distance between two vertices (i, j)
and (i + 1, j) in Pu. The resolution of a node at level k is

ru =

{
2k−log bρ k ≥ log b,
ρ 0 ≤ k < log b.

Approximate terrain surface. Let Ψ ∈ T be a top subtree of
T, i.e., if a node u ∈ T is in Ψ, then its parent also belongs
to Ψ, and let Λ be the leaves of Ψ; see Figure 3. Then the
squares associated with Λ partition M, i.e., 2u ∩2v = ∅ for
u 6= v ∈ Λ and ∪u∈Λ2u = M. We form Σ̃ by taking the union
of Ξu, for u ∈ Λ, stitching along the borders of triangulations
Ξu, and lifting the resulting triangulation to 3D. The last step
is achieved by lifting each point p ∈ Pu, for u ∈ Λ, to P̂ as

1for simplicity, we assume b is of the form 2k for some k ∈N

uc1

c2

c3

c4

Ξu
Ξc1

Figure 2. Constructing Ξu from its four children. Each grid point of
Ξu is the average of four corresponding points in one of its children.

(a) (b)

Figure 4. (a) The dual graph G (orange) of the partition of M

induced by the partition 2Λ. (b) The set of triangles Ξu (black) and
stitching triangles ∂Ξu (red) for u ∈ Λ. Here b = 2.

described above, so we describe how to choose the subtree Ψ
and how to stitch the borders together.

A selection rule is used to choose the top subtree Ψ ⊆ T

for a given observer. The selection rule is a function s(o) that
maps each observer o to a set of quad-tree nodes Λ such that
the union of their cells ∪u∈Λ2u forms a partition over M.
Then Ψ is the subtree with leaves Λ. We define a monopole

T

ΨΛ

Figure 3. Top tree Ψ of T.

condition for node u: ||û −
o|| > µru for some constant
monopole coefficient µ. Our se-
lection rule s(o) returns the set
of nodes Λ consisting of the
highest nodes in the tree that
satisfy the monopole condition.
Thus each node u ∈ Λ satisfies
the monopole condition but its
parent that does not satisfy the

condition. A node at a level below log2 b is never chosen,
since a node at level log2 b has the same resolution, ρ, as its
children. If some portion of the tree has no nodes that satisfy
the monopole condition, then the nodes at level log2 b are cho-
sen. Note that our selection rule has the following property:
for two nodes u1 and u2 in Λ, l(u1) < l(u2) ⇒ ||û1 − o|| <
||û2 − o||. This property means that only nodes at the same
level or lower may come between any given node and the
observer.

Next we describe the stitching procedure. Let G denote
the dual graph of the partition of M induced by the set
2Λ = {2u | u ∈ Λ}. That is, the vertex set of G is 2Λ and
two vertices 2u,2v are connected by an edge if the interior of
the edges of 2u and 2v intersect; see Figure 4(a). Each edge
of G corresponds to a fixed side eu of 2u and a fixed side ev
of 2v. The corresponding boundary edges of Ξu and Ξv form
the boundary of a monotone polygon, and we can triangulate
this polygon using any standard polygonal triangulation algo-
rithm; see e.g. [6]. We repeat this procedure for every edge of
G. This may leave some holes around the corners of squares



in 2Λ, which we fill by adding O(1) triangles for each such
hole. Let ∂Ξu be the set of triangles added to the boundary
of Ξu by the stitching procedure; see Figure 4(b). It can be
checked that |∂Ξu| = O(

√
Ξu) = O(b). We set Fu = Ξu ∪ ∂Ξu

and refer to Fu as the set of local triangles at u.

3.2 Computing the visibility map
We begin by describing an algorithm for computing the exact
visibility map of Σ̃ from o and then describe how we approxi-
mate it.

Recall that the algorithm described in Section 3.1 computes
a set Λ of nodes of Ψ such that the squares in 2Λ partition
M. For each node u ∈ Λ, we construct the visibility map, Ṽu :
2u → {0, 1}, of Σ̃ restricted within 2u. Putting these maps
together, we obtain the visibility map of the entire terrain.

Computing Ṽu. Fix a node u ∈ Λ. The visibility of a point
p ∈ 2u is not only affected by the triangles in Ξu and ∂Ξu
but also by the triangles of Σ̃ outside 2u. More precisely, if
the segment op̂ intersects a triangle t̂ of Σ̃, then Ṽu(p) = 0.
Instead of considering all triangles of Σ̃, we compute Ṽu by
considering a small subset of triangles of Σ̃ lying outside
2u. For a triangle t̂ ∈ Σ̃, let Φt be the shadow frustum of t̂
(with respect to o), i.e., the points in R3 that are occluded by t̂.
Formally,

Φt = {z + λ−→oz | z ∈ t̂, λ ≥ 0}.

Let z⊥ ∈ R be the minimum height of a vertex of Σ̃. We say
that a triangle t̂ ∈ Σ̃ is an occluder for u if Φt intersects the
unbounded box 2u× [z⊥, ∞]. Let Ou be the set of all occluders
for u. More precisely, Ou = {t | t̂ ∈ Σ̃ is an occluder for u}.
Set ∆u = Fu ∪Ou; ∆u is the set of relevant triangles for u, in the
sense that no triangle of Σ̃ \ ∆u can impact the map Ṽu.

After having computed the set ∆u, Ṽu can be computed in
a straightforward manner. In the next subsection we describe
an efficient GPU based algorithm for computing Ṽu.

Computing the occluder set. Computing the set Ou, for each
u ∈ Λ, independently by traversing all triangles of Σ̃ will be
expensive. We describe a more efficient algorithm by process-
ing the nodes of Λ in a particular sequence.

For two nodes u, v ∈ T such that 2u ∩2v = ∅, we say that
u precedes v, u ≺ v, if there is a ray γ emanating from o∗, the
projection of o onto the xy-plane, such that γ intersects 2u
before intersecting 2v. It is well known that this relationship
induces a partial order on the nodes in Λ; see e.g. [21]. Fur-
thermore, a total order of the nodes of Λ that is consistent
with this partial order can be computed by traversing T care-
fully in the previous step—when we compute Λ. In particular,
suppose we are at a node u ∈ T and we decide to visit the
children u1, . . . , u4 of u. Then we visit ui before uj if ui ≺ uj.
Let v1, . . . , vk be the sequence of nodes of Λ in the order com-
puted by the algorithm. The following lemma suggests how
to compute the occluder set for each u efficiently.

LEMMA 1. For i ≤ k, if a triangle t ∈ Oui , then there is a
neighbor vj of vi in the graph G such that j < i and t ∈ ∆j.

PROOF. Suppose t ∈ Ovi . Then there is a ray γ in R2

emanating from o∗ that first intersects t and then 2vi . Let 2vj

be the square in 2Λ that γ intersects immediately before 2vi .

o

z = z⊥

�u

t
Φt

�u × [z⊥, ∞]

Figure 5. Triangle t ∈ Σ̃ and its shadow frustum Φt looking at u.

Then vj is a neighbor of vi and j < i. If t ∈ Fvj , then we are
done. Otherwise the shadow frustum Φt also intersects the
box 2vj × [z⊥, ∞], implying that t ∈ Ovj . This completes the
proof of the lemma.

In view of Lemma 1, we visit the nodes of Λ in the com-
puted order. When we process the node ui, we take all the
relevant triangles for the nodes that are neighbors of ui and
that precede ui, and discard all those triangles whose shadow
frustums do not intersect the box 2ui × [z⊥, ∞]. This gives
the set Ou.
Approximating Ṽu. Instead of computing Ṽu(q) explicitly for
each grid point q ∈ Qu, we compute it at a coarser grid if the
size of Qu is large. We choose a parameter m ≤ b, where b is
the resolution at which Σ̃ was computed within u. We choose
a subset of Qu of m×m grid points and compute Ṽu at each
of them using the algorithm described in Section 3.3. For each
grid point q ∈ Qu that was not chosen, we set Ṽu(q) to be the
value of its nearest point that was chosen.

3.3 Computing Ṽ on the GPU
The GPU is responsible for drawing 3D scenes, composed of
many objects, onto a 2D image plane of pixels as seen from a
viewpoint β. Because of their simplicity and flexibility, these
objects are almost always triangles. For each pixel π = (x, y)
where x, y is a global coordinate, the GPU finds all objects
Ω that ray ~βπ intersects. To store the information about the
scene, the GPU keeps several two-dimensional arrays of pixels
called buffers. The color buffer C stores the color of the scene
as viewed from β. For our purposes, the color of pixel π in
C is the color of object ω ∈ Ω whose intersection with the
ray ~βπ is closest to β. Internally, the color buffer uses a depth
buffer to find the closest point.

We use the GPU to compute the approximate visibility map
Ṽ, as follows. For simplicity, we first describe the algorithm
for computing the unattenuated visiblility map. Since the
terrain, and thus the derived visibility map, can be very large,
we cannot handle the entire computation in one pass using the
GPU. Instead we go through the nodes u ∈ Λ and compute
the visibility map Ṽu for each of these separately. We choose
the parameters m and b, the resolution of the Ṽu and the
nodes of T, to maximize the use of the GPU by setting it to
the maximum texture size of the GPU.

To calculate Ṽu, we triangulate the boundary of the shadow
frustum of each triangle in ∆u = Fu ∪ Ou. Let Du denote
the resulting set of shadow triangles. We set the color of the
(shadow) triangles in Du to 0 and the color of (local) triangles
in Fu to 1. We render the triangles in Du ∪ Fu by setting the
viewpoint at z = +∞ (i.e., orthographic projection in the (−z)-
direction). We set the view-port to the bounding box of 2u,
and render onto an image plane with m×m pixels: each grid



point is then at the center of a pixel. Due to the orthographic
projection, the color buffer C at pixel (i, j) will hold the highest
triangle in the +z direction at grid point (i, j). If a pixel is
colored 0, then the terrain at the corresponding grid point
is covered by a shadow frustum and is thus occluded; if the
pixel is colored 1, then the terrain at that point is visible, since
no shadow frustum contains it. We copy the color buffer from
the GPU to CPU, and set the values of Ṽu at point (i, j) to the
value of the color buffer at that pixel. In the case of calculating
the attenuated visibility map, we color terrain triangles with
the value α(‖p− o‖) instead of 1 (see section 2). The same
procedure then applies.

4. COMPUTING OCCLUDED PATHS
Given a terrain Σ and two points a, b ∈ Σ, we describe algo-
rithms for computing a highly occluded path from a to b on Σ.
If we know the set O of observers, then using the algorithm
in Section 3 as the building block, we construct the coverage
map ωO and then compute the path H(a, b) in G. On the other
hand, if we do not have any information about the observers,
we first guess the location of observers and then construct a
highly occluded path with respect to the guessed observers.

4.1 Known observer placement
Suppose we are given a set O = {o1, . . . , ok} of observers in
advance. We do not require each oi to lie on Σ. Typically
they will be above the ground, say, on a watchtower. For
each oi, using the algorithm in Section 3.3, we construct an
approximate visibility map Ṽoi . We upscale Ṽoi to each grid
point of Q by setting the visibility map value of q ∈ Q to the
value Ṽoi (cq) where cq is the center of the grid cell of Σ̃ that
contains q. Recall that Ṽoi is computed at a coarser resolution
in areas far away from oi. Next, we compute the map ṼO,
where ṼO(q) = ∑k

i=1 Ṽoi (q), and finally we compute the cov-
erage map ω(q) for each grid point q ∈ Q. We then construct
the weighted graph G = (Q, E), as defined in Section 2. We
use Dijkstra’s algorithm to compute the minimum-cost path
H(a, b) in G.

4.2 Unknown observer placement
If we have no prior information about the observer locations
we want to find a path that is likely to be concealed regardless
of how the set of (unknown) observers O′ was chosen. Our
hypothesis is that O′ is picked by an adversary in a rational
way and that the adversary has no knowledge of a and b but
strives to minimize the family of occluded paths (blind spots)
in the terrain.

Finding a good occluded path in this setting is equivalent
to finding a good guess O∗ of possible observer locations. If
the observer placements of O∗ are close to O′, occluded paths
under one should translate well to the other. Even if O′ and
O∗ differ, our hypothesis is that if O∗ accurately captures the
highly visible areas of Σ then paths that are occluded under
O∗ likely remain so under the set O′ of adversary-chosen
observers.

We explore two approaches for selecting O∗; one using
topological information of Σ, and the other directly working
with visibility maps and maximizing the terrain-coverage
explicitly. Let k be our budget of observers. There are several

possibilities to estimate the value of k, e.g. how much terrain
is covered by k observers.
Topology-based placement. For a grid point q ∈ Q, let N(q)
be the set of its neighbors in ∆(Q), sorted in clockwise order,
and let N−(q) be the subsequence of N(q) of points whose
heights are less than that of q. Let Mt = {p ∈M | h(p) ≤ t},
i.e., the region corresponding to the portion of Σ lying below
the height t. The point q is called a minimum, maximum, or
saddle if N−(q) = N(q), N−(q) = ∅, or N−(q) consists of two
or more contiguous portions of N(q), respectively; they are
called critical points of Q. Otherwise q is called a regular vertex.
A saddle q is called positive if a connected component of Mt
splits at h(q), and negative if two connected components of
Mt merge at h(q).

Intuitively, it makes sense to place observers at (or above)
high maxima or negative saddles of Σ with the hope that large
portions of Σ are visible from there. However, a single hill
may have multiple maxima, so it’s not wise to simply choose
the k highest maxima and saddles as possible locations of
observers; see Figure 9. Instead we rely on persistent homol-
ogy [7]. Roughly speaking, persistence attaches a measure of
significance with each critical point of Σ. A contour, a con-
nected component of a level set of Σ, is created at a minimum
or a positive saddle and destroyed at a negative saddle or a
maximum. The persistence homology pairs a minimum q0
with the negative saddle q− at which the contour created at q0
is destroyed, and their persistence is h(q−)− h(q0). Similarly
it pairs a positive saddle q+ with a maximum q1 and their
persistence is h(q1) − h(q+). The persistence of the global
maximum is set to ∞ (here we assume that the global min-
imum is at −∞). Going back to the example of a hill with
multiple maxima, only one of the maxima will have high per-
sistence, and the others will have small persistence; see [7] for
a detailed discussion on persistent homology.

Agarwal et al. [1] developed a simple scalable algorithm
for computing the persistence of all critical points on a terrain.
Using their algorithm to get a list of critical points with associ-
ated persistence, we pick O∗ to be the k maxima and negative
saddles with the highest persistence. The persistence ensures
that only one point is selected from each feature, and thus,
the points will be spread out amongst saddles and maxima.
Coverage-based placement. The persistence-based selection
strategy above does a good job putting observers at maxima
and saddles in the terrain. However, the significant hills
also may not be evenly distributed across the terrain, so we
also explore coverage-based placement, an observer placement
strategy that more directly tries to get a good coverage of the
terrain by computing visibility maps as part of the selection
strategy.

Our coverage-based placement strategy is a variant of the
art gallery problem [19, 25], and chooses a set of observers such
that each observer sees as much of the terrain as possible.

This can be done by a simple greedy algorithm. First set
O∗ = ∅ and randomly sample a set Γ ⊂ Q of m = |Γ| grid
points. We then compute ṼΓ using the algorithm in Section 3
and find q′ = arg maxq∈Q ṼΓ(q). We then add o′ = q̂′ to
our set of observers O∗. Let A ⊆ Γ be the set of points that
are visible to o′, i.e. the set of points p ∈ Γ where Ṽo′ (p) =
1. Note that depending on the application we may want
observers to have height h(q′) + h>, instead of just h(q′), for
some application-dependent h>, e.g. we could choose h>
to be the height of an observer tower. Therefore, the points
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Figure 6. Total triangle counts for different values of µ. Visibility
map computation times are 0.1 seconds for µ = 64 and 167 seconds
for µ = 2048.

in Γ that see q′ may not be identical to the points of Γ that
can be seen by o′2. We then pick the next observer q′ as
q′ = arg maxq∈Q VΓ−A(q) and repeat this process until we are
done, i.e. |O∗| = k, or until we have covered all of the sample
points of Γ, i.e. A = Γ. In the latter case we pick a new set Γ′
and and run the procedure again, repeating as necessary until
|O∗| = k.

This procedure effectively picks an observer that can see the
highest number of points at each iteration and its fidelity can
be tweaked by selecting m, the size of Γ. As k increases to |Q|
we get closer to picking a set O∗ that sees the maximal number
of points in Q̂ but since we compute Vγ for each γ ∈ Γ this
algorithm becomes expensive for large m.

Hybrid placement. Finally, we combine the ideas from the
above two strategies. We first choose a set T of t > k observers
using the topological persistence-based algorithm—they are
placed on significant maxima and saddle points. We then
compute the visibility map for each p ∈ T and use the idea
from the coverage-based placement strategy to greedily add
the point p ∈ T to our candidate set O∗ whose visibility map
covers the largest region that has not been covered by other
observers in O∗. We repeat this greedily until |O∗| = k, or
until every point in Σ is visible by some point in O∗. This
strategy differs from the coverage-based strategy in that that
our initial sample T consists of candidate observers whereas
the coverage based strategy uses the sample to find observers
that can see many sample points. The advantage of the hybrid
algorithm is that it narrows the set of candidate targets to
locations that are likely to be good (those with reasonably high
persistence value) and thus the sample size can be smaller
than the one in the coverage-based strategy.

5. EXPERIMENTS
This section presents the results of an experimental study on
real data sets to evaluate the effectiveness of our algorithm.
First, we report on the performance of our algorithm — the
trade-off between accuracy and efficiency by using approxi-
mation. Second, we compare the different strategies for choos-
ing observers. Finally, we study how observer-placement
strategies affect the visibility of paths.

Platform & data. We ran our experiments on a computer with
an Intel Core i7-3770 CPU running at 3.40 GHz and 32GB of
2The fact that observer at height h above point p1 ∈ Σ can see point
p2 ∈ Σ does not imply that an observer at height h above p2 can see
p1
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internal memory. The machine has a NVIDIA GeForce GTX
660 graphics card which we interfaced with using OpenGL.
The implementation was written in C++. We used two terrain
models in our experiments. One dataset covers a roughly
2km by 4km region in Afghanistan terrain at a resolution of
2 meters (data courtesy of TEC ERDC). The terrain model
consists of about 7.1 million grid points with mostly moun-
tainous topology. It is a so-called Digital Surface Model (DSM)
and as such contains non-terrain features relevant for visibil-
ity, such as trees and a few buildings. The second data set is
a larger, higher-resolution 1 meter grid covering a 12km by
12km region in Ft. Leonard Wood in Missouri (data courtesy
of the U.S. Army Corps of Engineers). The model has 144
million grid points with mostly rolling hills and a prominent
riverbed. It is a Digital Terrain Model (DTM) containing only
bare-earth elevation data.
Terrain simplification and efficiency. In this section we study
the speed-accuracy tradeoff arising from the monopole coeffi-
cient µ. We use the Afghanistan terrain and a fixed observer
in the corner of the study area. We first study the effect of µ

on the performance of computing the visibility map Ṽo. Com-
puting the set Λ defining Σ̃ is negligible compared to the cost
of rendering the triangles in ∑u∈Λ Fu ∪ Du. For µ = 2048
the computation of Ṽo took 167 seconds, out of which only
1.5 seconds were spent computing Λ. On larger terrains, the
cost of computing the quad tree T can be on the same order
of magnitude as computing a single visibility map, but T is
independent of o and only has to be computed once, making
its construction cost trivial when the set of observers is large.
Figure 6 shows the relationship between µ and number of
local triangles, ∑u∈Λ |Fu| as well as the number of shadow
triangles, ∑u∈Λ |Du|. For µ = 2048 no simplification is done
(i.e., Σ̃ = Σ), and there are 1.4× 107 and 4.5× 108 local and
shadow triangles, respectively. As the simplification gets
heavier further away from o, the number of triangles in both
sets decreases, e.g., to 1.2× 106 local and 1.5× 107 shadow
triangles for µ = 128. As stated above, the total time for
computing Ṽo for µ = 2048 was 167 seconds, the time for
computing using µ = 128 was two magnitudes faster at 4.9
seconds. Besides the number of triangles, the number of ren-
dering passes, determined by |Λ| has a significant impact on
performance since each pass involves transferring the com-
puted visibility map from GPU memory to CPU memory, for
µ = 128 the number of leaves was |Λ| = 13 but for µ = 2048
the number was an order of magnitude higher at |Λ| = 256.

Lowering µ has clear performance benefits and in the fol-
lowing we investigate how it affects the quality of the com-
puted paths. Figure 8(top) shows how H(a, b) varies with



µ = 2048 µ = 1024 µ = 256 µ = 64

|O| = 1 |O| = 5 |O| = 25 |O| = 100

Figure 8. (top) Paths between the same two locations with the same set of observers for different values of µ The blue-shaded area denotes
points visible from an observer. (bottom) Most occluded path between two points for different sizes of O, the set of observers. The blue shaded
area is the coverage map ωO.

µ. The area shown in the figure is far away from the ob-
server position where the DSM contains a number of trees.
For µ = 2048, the path goes through the hidden patches pro-
vided by the trees. As µ decreases the approximation becomes
coarser (µ = 1024) and since the averaging algorithm used
in the terrain simplification acts as a low-pass filter, the trees
(high-frequency components) disappear, exposing that region
of the terrain to the observer. Thus, the path changes to follow
a riverbed adjacent to the forest instead. A further decrease
in µ (to µ = 256) eliminates some narrow corridors of invisi-
bility in the riverbed, so the path changes again to avoid the
riverbed and the forest completely. The final figure shows the
result when increasing even further to µ = 64, at this stage
the path is diverted even further to the right, likely because
the little valley in the lower left of the figure has disappeared
in the simplification.

We now explore the quality of the paths generated using the
simplified terrain. We use the Afghanistan terrain and a set O
of 5 observers in the terrain, these observers were placed using
the topology-based strategy from Section 4.2. We randomly
picked 100 different pairs of points (a1 b1), . . . , (a100, b100) in
the terrain (by picking 10 different source points, and for each
of these picking 10 different destination points). We computed
the path Πµ

i = H(ai, bi) for each i using a monopole coeffi-
cient of µ. Let c(Πµ

i ) be the cost of this path and let c∗(Πµ
i )

be the cost of this path evaluated on the original terrain Σ.
c(Πµ

i )/c∗(Πµ
i ) is the approximation ratio of Πµ

i . In Figure 7 we
have plotted the average of the approximation ratios as a func-
tion of µ. Not surprisingly, the approximation ratio increases
as µ decreases and the amount of simplification increases.
However, it also shows that this increase is not dramatic, for
instance, paths computed using µ = 256 are only 30% more
expensive on average than what one would have gotten using
the full resolution, and the lower value of µ reduces the num-
ber of triangles by about two orders of magnitude, causing a
similar decrease in computation time.

Observer selection. In this section we compare five different
strategies for selecting an observer set O to evaluate the ef-
fectiveness of the strategies chosen in Section 4. Besides the

Figure 9. The k = 10 observers selected using each observer se-
lection strategy on the Afghanistan terrain. Orandom (blue square),
Otopology (green pentagons), Ocoverage (turquoise diamonds), Otop
(yellow circles), Ohybrid (red stars).

topology, coverage and hybrid strategies discussed in Sec-
tion 4 we used two additional, trivial, strategies, as a baseline
for comparison. The first simply selects k random points from
the set of maxima of Σ. Another simple strategy is to sort the
maxima by height and pick the k highest elevation vertices.

Let S = {random, top, topology, coverage, hybrid} be the
set of strategies, which gives rise to |S| sets of observers and
coverage maps Os and ωs, respectively for s ∈ S. Figure 9
shows the sets Os for k = 10 on the Afghanistan terrain. The
observers in Otop are clustered around the two tallest two
mountain peaks. Here persistence helps greatly, and Otopology
is distributed on the k largest mountains. The observers in
Ocoverage are also at (or close to) the peaks of mountains, and
is in fact very similar to Otopology although the observers are
placed slightly differently on the mountains. Ohybrid is dis-
tributed well on the terrain with observers placed on peaks.
Orandom is fairly well distributed, but it fails to capture many
high-visibility points.

Figure 10(left) shows the average value of the coverage map
ωOs over the Afghanistan and Ft. Leonard Wood terrains as a
function of k = |Os| using each of the Os for s ∈ S. The graph
suggest that we do not need a large number of observers to
get a good coverage of the terrain using Ohybrid, Otopology and
Ocoverage.
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Figure 10. (left) Coverage of terrain. (right) Average minimum path cost ratio.

We also consider the actual costs of occluded paths under
the different strategies. We do this by picking 10 random
points b1, . . . , bn ∈ Q and computing the most occluded path
Πk

i = H(a, bi) from the point a (chosen as the midpoint of Q)
using k observers. Let c′(Πk

i ) be the cost of Πk
i on the original

terrain Σ and with a constant visibility map ω(·) = 1. Let
c(Πk

i )/c′(Πk
i ) denote the visibility ratio of Πk

i —the path cost
relative to the shortest path on Σ if visibility is ignored. Fig-
ure 10(right) shows the average visibility ratio of Πk

0, . . . , Πk
10

as a function of k under each of the strategies S. We note that
c′(Π) is independent of the set of observers used to compute
Π. This implies that we can directly compare visibility ratios
of paths computed under different observer placement strate-
gies with the same k. Figure 10(right) indicates the baseline
strategies result in lower ratios, which implies larger number
of observers must be chosen to reduce the number of cheap
occluded paths. The hybrid strategy consistently outperforms
the coverage-based strategy, but for the Ft. Leonard Wood
data the topology-based strategy does best.

Highly occluded path quality. The previous discussion showed
that the hybrid and topology-based strategies consistently out-
perform the baseline strategies. Thus, if we are given Σ with
no information about the true set of observers O′ we can use
any of these to find another set of observers O∗ and hope that
this set captures roughly the same visibility information as
O′. We investigate this by calculating the path Π = H(a, b)
using one of the strategies s of S and then computing the cost
of Π when the coverage map ωOs′ is computed using another
strategy s′ ∈ S. This tests if the path Π is occluded, not just
for Os but for the other sets of observers that the adversary
could have chosen as well. More precisely, we fix the source
point a and choose 10 random destination points b1, . . . , b10.
For i ≤ 10 and s ∈ S let Πi

s = H(a, bi) be the most occluded
path computed using the coverage map ωOs . For a path Π
and for a strategy s′ ∈ S, let cs′ (Π) denote its cost with respect

to the coverage map ωOs′ .
Figure 11 illustrates the average βs1s2 of the visibility ratios,

i.e. βs1s2 =
1
10 ∑10

i cs1 (Π
i
s2
)/c′(Πi

s2
), for all pairs of strategies

s1 and s2 of S, grouped by s2. That is, we fix s2, and report
βs1s2 for all s1 ∈ S. A lower value of βs1s2 indicated that
paths computed using strategy s2 are highly occluded under
strategy s1 as well, so a strategy s2 is universally effective if
βs1s2 is small for all s1 ∈ S. On the Afghanistan data case,
the hybrid strategy seems to be the most effective strategy.
However, for the Ft. Leonard Wood dataset the topology
data strategy appears to be slightly better. In both cases top
seems to be the least effective and the topology and coverage
strategies perform better than the random strategy.

6. CONCLUSION
In this paper we presented a model for computing highly oc-
cluded paths over a terrain with or without knowledge of ob-
servers on the terrain. We described an efficient algorithm for
computing approximate visibility maps and demonstrated its
performance experimentally. We presented several different
observer selection strategies and demonstrated the effective-
ness of topology- and coverage-based placement. Finally, we
showed that assuming a hybrid strategy using both topology-
and coverage-based placement gives highly occluded paths
regardless of an adversary’s strategy.

We are currently working on making our algorithm scal-
able to even larger terrains. In particular, we are investigating
using more sophisticated visibility-preserving simplification
algorithms while still allowing us to tune the simplification
to each individual observer. Furthermore, our present algo-
rithm assumes that Q and T fit in memory, an unrealistic
assumption for truly massive terrain. External quad tree data
structures exist but external algorithms for computing short-
est paths are not known. We are developing external memory
algorithms for computing the path after having computed the
approximate visibility maps for every observer.
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Figure 11. Cost of paths using different guessed strategies with 20 observers on (a) Afghanistan terrain (b) Ft. Leonard Wood terrain
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