

Edinburgh Research Explorer

Strong simulation: Capturing topology in graph pattern matching

Citation for published version:
Ma, S, Cao, Y, Fan, W, Huai, J & Wo, T 2014, 'Strong simulation: Capturing topology in graph pattern
matching', ACM Transactions on Database Systems, vol. 39, no. 1, pp. 4. https://doi.org/10.1145/2528937

Digital Object Identifier (DOI):
10.1145/2528937

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1145/2528937
https://doi.org/10.1145/2528937
https://www.research.ed.ac.uk/en/publications/beb77566-0e21-41a3-ba5d-8fcd25abb7b7

A

Strong Simulation: Capturing Topology in Graph Pattern Matching

Shuai Ma1 Yang Cao1 Wenfei Fan1,2 Jinpeng Huai1 Tianyu Wo1

1SKLSDE Lab, Beihang University 2University of Edinburgh

Graph pattern matching is to find all matches in a data graph for a given pattern graph, and it is often
defined in terms of subgraph isomorphism, an NP-complete problem. To lower its complexity, various exten-
sions of graph simulation have been considered instead. These extensions allow graph pattern matching to
be conducted in cubic-time. However, they fall short of capturing the topology of data graphs, i.e., graphs
may have a structure drastically different from pattern graphs they match, and the matches found are of-
ten too large to understand and analyze. To rectify these problems, this paper proposes a notion of strong
simulation, a revision of graph simulation, for graph pattern matching. (1) We identify a set of criteria for
preserving the topology of graphs matched. We show that strong simulation preserves the topology of data
graphs and finds a bounded number of matches. (2) We show that strong simulation retains the same com-
plexity as earlier extensions of graph simulation, by providing a cubic-time algorithm for computing strong
simulation. (3) We present the locality property of strong simulation, which allows us to develop an effec-
tive distributed algorithm to conduct graph pattern matching on distributed graphs. (4) We experimentally
verify the effectiveness and efficiency of these algorithms, using both real-life and synthetic data.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Graph pattern
matching; H.2.3 [Database Management]: Languages—Query languages

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Strong simulation, Dual simulation, Graph simulation, Subgraph iso-
morphism, Data locality

ACM Reference Format:
Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo, 2014, Strong Simulation: Capturing Topol-
ogy in Graph Pattern Matching. ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 45
pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Graph pattern matching is being increasingly used in a number of applications, e.g.,
software, biology, social networks and intelligence analysis [Liu et al. 2006; Sprinzak
et al. 2003; Tian and Patel 2008; Tong et al. 2007; Zou et al. 2009]. Given a pattern
graph Q and a data graph G, it is to find all subgraphs of G that match Q. Here
matching is typically defined in terms of subgraph isomorphism (see, e.g., [Aggarwal
and Wang 2010; Gallagher 2006] for surveys): a subgraph Gs of G matches Q if there
exists a bijective function f from the nodes of Q to the nodes in Gs such that (1) for
each pattern node u in Q, u and f(u) have the same label, and (2) there exists an edge
(u, u′) in Q if and only if there exists an edge (f(u), f(u′)) in Gs.

Author’s addresses: S. Ma, Y. Cao, J. Huai and T. Wo (contact author), School of Computer Science and
Engineering, Beihang University, Beijing, China; W. Fan, School of Informatics, Laboratory for Foundations
of Computer Science, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Fig. 1. Social matching: pattern and data graphs

However, subgraph isomorphism is an NP-complete problem [Ullmann 1976]. More-
over, there are possibly exponentially many subgraphs in G that match Q. In addi-
tion, as already observed in [Brynielsson et al. 2010; Fan et al. 2010a], subgraph iso-
morphism is often too restrictive to catch sensible matches, as it requires matches to
have exactly the same topology as a pattern graph. However, the structures of real-
life graphs are frequently updated with minor adjustments, and the interconnections
of the same entities in various datasets may be different [Abiteboul 1997; Fard et al.
2012; Khan et al. 2013]. Worse still, it is common to find information incomplete (e.g.,
unintentional or intentional hidden links) in social networks [Liben-Nowell and Klein-
berg 2003; Chen et al. 2011]. These hinder the applicability of subgraph isomorphism
to seek exact matches in emerging applications such as social network analysis, crime
detection, protein–protein interaction analysis and software plagiarism detection.

To reduce the complexity, graph simulation [Milner 1989] has been adopted for pat-
tern matching. A graph G matches a pattern Q via graph simulation if there exists
a binary relation S ⊆ VQ × V , where VQ and V are the set of nodes in Q and G, re-
spectively, such that (1) for each (u, v) ∈ S, u and v have the same label; and (2) for
each node u in Q, there exists v in G such that (a) (u, v) ∈ S, and (b) for each edge
(u, u′) in Q, there exists an edge (v, v′) in G such that (u′, v′) ∈ S. Graph simulation
can be computed in quadratic time [Henzinger et al. 1995]. Recently this notion has
been extended by mapping edges in Q to (bounded) paths in G [Fan et al. 2010a; Fan
et al. 2011], with a cubic-time complexity, to identify matches in, e.g., social networks.

Nevertheless, the low complexity comes at a price: (1) simulation and its exten-
sions [Fan et al. 2010a; Fan et al. 2011] do not preserve the topology of data graphs;
in other words, they may match a graph G and a pattern Q with drastically different
structures. (2) The match relation S is often too large to understand and analyze. We
illustrate these with an example below.

Example 1.1: Consider a real-life example taken from [Terveen and McDonald 2005].
A headhunter wants to find a biologist (Bio) to help a group of software engineers (SEs)
analyze genetic data. To do this, she uses an expertise recommendation network G1, as
depicted in Fig. 1. In G1, a node denotes a person labeled with expertise, an edge indi-
cates recommendation, e.g.,HR1 recommends Bio1, and there is an edge from each DMi

to Bio3 (not all edges are explicitly shown). The biologist Bio needed is specified with
a pattern graph Q1, also shown in Fig. 1. Intuitively, the Bio has to be recommended
by: (a) an HR person since the headhunter trusts the judgment of a person with the
same occupation; (b) an SE, i.e., the Bio has experience working with SEs, which makes
the Bio easy to communicate with SEs; and (c) a data mining specialist (DM), as data
mining techniques are required for the job. To further increase incredibility, (d) the SE
is also recommended by an HR person, and (e) there is an artificial intelligence expert
(AI) who recommends the DM and is recommended by a DM.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

When subgraph isomorphism is used, no match can be found, i.e., no subgraph of
G1 is isomorphic to Q1. In other words, subgraph isomorphism imposes too strict a
constraint on the topology of the graphs matched.

When graph simulation or its extensions [Fan et al. 2010a; Fan et al. 2011] are
adopted, all four biologists in G1 are matches for Bio in Q1. However, Bio1 and Bio2
are recommended by either HR only or by SE only in G1, and Bio3 is recommended by
neither an HR nor an SE. Hence these are not the ones that the headhunter really
wants. Only Bio4 satisfies all these conditions and makes a good candidate.

This tells us that simulation and its extensions [Fan et al. 2010a; Fan et al. 2011] do
not preserve the structural properties in graph pattern matching and therefore, may
return excessive “matches” that one does not want. Indeed, observe the following.

Topological structure. (a) While Q1 is a connected graph, G1 is disconnected, but G1

matches Q1 via graph simulation. (b) Node Bio in Q1 has three “parents”, but it matches
nodes Bio1 and Bio2 in G1 that have a single “parent” each. (c) The directed cycle with
only two nodes AI and DM in Q1 matches the long cycle consisting of 2k nodes, e.g.,
AI1,DM1, . . ., AIk,DMk and AI1, in G1. (d) The undirected cycle with nodes HR, SE and
Bio in Q1 matches the tree rooted at HR1 in G1.

Match results. The match relation of graph simulation, when represented as a result
graph as suggested in [Fan et al. 2010a], is the entire graph G1. In general, the re-
sult graphs are often large when matching is performed on real-life networks, e.g.,
LinkedIn1, which has 19.5M users and yields a graph of 100GB in size. These make it
hard to analyze the match results . 2

These suggest that we revise the notion of graph simulation to strike a balance be-
tween its computational complexity and its ability to capture the topology of graphs.
Indeed, graph simulation was proposed as a process algebra to mimic steps of a pro-
cess [Milner 1989]. To make practical use of it in graph pattern matching, we need to
enhance it by incorporating more topological structure of graphs.

Contributions & Roadmap. We introduce a revision of graph simulation that pre-
serves the topology of graphs and has the same complexity as earlier extensions [Fan
et al. 2010a; Fan et al. 2011] of graph simulation.

(1) We propose a revision of graph simulation [Milner 1989] (Section 2), referred to as
strong simulation, by enforcing two conditions: (a) the duality to preserve the parent
relationships and (b) the locality to eliminate excessive matches. For example, match-
ing pattern graph Q1 on data graph G1 of Fig. 1 via strong simulation finds Bio4 as the
only match for Bio in Q1.

(2) We identify a set of criteria for topology preservation, and show that strong simula-
tion preserves the topology of pattern and data graphs (Section 3). We also prove that
the number of matches via strong simulation is linear in the size of the data graph
rather than exponential for subgraph isomorphism, and each match has a diameter
bounded by the diameter of the pattern graph. Hence strong simulation indeed recti-
fies the problems of subgraph isomorphism and simulation. Moreover, we show that
slight extensions to the notion make graph pattern matching intractable.

(3) We show that strong simulation retains the same complexity as earlier extensions
of graph simulation [Fan et al. 2010a; Fan et al. 2011] by providing a cubic-time compu-
tation algorithm (Section 4). We also develop effective optimization techniques, notably
a quadratic-time algorithm to minimize strong simulation queries.

1http:// www.linkedin.com

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

(4) We show that the locality of strong simulation allows us to develop a simple yet
effective algorithm to find matches in distributed graphs (Section 5). To the best of our
knowledge, this is among the first distributed algorithms for graph pattern matching,
for which the need is evident when processing massive graphs (see e.g., [Dean and
Ghemawat 2004; Giatsoglou et al. 2011; Malewicz et al. 2010]).

(5) Using both real-life data (Amazon and YouTube) and synthetic data, we conduct
an extensive experimental study (Section 6). We find that our algorithms for strong
simulation scale well with large data graphs (e.g., with 1.5× 108 nodes). They are able
to identify sensible matches that subgraph isomorphism fails to catch, and to eliminate
excessive matches of graph simulation that do not make sense. We find that 70%-80%
matches found by strong simulation are those found by subgraph isomorphism, while
only 25%-38% for graph simulation. We also find that our optimization techniques are
effective, reducing 1/4 of running time on average.

We contend that strong simulation provides a promising model for graph pattern
matching in emerging applications. Indeed, (1) in contrast to subgraph isomorphism,
strong simulation is solvable in cubic-time rather than NP-complete, and moreover,
due to its locality, it yields a set of matches with cardinality linear in the size of the
data graph rather than exponential, where each match is bounded by the diameter
of the pattern graph. (2) As opposed to graph simulation, it captures the topology of
pattern graphs in its matches, such as parents, connectivity and cycles, by enforcing
the duality and locality on matches, while it retains tractability as graph simulation.
(3) Unlike graph simulation, the locality of strong simulation makes it possible to ef-
ficiently conduct graph pattern matching on distributed graphs. (4) As will be seen in
Section 3, minor extensions to strong simulation would make graph pattern matching
an intractable problem. In other words, strong simulation strikes a balance between
the complexity and the capability to capture graph topology.

Organization. The rest of the paper is organized as follows. We introduce strong sim-
ulation in Section 2, and evaluates the notion analytically based on a set of criteria for
topology preservation in Section 3. We provide a cubic-time algorithm for computing
strong simulation in Section 4, followed by a distributed evaluation algorithm in Sec-
tion 5. An experimental study is reported in Section 6, and related work is discussed
in Section 7. Finally, Section 8 identifies open issues for future work.

2. STRONG SIMULATION
In this section, we first present basic notations of graphs. We then introduce the notion
of strong simulation.

2.1. Preliminaries
We specify both data graphs and pattern graphs as follows.

Graphs. A node-labeled directed graph (or simply a graph) is defined as G(V , E, l),
where (1) V is a finite set of nodes; (2) E ⊆ V ×V is a finite set of edges, in which (u, u′)
denotes an edge from nodes u to u′; and (3) l is a labeling function that maps each node
u in V to a label l(u) in a (possibly infinite) set Σ of labels.

Intuitively, the function l() specifies node attributes, e.g., keywords, blogs, comments,
ratings, names, emails, companies [Amer-Yahia et al. 2007]; and the label set Σ denotes
all such attributes. We simply denote G as (V,E) when it is clear from the context.

We next review some basic notations of graphs.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Subgraphs. Graph H(Vs, Es, lH) is a subgraph of graph G(V,E, lG), denoted as
G[Vs, Es], if (1) for each node u ∈ Vs, u ∈ V and lH(u) = lG(u), and (2) for each edge
e ∈ Es, e ∈ E. That is, subgraph G[Vs, Es] only contains a subset of nodes and a subset
of edges of graph G.

Paths. A directed (resp. undirected) path ρ is a sequence of nodes v1, . . . , vn such that
(vi, vi+1) (resp. either (vi, vi+1) or (vi+1, vi)) is an edge in G for i ∈ [1, n− 1]. The length
of ρ is the number of edges in ρ. Abusing notations for trees, we refer to vi+1 as a child
of vi (or vi as a parent of vi+1).

A directed (resp. undirected) cycle in a graph is a directed (resp. undirected) path
with v1 = vn, having no repeated nodes other than the start and end nodes v1 and vn.

We say that a node is reachable from another node if and only if there exists an
undirected path between them in the graph.

Connected components. A connected component of a graph is a subgraph in which any
two nodes are connected to each other by undirected paths, and which is only connected
to the nodes of itself, i.e., a connected component is maximal. A graph that is itself
connected has exactly one connected component, which is the entire graph.

Distance and diameter. Given two nodes v, v′ in a graph G, the distance from v to v′,
denoted by dist(v, v′), is the length of the shortest undirected path from v to v′ in G.

The diameter of a connected graph G, denoted by dG, is the longest shortest distance
of all pairs of nodes in G, i.e., dG = max(dis(v, v′)) for all nodes v, v′ in G.

We assume w.l.o.g. that pattern graphs are connected, as a common practice.

2.2. The Definition of Strong Simulation
We define strong simulation by enforcing two additional conditions on graph simu-
lation [Milner 1989]: duality and locality. As will be seen in Sections 3 and 4, these
conditions capture the topology of graphs and eliminate excessive matches to a large
extent, while retaining a low PTIME computational complexity.

Consider a pattern graph Q(Vq, Eq) and a data graph G(V,E).

Graph simulation. To define strong simulation, we first review the notion of graph
simulation [Milner 1989]. Data graph G matches pattern graph Q via graph simula-
tion, denoted by Q ≺ G, if there exists a binary match relation S ⊆ Vq × V such that:

(1) for each (u, v) ∈ S, u and v have the same label, i.e., lQ(u) = lG(v); and

(2) for each node u in Vq, there exists v ∈ V such that (a) (u, v) ∈ S, and (b) for each
edge (u, u′) ∈ Eq, there exists an edge (v, v′) in E such that (u′, v′) ∈ S.

Intuitively, graph simulation preserves the labels and the child relationship of a
graph pattern in its match. It was initially proposed for the analyses of programs [Mil-
ner 1989], and studied for schema extraction from semi-structured data [Abiteboul
et al. 1999]. Graph simulation and its extensions were recently employed for social
networks [Brynielsson et al. 2010], and for graph pattern matching [Fan et al. 2010a;
Fan et al. 2011] due to its low PTIME computational complexity [Henzinger et al. 1995].

Dual simulation. To capture graph topology, we first extend simulation by enforcing
duality, to preserve the parent relationship as well.

Data graph G matches pattern graph Q via dual simulation, denoted by Q ≺D G, if
there exists a binary match relation S ⊆ Vq × V such that:
(1) for each (u, v) ∈ S, lQ(u) = lG(v); and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

(2) for each u ∈ Vq, there exists v ∈ V such that (a) (u, v) ∈ S; (b) for each edge (u, u1)
in Ep, there is an edge (v, v1) in E with (u1, v1) ∈ S; and, moreover, (c) for each edge
(u2, u) in Eq, there is an edge (v2, v) in E with (u2, v2) ∈ S.

Intuitively, dual simulation enhances graph simulation by imposing an additional
condition, to preserve both child and parent relationships (downward and upward
mappings). Indeed, it is easy to verify that Q ≺D G if Q ≺ G with a binary match
relation S ⊆ Vq × V , and moreover, for each pair (u, v) ∈ S and each edge (u2, u) in Eq,
there exists an edge (v2, v) in E such that (u2, v2) ∈ S.

While there may be multiple matches in a graph G for a pattern Q, there exists a
unique maximum match SM in G for Q such that for any match S in G for P , S ⊆ SM .

PROPOSITION 2.1. For any pattern graph Q and data graph G with Q ≺D G, there
is a unique maximum match relation in G for Q.

PROOF: (1) We first show that there exists a match relation. We consider all possible
binary relations of {(u, v) | u is in Q, and v is in G }, which satisfy conditions (1) and
(2) of dual simulation. Note that those relations are not necessarily maximum, and the
number of such possible relations is finite.

We define the maximum match relation to be a relation with the maximum number
of elements, which, as will be seen shortly, is unique. Note that there must exist such
a relation, as Q ≺D G.

(2) We then show the uniqueness by contradiction. Assume that there exist two distinct
maximum match relations S1 and S2. We then show that there exists a match relation
S larger than both S1 and S2. Let S = S1 ∪ S2. By the definition of dual simulation,
one can readily verify that S is a match relation larger than both S1 and S2. This
contradicts the assumption that both S1 and S2 are maximum.

By (1) and (2) above, we have the conclusion. 2

Locality. We then introduce locality to capture more graph topology. To define the
locality, we need the following notions.

Balls. For a node v in a graph G and a non-negative integer r, the ball with center v

and radius r is a subgraph of G, denoted by Ĝ[v, r], such that (1) for all nodes v′ in
Ĝ[v, r], the shortest distance dist(v, v′) ≤ r, and (2) it has exactly the edges that appear
in G over the same node set.

We define the locality by requiring matches to be within a ball of a certain radius.
Indeed, as observed in [Buchan and Croson 2004], when social distance increases,
the closeness of relationships decreases and the relationships may become irrelevant.
Hence it often suffices in practice to consider only those matches of a pattern graph
that fall in a small ball.

To formalize this, we use the notion of match graphs, given as follows.

Match graphs. Consider a relation S ⊆ Vq × V . The match graph w.r.t. S is a subgraph
G[Vs, Es] of G, in which (1) a node v ∈ Vs if and only if it is in S, and (2) an edge
(v, v′) ∈ Es if and only if there exists an edge (u, u′) in Q with (u, v) ∈ S and (u′, v′) ∈ S.

Intuitively, the match graph G[Vs, Es] w.r.t. S is the subgraph of G such that each of
its nodes and edges plays a role in S.

Graph pattern matching via graph simulation or dual simulation is to find, when
given any pattern graph Q and data graph G, the match graph w.r.t. the maximum
match relation of Q and G if Q ≺ G or Q ≺D G, and return empty otherwise.

We are now ready to define strong simulation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Fig. 2. Strong simulation

Strong simulation. Data graph G matches pattern graph Q via strong simulation,
denoted by Q ≺L

D G, if there exist a node v and a connected subgraph Gs in G that
satisfy the following:
(1) Q ≺D Gs with the maximum match relation S;
(2) Gs is exactly the match graph w.r.t. S; and,
(3) Gs is contained in a ball Ĝ[v, dQ] such that v ∈ Gs, where dQ is the diameter of Q.

We refer to Gs as a perfect subgraph of G for Q.
Intuitively, a match Gs of pattern graph Q is required to satisfy the following condi-

tions: (1) it preserves both the child and parent relationships of Q (condition 1 above);
and (2) the nodes and edges needed to match Q are all contained in a ball with its
radius determined by the diameter of Q (conditions 2 and 3); this rules out excessively
large matches. As will be seen shortly, these conditions are justified for preserving
graph topology and retaining low computational complexity.

Example 2.1: We first consider pattern graph Q1 and data graph G1 of Fig. 1. Observe
the following.

(1) No subgraph of G1 is isomorphic to Q1. Indeed, there exist no directed cycles in G1

that match the directed cycle DM,AI,DM in Q1.

(2) When graph simulation is adopted, the entire data graph G1 is included in the
maximum match relation, which maps HR, SE, Bio, DM and AI in Q1 to {HR1,HR2},
{SE1, SE2}, {Bio1,Bio2,Bio3,Bio4}, {DM′

1, DM′
2, DM1, . . ., DMk} and {AI′1,AI′2,AI1, . . . ,AIk}

in G1, respectively.

(3) When it comes to strong simulation, the connected component Gc of G1 that con-
tains Bio4 is the only match, which maps HR, SE, Bio, DM and AI in Q1 to {HR2}, {SE2},
{Bio4}, {DM′

1,DM
′
2} and {AI′1,AI′2} in G1, respectively. Indeed, one can verify the follow-

ing: (a) Q1 ≺D Gc, and in its match relation, Bio in Q1 can only be mapped to Bio4 in
G1; and (b) the ball with center Bio4 and radius 3 (the diameter of Q1) is exactly Gc. As
opposed to graph simulation, the cycle AI1,DM1, . . ., AIk,DMk,AI1 in G1 is not part of
the match. Indeed, this cycle is irrelevant and thus should be left out.

As another example, we consider pattern graphs Q2, Q3, Q4 and data graphs G2, G3,
G4 shown in Fig. 2.

(4) Pattern Q2 is to find a book recommended by both students (ST) and teachers (TE).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Table I. Summary of notations

Notations Semantics
dG The diameter of a connected graph G

G[Vs, Es] A subgraph of G with node set Vs and edge set Es

Ĝ[v, r] A ball in a graph G with center v and radius r
Q�G Data graph G matches pattern graph Q, via subgraph isomorphism
Q ≺ G Data graph G matches pattern graph Q, via graph simulation
Q ≺D G Data graph G matches pattern graph Q, via dual simulation
Q ≺L

D G Data graph G matches pattern graph Q, via strong simulation

When graph simulation is used, both book1 and book2 in G2 are returned as matches,
while book1 is obviously not a good option. When strong simulation is adopted, book2
is the only match by the duality, in a single match graph (union of G2,1, G2,2 in Fig. 2).
When it comes to subgraph isomorphism, it returns two match graphs (G2,1, G2,2) in-
stead of one, with book2 as the match.

(5) Pattern Q3 is to find people (P and P′) who recommend each other. When graph
simulation or dual simulation is used, all people (P1, P2, P3 and P4) in G3 are found as
matches, while P4 is obviously not a good choice. When strong simulation is adopted,
P1, P2 and P3 are the only matches by the locality, in a single match graph (union of
G3,1, G3,2 in Fig. 2). These are also the matches found via subgraph isomorphism, in
two match graphs (G3,1, G3,2) instead of a single one.

(6) Pattern Q4 is looking for papers on social networks (SN) cited by papers on
databases (db), which in turn cite papers on graph theory (graph). When graph sim-
ulation is used, all papers on SN (SN1, SN2, SN3 and SN4) in G4 are matches, while SN3

and SN4 are obviously excessive matches. When strong simulation is adopted, SN1 and
SN2 are the only matches due to the duality, returned in a single match graph (union
of G4,i,j with i, j ∈ [1, 2] in Fig. 2). These are also the matches found by subgraph iso-
morphism, yet returned in four match graphs (G4,i,j for i, j ∈ [1, 2]) instead of one. 2

Semantics. Strong simulation is to find, given any pattern graph Q and data graph
G, the set of the maximum perfect subgraph Gs in each ball such that Q ≺D Gs.

Here the size of a graph is the total number of its nodes and edges. One can verify
the following, which assures that strong simulation is well defined.

PROPOSITION 2.2. For any pattern graph Q and data graph G such that Q ≺L
D G,

there exists a unique set of maximum perfect subgraphs in G for Q.

PROOF: It suffices to show that for each ball Ĝ[v, dQ], there exists a unique maximum
perfect subgraph containing the center node v for Q and Ĝ[v, dQ] if there exists one.

We then show the uniqueness by contradiction. Assume that there exist two distinct
perfect subgraphs Gs1(Vs1, Es1) and Gs2(Vs2, Es2) for Q and Ĝ[v, dQ] that both contain
the center node v . We then show that there exists a perfect subgraphs Gs larger than
both Gs1 and Gs2. Let Gs = (Vs1∪Vs2, Es1∪Es2). First, Gs is also a connected subgraph
in Ĝ[v, dQ] containing v. Second, by the definitions of dual simulation and strong sim-
ulation, one can readily verify that Gs is a perfect subgraph larger than both Gs1 and
Gs2. This contradicts the assumption that both Gs1 and Gs2 are maximum.

Putting these together, we have the conclusion. 2

Remark. (1) Duality and locality are also imposed by subgraph isomorphism, but
not by graph simulation. (2) One can readily extend strong simulation by supporting

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

bounds on the number of hops and regular expressions as edge constraints on pattern
graphs, along the same lines as [Fan et al. 2010a; Fan et al. 2011].

We summarize notations used in Table I, in which we use Q � G to denote that Q
matches G via subgraph isomorphism.

3. PROPERTIES OF STRONG SIMULATION
In this section, we first identify a set of criteria for topology preservation in graph pat-
tern matching and for bounded match results. Based on the criteria, we then evaluate
strong simulation, dual simulation, subgraph isomorphism and graph simulation. Fi-
nally, we explore possible extensions to strong simulation, and show that they lead to
intractable problems.

Consider a connected pattern graph Q = (Vq, Eq) and a data graph G = (V,E).

3.1. Fundamental Properties
First, one can readily verify that subgraph isomorphism is a stronger notion than the
other three, followed by strong simulation, dual simulation and graph simulation in
this order. Intuitively, subgraph isomorphism preserves all topological structures be-
tween data graphs and pattern graphs.

PROPOSITION 3.1. (1) If Q�G, then Q ≺L
D G; (2) if Q ≺L

D G, then Q ≺D G; and (3)
if Q ≺D G, then Q ≺ G.

PROOF: This can be easily verified by the definitions of subgraph isomorphism, strong
simulation, dual simulation and graph simulation, which carry fewer restrictions one
by one in this order. 2

We next take a closer look at what structures are preserved by these matching no-
tions, by giving a set of criteria.

(1) Children: if a node u in the pattern graph Q matches node v in the data graph G,
then each child of u also matches a child of v.

All these notions preserve the child relationship.

(2) Parents: if a node u in the pattern graph Q matches node v in the data graph G,
then each parent of u also matches a parent of v.

One can easily verify that subgraph isomorphism, strong simulation and dual sim-
ulation preserve the parent relationship, but graph simulation does not. A counterex-
ample for graph simulation is given in Fig. 1.

(3) Weak connectivity: if the match graph in a data graph for a connected pattern graph
is disconnected, then each connected component of the match graph matches the pat-
tern graph. Unfortunately, graph simulation does not have this property. Consider the
pattern graph Q2 and data graph G2 in Fig. 2, where the edge (TE, book2) is removed
from G2. Then while G2 still matches Q2 and G2 is exactly the match graph w.r.t. the
maximum match relation in G2 for Q2, there exists no connected component in G2 that
matches Q2. Nevertheless, dual simulation, strong simulation and subgraph isomor-
phism all preserve weak connectivity, as stated below.

PROPOSITION 3.2. If Q ≺D G, then for any connected component Gc of the match
graph w.r.t. the maximum match relation in G for Q, (1) Q ≺D Gc, and (2) Gc is exactly
the match graph w.r.t. the maximum match relation in Gc for Q.

PROOF: Assume w.l.o.g. that Gc is a connected component of the match graph w.r.t. the
maximum match relation S ⊆ Vq × V in G for Q.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

(1) We first show that Q ≺D Gc. Let u be any node in Q such that (u, v) ∈ S and v ∈ Gc.
Note that there must exist such a node u in Q. As G matches Q via dual simulation, for
any neighboring (either child or parent) node x of u in Q, there must exist a neighboring
node y of v such that (x, y) ∈ S. We then recursively consider the neighboring nodes
of x, the neighboring nodes of the neighboring nodes of x, . . ., until all nodes in Q
are considered. Note that (a) the process above must terminate as pattern graph Q is
connected, and (b) the process involves a set of nodes v in G and S such that there
exists an undirected path from v to any of these nodes, which implies that all these
nodes belong to Gc. Hence, Q ≺D Gc, by the definition of dual simulation.

(2) We then show that the match graph w.r.t. the maximum match relation Sc in Gc for
Q is exactly Gc. Let S(Gc) = {(u, v) | (u, v) ∈ S and v in Gc}. By (1) above, we know
that S(Gc) is a match relation in Gc for Q. Since Gc is the match graph w.r.t. S(Gc), it
suffices to show that Sc = S(Gc). It is easy to see that S(Gc) ⊆ Sc, since otherwise Sc

would not be the maximum match relation in Gc for Q. Thus we only need to show that
Sc ⊆ S(Gc). This holds since S would not be the maximum match relation in G for Q if
Sc ̸⊆ S(Gc). From these, we have Sc = S(Gc), and hence, Gc is exactly the match graph
w.r.t. the maximum match relation in Gc for Q. 2

From Propositions 3.1 and 3.2, it follows that strong simulation and subgraph iso-
morphism also preserve the weak connectivity.

(4) Strong Connectivity: the match graph of a data graph for a connected pattern graph
is always connected. This is a property of strong simulation and subgraph isomor-
phism, but not graph simulation or dual simulation. For example, consider the pattern
graph Q3 and data graph G3 consisting of G3,1 and G3,2 in Fig. 2. The disconnected
data graph G3 is returned as the match graph in G3 for Q3 via either graph simulation
or dual simulation. In contrast, the connected subgraphs G3,1 and G3,2 are returned as
two match graphs in G3 for Q3 by strong simulation and subgraph isomorphism.

(5) Cycles: an undirected (resp. directed) cycle in Q must match an undirected (resp. di-
rected) cycle in G. We show that graph simulation preserves directed cycles, and hence
so do the other three matching notions.

PROPOSITION 3.3. If Q ≺ G and there is a directed cycle in Q, then there must exist
a matched directed cycle in the match graph w.r.t. any match relation in G for Q.

PROOF: Assume w.l.o.g. that ρ = u1, u2, . . . , uk, uk+1 is a directed cycle in Q such that
(a) u1 = uk+1, and (b) there is a directed edge (ui, ui+1) in Q for each i ∈ [1, k]. Let S be
any match relation in G for Q, and Gs be the match graph w.r.t. S. Moreover, for each
ui (i ∈ [1, k]) of path ρ in Q, let S[ui] be the set of nodes v in Gs such that (ui, v) ∈ S.
Also assume w.l.o.g. that S[u1] = {v11, . . . , v1h}.

(1) We first show that for each node v1j ∈ S[u1] (j ∈ [1, h]), there exists a directed path
to a node vhj′ ∈ S[u1]. By the definition of graph simulation, for each node vi ∈ S[ui]
(i ∈ [1, k]), there exists a node vi+1 ∈ S[ui+1] with a directed edge (vi, vi+1) in Gs. Thus
for each node v1j ∈ S[u1] (j ∈ [1, h]), there exists a directed path to a node vhj′ ∈ S[uk+1].
That is, there exists a directed path to a node v1j′ ∈ S[u1] for each node v1j ∈ S[u1]
(j ∈ [1, h]). Recall that u1 = uk+1 and S[uk] = S[uk+1].

(2) We next show that there exists a directed cycle in Gs that matches the directed
cycle ρ in Q. (a) We first construct h directed paths as follows: ρ1 = v11, . . . , v1j1 , ρ2
= v1j1 , . . . , v1j2 , . . ., and ρh = v1jh−1

, . . . , v1jh such that nodes v11, v1j1 , . . . , v1jh−1
, v1jh ∈

S[v1]. Note that the analysis in (1) implies that there must exist h such directed paths.
(b) We then construct a cycle from these h directed paths. By connecting the h paths

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

one by one in the order, we get a longer directed path ρ, which contains at least h + 1
nodes in S[u1]. Since there are only h distinct nodes in S[u1], there must exist a node
v1i ∈ S[u1] that appears at least twice in ρ, from which one can easily derive a cycle.

From these, we have the conclusion. 2

However, as shown in Example 1.1, graph simulation may match an undirected cycle
in a pattern graph with a tree in a data graph. In contrast, dual simulation (as well as
subgraph isomorphism and strong simulation) preserves undirected cycles.

PROPOSITION 3.4. If Q ≺D G and there is an undirected cycle in Q, then there must
exist a matched undirected cycle in the match graph w.r.t. any match relation in G for
Q.

PROOF: This is verified along the same lines as Proposition 3.3. The only difference is
that here we can readily construct a set of undirected paths, from which we can derive
an undirected cycle, by the definition of dual simulation that considers both parent
and child relationships. 2

(6) Locality: the diameter of a matched subgraph in G must be bounded by a function in
the diameter of the pattern graph. This allows us to check a match locally, by inspecting
a subgraph with a bounded diameter only.

Strong simulation has the locality property, and so does subgraph isomorphism. In
contrast, neither graph simulation nor dual simulation has the locality property (see
Examples 1.1 and 2.1).

PROPOSITION 3.5. If Q ≺L
D G, then for all perfect subgraphs Gs of G, the diameter

of Gs is bounded by 2 ∗ dQ, where dQ is the diameter of Q.

PROOF: This follows from the definition of strong simulation since balls are connected
graphs whose diameters are less or equal than dQ. For any two nodes u, u′ in a perfect
subgraph Gs in a ball Ĝ(v, dQ), dist(u, u′) ≤ dist(u, v) + dist(v, u′) ≤ 2 ∗ dQ. Hence, the
diameter of Gs is bounded by 2 ∗ dQ. 2

(7) Bounded Matches: there should be a bounded number of matches, and each match
is small enough to inspect. As remarked earlier, subgraph isomorphism may yield ex-
ponentially many matched subgraphs. While graph simulation and dual simulation
return a single match relation, the relation is often too large to inspect. In contrast,
strong simulation strikes a balance: the number of matches is bounded by the num-
ber of nodes in the data graph, and each matched subgraph has a bounded diameter
determined by the pattern graph only (Proposition 3.5).

PROPOSITION 3.6. The number of maximum perfect subgraphs of G is bounded by
the number of nodes in G.

PROOF: By the definition of strong simulation, there exists at most one maximum
perfect subgraph for each ball Ĝ(v, dQ), where v is a node in data graph G, and dQ is
the diameter of pattern Q. The number of balls is bounded by the number of nodes in
G, and so is the number of maximum perfect subgraphs. 2

These results are summarized in Table II. They tell us that strong simulation pre-
serves much more topological structures between pattern graphs and data graphs than
graph simulation, and moreover, possesses the locality property.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Table II. Topology preservation and bounded matches

Matching
Property Graph Dual Strong Subgraph

simulation simulation simulation isomorphism
Children X X X X
Parents × X X X
Weak Connectivity × X X X
Strong Connectivity × × X X
Directed cycles X X X X
Undirected cycles × X X X
Locality × × X X
Bounded Matches X × X ×
Bisimilarity × × × X
Bounded cycles × × × X

3.2. In Search for Tractable Boundary in Matching
One might want to find a notion of graph pattern matching that preserves maximum
graph topology, and characterize PTIME along the same lines as how Fagin’s theorem
characterizes NP [Papadimitriou 1994]. This is, however, very challenging. Indeed, as
observed in [Grohe 2010], in graph theory Fagin’s theorem implies that “if no logic
captures PTIME, then PTIME ̸= NP”.

Below we present two negative results: extending strong simulation makes its com-
putation jump from PTIME to NP-hard.

Bounded cycles. Given a pattern graph Q and a data graph G such that Q ≺ G with the
maximum match relation S, the bounded cycle problem (BCP) is to determine whether
the longest cycle in the match graph w.r.t. S is bounded by the longest one in Q. Ob-
viously bounded cycles are a desirable locality property that one would have wanted
to further impose on strong simulation. Unfortunately, this additional condition would
make graph pattern matching intractable.

THEOREM 3.7. The bounded cycle problem is coNP-hard even when pattern graphs
contain a single cycle.

PROOF: We show that the BCP problem is coNP-hard even when the pattern graph
Q is a single cycle graph, by reduction from the longest cycle problem (LCP) to the
complement of the BCP problem. The LCP problem is to determine whether the length
of the longest cycle in a graph is greater than or equal to k. It is known to be NP-
complete (cf. [Papadimitriou 1994]).

Given an instance (i.e., a graph Gl and an integer k) of the LCP problem, we construct
an instance (i.e., a pattern graph Q and a data graph Gb) of the BCP problem, such that
Gl has a cycle with at least k nodes if and only if a cycle in Q matches a cycle in Gb not
bounded by the length of the longest cycle in Q.

More specifically, we construct the instance of the BCP problem as follows:
(1) The pattern graph Q is simply a cycle with k − 1 nodes, in which all nodes have

the same label, and moreover,
(2) the data graph Gb is derived from Gl, by labeling all nodes in Gl with the same

label as the nodes of Q.
Observe that the matched cycle in Gb is not bounded by k − 1, the length of the

longest cycle in Q, if and only if Gl contains a cycle with at least k nodes. Therefore,
the BCP problem is coNP-hard. 2

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Bisimilarity. One might be tempted to use graph bisimulation [Milner 1989] rather
than graph simulation in graph pattern matching. A data graph G matches a pattern
graph Q via graph bisimulation, denoted by Q ∼ G, if Q ≺ G with the maximum
match relation S and G ≺ Q with the inverse S− of S as its maximum match relation.
Graph pattern matching via graph bisimulation is to find all subgraphs Gs of a data
graph G such that Q ∼ Gs. Clearly graph bisimulation preserves more topological
structures than graph simulation. Indeed, it is a notion stronger than graph simulation
but weaker than subgraph isomorphism.

However, graph pattern matching via graph bisimulation becomes intractable. In-
deed, subgraph bisimulation is NP-hard [Dovier and Piazza 2003], although graph
bisimulation is solvable in PTIME [Milner 1989]. In contrast, subgraph simulation is
equivalent to graph simulation, i.e., checking whether there exists a subgraph Gs of G
such that Q ≺ Gs is the same as checking whether Q ≺ G.

4. AN ALGORITHM FOR STRONG SIMULATION
In this section, we show that graph pattern matching via strong simulation retains
the same complexity as earlier extensions [Fan et al. 2010a; Fan et al. 2011] of graph
simulation, while it is able to preserve graph topology better.

The main results of this section are as follows.

THEOREM 4.1. For any pattern graph Q and data graph G, it can be done in cubic
time to determine whether Q ≺L

D G, and to find the set of maximum perfect subgraphs
of G w.r.t. Q.

THEOREM 4.2. For any pattern graph Q with diameter dQ, it can be done in
quadratic time to find a minimum pattern graph Qm such that Qm and Q find the same
result on any data graph by using dQ as the radius of balls, via strong simulation.

We first prove Theorem 4.1 by providing a cubic-time algorithm for computing strong
simulation. We then show Theorem 4.2 by proposing optimization techniques.

4.1. A Cubic-time Algorithm

Algorithm. The algorithm, referred to as Match, is shown in Fig. 3. Given a pattern
graph Q and a data graph G, it returns the set of maximum perfect subgraphs Gs by
inspecting those balls of radius dQ centered at each node of G.

To present algorithm Match, we first describe its procedures.

Procedure DualSim. It takes as input a pattern graph Q(Vq, Eq) and a ball Ĝ[w, dQ] with
center w and radius dQ, and finds the maximum match relation Sw in Ĝ[w, dQ] for Q.

For each node u in Q, the set sim(u) contains candidate nodes in the ball, initially all
its nodes with the same label as u (lines 1–2). By the definition of dual simulation, a
node v is removed from sim(u) unless (1) if there is a parent node u′ of u, then there
exists a parent node v′ ∈ sim(u′); and (2) if there is a child node u′ of u, then there exists
a child node v′ ∈ sim(u′). Hence, to preserve the child relationships, if (u, u′) ∈ Eq and
v ∈ sim(u), but there exist no nodes v′ ∈ sim(u′) such that (v, v′) is an edge in Ĝ[w, dQ],
then v cannot be matched to u, and hence is removed from sim(u) (lines 4–6). Similarly,
to preserve the parent relationships, if (u′, u) ∈ Eq and v ∈ sim(u), but there exist no
nodes v′ ∈ sim(u′) such that (v′, v) is an edge in Ĝ[w, dQ], then v cannot be matched to
u, and hence is removed from sim(u) (lines 7–9). This process is repeated until there
are no more changes (lines 3–9). Finally, Sw is returned (lines 10–12).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Algorithm Match(Q,G)

Input: Pattern graph Q with diameter dQ and data graph G(V,E).
Output: The set Θ of maximum perfect subgraphs of G for Q.

1. Θ := ∅;
2. for each ball Ĝ[w, dQ] in G do
3. Sw := DualSim(Q, Ĝ[w, dQ]);
4. Gs := ExtractMaxPG(Q, Ĝ[w, dQ], Sw);
5. if Gs ̸= nil then
6. Θ : = Θ ∪ {Gs};
7. return Θ.
Procedure DualSim(Q, Ĝ[w, dQ])

Input: Pattern graph Q(Vq, Eq) and ball Ĝ[w, dQ].
Output: The maximum match relation Sw in Ĝ[w, dQ] for Q.

1. for each u ∈ Vq in Q do
2. sim(u) := {v | v is in Ĝ[w, dQ] and lQ(u) = lG(v)};
3. while there are changes do
4. for each edge (u, u′) in EQ and each node v ∈ sim(u) do
5. if there is no edge (v, v′) in Ĝ[w, dQ] with v′ ∈ sim(u′) then
6. sim(u) := sim(u) \ {v};
7. for each edge (u′, u) in EQ and each node v ∈ sim(u) do
8. if there is no edge (v′, v) in Ĝ[w, dQ] with v′ ∈ sim(u′) then
9. sim(u) := sim(u) \ {v};
10. if sim(u) = ∅ then return ∅;
11.Sw := {(u, v) | u ∈ Vq, v ∈ sim(u)};
12. return Sw.
Procedure ExtractMaxPG(Q, Ĝ[w, dQ], Sw)

Input: Pattern Q, ball Ĝ[w, dQ] with maximum match relation Sw.
Output: The maximum perfect subgraph Gs in Ĝ[w, dQ] for Q if any.
1. if w does not appear in Sw then
2. return nil;
3. Construct the matching graph Gm w.r.t. Sw;
4. return the connected component Gs containing w in Gm.

Fig. 3. Algorithm Match for strong simulation

Procedure ExtractMaxPG. It takes as input a pattern graph Q, a ball Ĝ[w, dQ], and the
maximum match relation Sw, and finds the maximum perfect subgraph Gs in the ball
if there is one. By Proposition 3.2, the procedure simply finds the connected component
containing w in the match graph w.r.t. Sw after constructing the match graph w.r.t. Sw.

Algorithm Match. We are now ready to present Match. For each node w in the data
graph G, (1) it computes the maximum match relation Sw of Q and the ball Ĝ[w, dQ]

by invoking DualSim (line 2); (2) it finds the perfect subgraph Gs in Ĝ[w, dQ] via
ExtractMaxPG (line 3); and (3) Gs is added to the set Θ if it exists (line 4). After all
balls in G are checked, it returns the set Θ of maximum perfect subgraphs (line 5).

Example 4.1: Consider pattern graph Q1 (dQ1 = 3) and the ball with center Bio4 and
radius = 3 in data graph G1 of Fig 1. Note that the ball is exactly the connected com-
ponent Gc with node Bio4 in G1. We show how Algorithm Match works on Q1 and Gc.
Initially, HR, SE, Bio, AI and DM in Q1 match {HR2}, {SE2}, {Bio4,}, {AI′1,AI′2} and {DM′

1,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Input: Pattern graph Q = (Vq, Eq, lQ).
Output: A minimized equivalent pattern graph Qm of Q.

1. Compute the maximum match relation S in Q for Q via dual simulation;
2. Compute equivalence classes of nodes in Q w.r.t. S;
3. For each equivalence class eq, create a node for Qm with the same label as the nodes in eq;
4. Connect equivalence classes with necessary edges in Qm;
5. return Qm.

Fig. 4. Algorithm minQ for minimizing pattern graphs

DM′
2} in Gc, respectively (lines 1–2, DualSim). The algorithm finds no nodes to be re-

moved from sim(u) for all nodes u in Q1 in this case (lines 3–10, DualSim). Hence Match
returns Gc as the maximum perfect subgraph in the ball (line 6, Match). 2

Correctness & Complexity. The correctness of algorithm Match is assured by the fol-
lowing. (1) There is at most one maximum perfect subgraph in each ball of G (Propo-
sition 2.2). (2) Procedure ExtractMaxPG returns the maximum perfect graph in ball
Ĝ[v, dQ], by Proposition 3.2. (3) The correctness of procedure DualSim can be verified
along the same lines as its counterpart for graph simulation [Henzinger et al. 1995],
by further dealing with parent relationships.

By using the BFS method [Diestel 2005], it takes procedure BuildBall (not shown here)
O(|V | + |E|) time to build a ball Ĝ[w, dQ]. For each ball, procedure ExtractMaxPG finds
its maximum perfect subgraph in O(|V |) time since finding pairwise disconnected com-
ponents is linear-time equivalent to finding strongly connected components, which is
in linear time [Cormen et al. 2001]. By leveraging the algorithm developed in [Hen-
zinger et al. 1995], procedure DualSim can be done in O((|Vq| + |Eq|)(|V | + |E|)) time.
Thus algorithm Match is in O(|V |(|V |+ (|Vq|+ |Eq|)(|V |+ |E|))) time.

Algorithm Match is in cubic time, and this completes the proof of Theorem 4.1.

4.2. Optimization Techniques
We next present optimization techniques for algorithm Match, by means of query min-
imization, dual simulation filtering and connectivity pruning.

4.2.1. Query Minimization. We first explore query minimization, which is important for
any query language [Abiteboul et al. 1995].

We say that two pattern graphs Q and Q′ are equivalent, denoted by Q ≡ Q′, if and
only if they find the same result on any data graph. We also say that a pattern graph Q
is minimum if it has the least size |Q|, i.e., the total number of nodes and edges, among
all equivalent pattern graphs.

Theorem 4.2 follows from Lemmas 4.3 and 4.4 given below.

LEMMA 4.3. When fixing the radius of balls, if two pattern graphs are equivalent
via dual simulation, then they are equivalent via strong simulation.

PROOF: Assume that Q1 ≡ Q2 via dual simulation. By the definition of strong simula-
tion, it is trivial to know that Q1 ≡ Q2 via strong simulation. 2

LEMMA 4.4. For any pattern graph Q, (1) there exists a unique (up to isomorphism)
minimum equivalent pattern graph, via dual simulation, that finds the same maximum
match relation as Q on any data graph; and (2) there exists a quadratic time algorithm
to find its minimum equivalent pattern graph.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Q5 Q5,m

C1 C2 D1

R

A B1

D2

B2

C

R

A B

D

Fig. 5. Example for query minimization

Leveraging these, Algorithm Match can be improved as follows. Given pattern graph
Q, we first compute its minimum equivalent pattern graph Qm, and then we compute
strong simulation w.r.t. Qm and diameter dQ.

Algorithm. As a proof of Lemma 4.4, we present algorithm minQ for minimizing pattern
graphs, shown in Fig. 4. It takes as input a pattern graph Q, and returns a minimum
equivalent pattern graph Qm of Q, via dual simulation.

For any pattern graph Q, it first computes the maximum match relation S by treat-
ing Q as both a pattern graph and a data graph (line 1). It then computes equivalence
classes for nodes in Q such that nodes u and v are in the same class if and only if both
(u, v) ∈ S and (v, u) ∈ S (line 2). Finally, it constructs the minimum equivalent pattern
graph Qm as follows (lines 3–4). (a) For each equivalence class eq, it creates a node eq
in Qm, and (b) there is an edge (eq, eq′) in Qm if and only if there exist nodes u ∈ eq
and u′ ∈ eq′ such that there exists an edge (u, u′) in Q.

Example 4.2: Taking as input the pattern graph Q5 given in Fig. 5, where nodes carry
labels, and nodes with the same label further use subscripts to indicate the distinction.

Algorithm minQ works as follows.
(1) It first computes the maximum match relation S of Q5 and Q5, via dual simulation,
yielding S = {(R, R), (Bi, Bj), (Ci, Cj), (Di, Dj)} (i, j ∈ [1, 2]).
(2) It then computes five equivalence classes: eqR = {R}, eqA = {A}, eqB = {B1, B2}, eqC
= {C1, C2}, and eqD = {D1, D2}.
(3) Finally, it constructs the minimum pattern graph Q5,m of Q5, shown in Fig. 5: (a)
For each equivalence class eqx, where x ∈ {R,A,B,C,D}, it creates a node labeled with
x; and (b) it creates an edge from node x to y in Q5,m if and only if there exist nodes
u ∈ eqx and v ∈ eqy such that (u, v) is an edge in Q5. 2

Remark. Observe that for all the nodes in the same equivalence class, algorithm Match
conducts essentially the same computation on them. Hence minimized pattern graphs
reduce redundant computation. This is also confirmed by the complexity analysis of
algorithm Match, which tells us that the smaller pattern graphs are, the better the
algorithm performs. The technique is effective on (1) pattern graphs in which multiple
nodes are equivalent and can thus be reduced, and on (2) data graphs in which the
number of nodes that match equivalent pattern nodes is large.

Correctness. The correctness of algorithm minQ is assured by the following.
(1) For any data graph G, the maximum match relation S in G for Q is always the same
as the maximum match relation Sm in G for Qm. Hence, Q ≡ Qm.
(2) |Qm| ≤ |Q′| for any Q′ such that Q′ ≡ Q.
(3) For any two minimum equivalent pattern graphs Qm and Q′

m, there is a bijective
function from Qm to Q′

m such that (a) for any node u in Qm, f(u) is a node in Q′
m with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

the same label, and (b) (u, v) is an edge in Qm if and only if (f(u), f(v)) is an edge in
Q′

m, i.e., Qm and Q′
m are equivalent up to isomorphism.

We show that algorithm minQ satisfies these conditions as follows.

(I) We first show that algorithm minQ satisfies condition (1) above, i.e., Q ≡ Qm.
To show that Q ≡ Qm, it suffices to show that Q ≺D Qm and Qm ≺D Q.

(i) We first show that Q ≺D Qm. Let S = {(u, eq) | u in Q and eq in Qm} such that u ∈ eq,
i.e., node u belongs to the equivalence class eq. We next show that S is a match relation
in Qm for Q, from which we conclude Q ≺D Qm. Indeed, for any node u in Q, (a) there
exists node equ in Qm such that u and equ have the same label and (u, equ) ∈ S, (b) for
each edge (u, v) in Q, there is an edge (equ, eqv) in Qm, where (v, eqv) ∈ S, and (c) for
each edge (w, u) in Q, there is an edge (eqw, equ) in Qm, where (w, eqw) ∈ S. From these
it follows that S is a match relation in Qm for Q, via dual simulation.
(ii) We then show that Qm ≺D Q. Let S−1 = {(equ, u) | (u, equ) ∈ S}. As argued in (i)
above, we can show that Qm ≺ Q with S−1 as a match relation in Q for Qm.

By (i) and (ii), we have Q ≡ Qm.

(II) We next show that algorithm minQ satisfies condition (2) above, by contradiction.
Assume first that Q′ is a pattern graph such that (a) Q′ ≡ Q, (b) |Q′| < |Qm|, and (c)

given Q′ as input, algorithm minQ outputs Q′ (otherwise, we simply replace Q′ with the
one generated by minQ). We then show |Q′| ≥ |Qm|, which contradicts our assumption.

Let EQm and EQ′ be the two sets of equivalence classes for Qm and Q′, respectively,
produced by algorithm minQ. Then each node in Qm or Q′ forms a separate equivalence
class that contains itself only. To show that |Q′| ≥ |Qm|, it suffices to show that there
exists a total function f from EQm to EQ′ such that for any eq1, eq2 ∈ EQm, there is an
edge (eq1, eq2) in Qm if and only if (f(eq1), f(eq2)) is an edge in Q′. Let S1 and S2 be the
maximum match relations in Qm for Q′ and in Q′ for Qm, respectively.

We next construct such a mapping function f , by letting (eq, eq′) ∈ f if and only if
both (eq, eq′) ∈ S1 and (eq′, eq) ∈ S2.

(i) We first show that f is indeed a function by proving (a) f is total; and (b) for any
eq ∈ EQm, there exists exactly one equivalence class eq’ ∈ EQ′ such that f(eq) = eq’.
(a) We first prove that mapping f is a function by contradiction.

Assume first that there is an equivalence class eq in EQm such that there exist
two distinct equivalence classes eq′1 and eq′2 in EQ′, satisfying that (eq, eq′1) ∈ f and
(eq, eq′2) ∈ f . We next show that eq′1 = eq′2, which contradicts our assumption. Let Sm

be the maximum match relation in Qm for Qm. Since (eq, eq′1) ∈ f , we have (eq, eq′1) ∈ S1

and (eq′1, eq) ∈ S2. Similarly, since (eq, eq′2) ∈ f , we have (eq, eq′2) ∈ S1 and (eq′2, eq) ∈ S2.
By the definition of dual simulation, one can easily verify that both (eq′1, eq

′
2) ∈ Sm and

(eq′2, eq
′
1) ∈ Sm. This tells us that eq′1 and eq′2 are equivalent via dual simulation, and

hence eq′1 = eq′2, a contradiction to our previous assumption.
(b) We then show that function f is total by contradiction.

Assume first that there exists an eq ∈ EQm such that there exists no eq′ ∈ EQ′ that
satisfies both (eq, eq′) ∈ S1 and (eq′, eq) ∈ S2. Since Q′ ≡ Qm, there are two cases for eq
and eq’: (1) (eq, eq′) ∈ S1, but not (eq′, eq) ∈ S2, or (2) (eq, eq′) ∈ S2, but not (eq′, eq) ∈ S1.
(1) If (eq, eq′) ∈ S1, but not (eq′, eq) ∈ S2, then there must exist eq2 in EQm such that
(eq′, eq2) ∈ S2 since Q′ ≡ Qm. Now we have (eq, eq′) ∈ S1 and (eq2, eq

′) ∈ S2. By the
definition of dual simulation, one can easily verify that both eq and eq2 are equivalent
via dual simulation, and hence eq = eq2, a contradiction to our previous assumption.
(2) Similarly, one can verify the case when (eq, eq′) ∈ S1, but not (eq′, eq) ∈ S2.

By (a) and (b) above, we conclude that mapping f is indeed a total function.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Input: Pattern graph Q, match relation S w.r.t. Q ≺D G and ball Ĝ[w, dQ].
Output: The maximum perfect subgraph in Ĝ[w, dQ] for Q.
1. Sw := project S onto Ĝ[w, dQ];
2. filterSet := ∅;
3. for each (u, v) ∈ Sw such that v is a border node do
4. if there is no child of v in sim(u1) such that (u, u1) ∈ Eq then
5. filterSet.push(u, v);
6. if there is no parent of v in sim(u2) such that (u2, u) ∈ Eq then
7. filterSet.push(u, v);
8. while (filterSet ̸= ∅) do
9. (u, v) := filterSet.pop();
10. Sw := Sw \ {(u, v)};
11. for each (u, u1) in Q do
12. for each child v1 of v in sim(u1)do
13. if there is no parent of v1 in sim(u) then
14. filterSet.push(u1, v1);
15. for each (u2, u) in Q do
16. for each parent v2 of v in sim(u2)do
17. if there is no child of v2 in sim(u) then
18. filterSet.push(u2, v2);
19. if there exists u in Q such that sim(u) = ∅ then
20. Sw := ∅;
21. return ExtractMaxPG (Q, Ĝ[w, dQ], Sw)

Fig. 6. Algorithm dualFilter for dual simulation filtering

(ii) We then show that for any eq1, eq2 ∈ EQm, there is an edge (eq1, eq2) in Qm if and
only if (f(eq1), f(eq2)) is an edge in Q′, by contradiction.

Assume first that (eq1, eq2) in Qm, but not (f(eq1), f(eq2)) in Q′. Then by how algo-
rithm minQ constructs edges, and the definition of dual simulation, (eq1, f(eq1)) does
not belong to f , a contradiction to the assumption. Conversely, it is similar for the case
that (f(eq1), f(eq2)) in Q′, but not (eq1, eq2) in Qm.

Putting these together, we have shown that |Qm| ≤ |Q′| for any Q′ such that Q′ ≡ Q.

(III) We finally show that algorithm minQ satisfies condition (3) above.
The function f constructed above is bijective. This can be verified by proving that

the inverse f− of f is a total and injective function, via a similar argument to (2).
Putting (II) and (III) together, we have that f is a total, surjective and injective

function. That is, f is a bijection from the nodes of Qm to the nodes of Q′. Therefore, Q′

and Qm have the same number of nodes and edges, and are isomorphic to each other.

Complexity. Algorithm minQ is in O((|Vq|+ |Eq|)2) time. Indeed, steps (1), (2) and (3) of
minQ take O((|Vq|+ |Eq|)2) time, O(|Vq|2) time and O(|Eq|) time, respectively.

This completes the proofs of Lemma 4.4 and Theorem 4.2.

4.2.2. Dual Simulation Filtering. Our second optimization technique aims to avoid re-
dundant checking of balls in the data graph. Most algorithms of graph simulation
(e.g., [Henzinger et al. 1995]) recursively refine the match relation by identifying and
removing false matches. As observed in [Fan et al. 2010a], it is much easier to deal
with node or edge deletions than their insertions. In light of this, we compute the max-
imum match relation for dual simulation first, and then project the match relation on
each ball to compute strong simulation.

We say that a node w in a ball Ĝ[v, dQ] is a border node if dist(v, w) = dQ. We also
refer to those nodes reachable from a border node as its affected nodes.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

With these, one can easily verify the following:

Observation. Initially, only the border nodes in a ball are possible to be removed from
the candidates sim(u) of any node u in a pattern graph, i.e., invalid matches.

This suggests an order to process nodes in Ĝ[v, dQ]: starting from its border nodes, we
inspect affected nodes only following an increasing order based on their distances from
border nodes. This minimizes unnecessary computation. Note that the border nodes
can be marked when constructing balls. Hence this incurs little extra complexity.

Algorithm. To do this, we first compute the maximum match relation S, via dual sim-
ulation, over the entire data graph G by invoking procedure DualSim in Fig. 3. We
then project S onto each ball. When computing the maximum match relation on a ball,
we simply start with the border nodes, and identify invalid matches using algorithm
dualFilter shown in Fig. 6, a revised version of DualSim.

We next present algorithm dualFilter. It takes as input a pattern graph Q, the maxi-
mum match relation S in G for Q that is found via dual simulation, and a ball Ĝ[w, dQ].
It returns the maximum perfect subgraph in Ĝ[w, dQ] for Q. More specifically, dualFilter
first projects the maximum match relation S onto ball Ĝ[w, dQ], yielding relation Sw

(line 1). It then iteratively marks and removes those invalid matches stored in a
queue filterSet (lines 2–18), initially empty (line 2). To do this, it first inspects those
matches in Sw that contain a border node, to find invalid matches (lines 4–7). The
invalid matches found are stored in filterSet (lines 5 and 7). It then processes those
marked invalid matches one by one (lines 6–15). Each invalid match (u, v) with af-
fected node v is removed from Sw (line 10). The relation Sw is then processed along
the same lines as procedure DualSim (lines 11–18), but following the order of invalid
matches in filterSet. Finally, the algorithm extracts the perfect subgraph by invoking
procedure ExtractMaxPG, and returns the subgraph (line 21).

Example 4.3: We illustrate how the filtering technique improves the performance of
algorithm Match by considering the pattern graph Q6 with diameter dQ6 = 3 and data
graph G6 given in Fig. 7. The maximum match relation S in G6 for Q6 via dual simula-
tion is the set of matches (node pairs): {(A,A2), (B,B2), (A′, A3), (B′, B3), (C,C)}. That
is, sim(A) = {A2}, sim(B) = {B2}, sim(A′) = {A3}, sim(B′) = {B3} and sim(C) = {C}.

The filtering method then projects the match relation S on each ball, and checks the
results. It finds the following:

(1) There exist invalid matches in two balls: Ĝ6[A1, 3] and Ĝ6[B1, 3], by inspecting
their border nodes. For ball Ĝ6[A1, 3], after projecting S on Ĝ6[A1, 3], we get Sw =
{(A,A2), (B,B2)}. Here B2 is a border node of Ĝ6[A1, 3]. Starting with B2, dualFilter

finds that both (A, A2) and (B, B2) are invalid matches. Similarly for ball Ĝ6[B1, 3].

(2) In contrast, there exist no invalid matches in the other balls: Ĝ6[A2, 3], Ĝ6[B2, 3],
Ĝ6[A3, 3], Ĝ6[B3, 3] and Ĝ6[C, 3]. This is found by inspecting border nodes in each ball.
Hence the final match relation in any of these balls is exactly the same as the initial
projected match relation of S on the ball.

As a result, only two balls Ĝ6[A1, 3] and Ĝ6[B1, 3] are necessarily processed by algo-
rithm dualFiler, while no more processing is needed for the other five balls. That is, the
filtering method prunes unnecessary processing and speeds up algorithm Match. 2

Remark. Observe the following. (1) The match result of procedure Dualsim is also used
as the initial match set sim(u) for each node u in Q (line 1, procedure dualFilter). There-
fore, procedure Dualsim incurs little extra cost. (2) Procedure Dualsim filters those nodes

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

in a data graph G that do not match any nodes in a pattern graph Q. Pattern graphs
are often small, and hence a large portion of nodes in G may not match any pattern
node in Q, when they either have a label that does appear in Q, or when they do not sat-
isfy the matching condition of dual simulation. Procedure Dualsim catches such nodes
and filters a large portion of nodes in data graphs. (3) If a node v in G does not match
any node in Q, then there is no need to consider the ball centered at v at all, and hence
the number of balls (line 2, algorithm Match) is often reduced. From these we can see
that the optimization technique is effective when a large number of nodes in a data
graph G do not find a match in a pattern graph Q, as commonly found in practice.

Correctness. We next show the correctness of dualFilter. Let S1 and S2 be the Sw at line 1
and line 21 of algorithm dualFilter, respectively. Let S3 be the maximum match relation
in ball Ĝ[w, dQ] for Q, returned by procedure DualSim. Observe the following:
(i) S3 ⊆ S1 and S2 ⊆ S1;
(ii) for any (u, v) ∈ S1, if v is not a border node, then for any parent or child of u in Q,
there exists a parent or child v′ of v such that (u′, v′) ∈ S1; and
(iii) for any (u, v) /∈ S2, its removal is due to the removal of matches at line 1 of algo-
rithm dualFilter. Here a match (u′, v′) is affected by the removal of (u, v) if (a) u′ is a
parent (resp. child) of u and (b) v is the only child (resp. parent) of v′ that matches u.

To show the correctness of dualFilter, it suffices to show that that S2 = S3, by showing
S2 ⊆ S3 and S3 ⊆ S2. It is obvious that S3 ⊆ S2 since S3 ⊆ S1 and for any pair (u, v)
removed from S1 in dualFilter, (u, v) is not in S3. Hence we only need to show that
S2 ⊆ S3. We next show that for any (u, v) ∈ S1, if (u, v) /∈ S3, then (u, v) /∈ S2, by
contradiction, from which we conclude that S2 ⊆ S3.

Assume first that there exists (u, v) /∈ S3, but (u, v) ∈ S2. Then there exists no parent
(or child) v′ of v such that (u′, v′) ∈ S3, where u′ is a parent (or child) of u in Q.
(1) If v is a border node, then (u, v) is not in S2 by the definition of dual simulation, a
contradiction to our previous assumption.
(2) Otherwise, if v is not a border node, we then recursively consider those parents
(resp. children) u1 of u and parents (resp. children) v1 of v in Q such that there exists
(u1, v1) in S1, but (u1, v1) ̸∈ S3:
◦ If v1 is a border node, then (u1, v1) is not in S2 by the definition of dual simulation.
◦ Otherwise, if v1 is not a border node, we then repeat the process (2).

Due to the observation (ii), this process will finally terminate when all nodes in-
volved are border nodes. As a result, this leads to (u, v) ̸∈ S2, a contradiction.

From these the correctness of algorithm dualFilter follows.

Complexity. For its complexity, observe that it takes O(|V |(|V |+ |E|)) time to construct
all balls, and O((|Vq| + |Eq|)(|V | + |E|)) time to compute the maximum match relation
in G for Q via dual simulation, along the same lines as algorithm Match. For each ball
Ĝ[w, dQ], it takes at most O((|Vq| + |Eq|)(|VĜ[w,dQ]| + |EĜ[w,dQ]|)) time. Putting these
together, dualFilter takes O(|V |(|V | + (|Vq| + |Eq|)(|V | + |E|))) time in total. Although
the worst case complexity is the same as the complexity of Match (shown in Fig. 3),
as demonstrated by the example and as will be shown by our experimental study, the
optimization technique is indeed effective in practice.

4.2.3. Connectivity pruning. Proposition 3.2 tells us that in a ball Ĝ[v, r], only the con-
nected component containing the ball center v needs to be considered. Hence, those
nodes not reachable from v can be pruned early. Our last main optimization technique
does precisely this. It reduces the search space for checking dual-simulation, and can
be easily incorporated into Algorithm Match, as illustrated below.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

G6

A B A'

B'

C

Q6

A1 B1 A2 B2 A3 B3

C

Fig. 7. Example for dual simulation filtering

Q7

G7

A1 B1 B3. . .

A1 B1 A2 B2C

A3

Fig. 8. Example for connectivity pruning

Example 4.4: Consider pattern graph Q7 and data graph G7 shown in Fig. 8, in which
diameters dQ7 = 5 and dG7 = 4. Here dQ7 > dG7 , so a ball with any center node of G7 is
exactly G7 itself. When conducting dual simulation of Q7 on ball Ĝ7[A1, 5], for instance,
the pruning method first finds an initial sim(v) set for each node v in Q7, by mapping
Ai in Q7 to Aj in Ĝ7[A1, 5] (i ∈ [1, 3], j ∈ [1, 2]). This yields two connected components in
Ĝ7[A1, 5]: CC1 containing nodes {A1, B1} and CC2 containing {A2, B2}, in which only
CC1 contains the center node A1 (recall the notion of connected graphs from Section 2).
By Proposition 3.2, the pruning method safely removes all those nodes that are not in
CC1 from sim(u), for any node u ∈ Q7, without affecting the final matches. That is, it
prunes invalid matches early and thus improves the performance of Match. 2

Putting things together. We next show how to integrate those optimization tech-
niques into Match, yielding a version of algorithm Match that supports all optimization
strategies, referred to as Match+.

Given a pattern graph Q and a data graph G, algorithm Match+ works as follows:

Step 1: It first invokes algorithm minQ to get a minimized Qm for pattern graph Q.

Step 2: It then removes all nodes in data graph G with labels not appeared in Qm,
yielding a set of connected components of G.

Step 3: It conducts procedure DualSim on each connected component of G.

Step 4: It then uses connectivity pruning on each ball of each connected component of
G to further reduce the projected match relation returned at Step 3 on each ball.

Step 5: It finally utilizes algorithm dualFilter on each ball of each connected component
of G with the refined projected match relation returned at Step 4, and returns all the
perfect subgraphs.

The correctness of Match+ is asserted by Proposition 3.2 (for Steps 2, 3) and the cor-
rectness of connectivity pruning (for Step 4) and dual simulation filtering (for Step 5).

As will be seen in Section 6, Match+ significantly outperforms Match.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

HR1 Bio1

Bio2SE1 DMkAIkDM1AI1

Bio3

Fig. 9. Data graph Gs for Example 5.1

5. COMPUTING STRONG SIMULATION ON DISTRIBUTED GRAPHS
In this section, we study distributed evaluation of strong simulation. We first provide
an algorithm based on data locality for strong simulation on distributed graphs (Sec-
tion 5.1) and then propose optimization techniques for it (Section 5.2).

5.1. An Algorithm for Strong Simulation on Distributed Graphs
When evaluating a query on a large dataset, one wants to partition the data and dis-
tribute its fragments to multiple machines, such that the query can be evaluated in
parallel, as advocated by, e.g., MapReduce [Dean and Ghemawat 2004]. Moreover, it is
common to find real-life datasets already partitioned and distributed. For instance, to
find the complete information of a person, one may have to query several social net-
works (e.g., Facebook, Picassa and Youtube) to collect her data. These highlight the
need for developing distributed algorithms for evaluating graph queries. However, as
observed in [Malewicz et al. 2010], graph algorithms often exhibit poor data locality
and hence, may incur prohibitive overhead on network traffic.

We next show that strong simulation demonstrates data locality and hence, allows
efficient distributed evaluation.

Data locality. Consider a graph G that is partitioned into (G1, . . . , Gk) such that each
Gi is stored in site Mi (i ∈ [1, k]). We want to evaluate a pattern graph Q on G, while
minimizing unnecessary data shipment from one site to another. This is, however,
rather challenging when pattern matching is defined in terms of graph simulation.

Example 5.1: Consider again the pattern graph Q1 and given in Fig. 1, and the data
graph Gs shown in Fig. 9, which is the subgraph of G1 by removing the connected
component with Bio4 from G1. Suppose that Gs is fragmented and distributed. Then
to decide whether Q1 ≺ Gs, we have to ship all subgraphs of Gs to a single site to
re-assemble Gs. Indeed, (1) the match graph of Q1 and Gs via graph simulation is the
entire Gs; and (2) removing any node or edge from Gs makes Q1 ̸≺ Gs. This tells us
that it is hard to conduct graph simulation in the distributed setting without incurring
high network traffic. 2

In contrast, we show that strong simulation has the data locality. Indeed, strong
simulation can be computed in the distributed setting, guaranteeing that the total
data shipment is bounded by the set of balls Ĝ[vb, dQ] in G such that vb is in some Gi

but it has a direct neighbor node not in Gi. We refer to Gi as a fragment of G and vb as
a boundary node of fragment Gi.

Algorithm. To verify the data locality of strong simulation, we provide a distributed
algorithm for graph pattern matching via strong simulation, denoted by dMatch
and shown in Fig. 10. Given a pattern graph Q and a partitioned data graph G =
{G1, . . . , Gk} with Gi placed in site Mi (i ∈ [1, k]), it returns the set of maximum perfect
subgraphs in G for Q, by invoking two distributed processes as follows.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Input: Pattern graph Q with diameter dQ and partitioned data graph
G = {G1, . . . , Gk} with Gi placed in site Mi (i ∈ [1, k]).

Output: The set Θ of maximum perfect subgraphs in G for Q.

Coordinator.
1. send pattern graph Q to all sites Mi (i ∈ [1, k]);
2. Θ : = ∅; S := ∅;
3. upon receiving (Mi,Θi):
4. Θ := Θ ∪Θi; S := S ∪ {Mi};
5. if sizeof(S) = k then return Θ.

Site Mi.
1. upon receiving pattern graph Q:
2. Trigger necessary data shipments for Gi;
3. after receiving all data shipments (subgraphs of G) from other sites:
4. Gi := Merge Gi with the received subgraphs of G;
5. Θi := Match(Q,Gi);
6. send (Mi,Θi) to the coordinator.

Fig. 10. Algorithm dMatch for strong simulation on distributed graphs

Gd,1

DMkAIkDM1AI1

HR2
Bio4

Bio4

DM'2 AI'2

DM'1AI'1

SE1

Gd,2

Fig. 11. Data graph Gd for Example 5.2

Coordinator. When a site, referred to as the coordinator and denoted by MQ, receives
a pattern graph Q, it sends the same Q to each site Mi for i ∈ [1, k] (line 1). It then
monitors messages sent back from all those sites (line 3), and assembles their par-
tial results via union (line 4). When partial results are returned from all the sites, it
returns the final result, i.e., the set of maximum perfect subgraphs in G for Q (line 5).

Site Mi. When a site Mi receives Q (line 1), it first finds those balls Ĝ[vb, dQ], where
vb is a boundary node in Gi. It then sends Ĝ[vb, dQ] to all those sites Mj in which vb
has direct neighbor (parent or child) nodes in Mj (line 2). After receiving all the data
shipments from other sites (line 3), it updates Gi by incorporating the set of shipped
balls (line 4), and invokes the centralized algorithm Match to compute the matches in
Gi for Q (i.e., a set of maximum perfect subgraphs of Gi for Q) as a partial result Θi in
G for Q (line 5). It finally sends Θi back to the coordinator (line 6).

Example 5.2: Consider the pattern graph Q1 with diameter dQ1 = 3 in Fig. 1 and the
data Gd shown in Fig. 11 which is derived from G1 in Fig. 1 as follows. Let G′

1 be a
derived graph of G1 by dropping Bio3 and its corresponding edges, and connecting DM1

and DMk only to Bio4, and let Gd be the connected component of G′
1 containing Bio4.

Graph Gd is partitioned into two fragments Gd,1 and Gd,2 that contain nodes {Bio4,
AI1, DM1, . . . , AIk, DMk} and {HR2, SE2, Bio4, AI′1, DM′

1, AI′2, DM′
2}, respectively, and

fragments Gd,1 and Gd,2 are placed at sites M1 and M2, respectively. Observe that node
Bio4 is the only boundary node for both fragments.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

We next show how algorithm dMatch works on pattern graph Q1 and data graph Gd.
The coordinator M1 first sends pattern graph Q1 to all sites. After site M2 (resp. M1)
receives Q1, it triggers the data shipments of balls. In this case, (a) M2 retrieves the
ball with center node Bio4 in Gd,1 from M1, and (b) M1 retrieves the ball with center
node Bio4 in Gd,2 from M2. Then sites M1 and M2 compute in parallel the maximum
perfect graphs for their local subgraphs by calling the centralized algorithm Match. In
this case, there is a single maximum perfect graph in sites M1 and M2, which is ex-
actly Gd,2 itself. Finally, the coordinator M1 collects and returns the unique maximum
perfect graph Gd in Gd for Q1. 2

The correctness of dMatch is asserted by the data locality property of strong simu-
lation, with the bound on network traffic mentioned above. Indeed, for any boundary
node vb of fragment Gi, dMatch collects ball Ĝ[vb, dQ] in site Mi, and hence does not
miss any valid match. Furthermore, the distributed computation strategy is generic:
it is applicable to any data graph G regardless of how G is partitioned and distributed.

Remark. To maintain a complete view of data graphs G, in each site we maintain lo-
cally how a fragment is connected to other fragments located in other sites. That is, for
all boundary nodes of a fragment, all their edges in G are stored locally, including those
with endpoints across fragments located in distinct sites, a typical setting for evaluat-
ing distributed queries (see e.g., [Cong et al. 2007; Ma et al. 2012; Fan et al. 2012b]).

5.2. Optimization Techniques
We next present optimization techniques for our distributed algorithm dMatch, by
means of ball pruning and the optimized algorithm Match+ for local computations.
We consider a pattern graph Q(Vq, Eq) and a partitioned data graph G = {G1, . . . , Gk}
such that fragment Gi(Vi, Ei) is placed in site Mi (i ∈ [1, k]).

Ball pruning aims to reduce unnecessary shipments of balls, and it is based on a
notion of partial match relations, which is introduced as follows.

Partial match relations. We say that a binary relation Si ⊆ Vq × Vi is a partial match
relation via dual simulation in fragment Gi for pattern graph Q if for each (u, v) ∈ Si,

(1) nodes u and v have the same label; and

(2) for each parent (resp. child) u′ of u in Q, there exists a parent (resp. child) v′ of v in
Gi such that (a) u′ and v′ simply have the same label if v is a boundary node of Gi, or
(b) (u′, v′) ∈ Si, otherwise.

The difference between a partial match relation and a match relation via dual sim-
ulation given in Section 2 is that the former also deals with boundary nodes. When
there are no boundary nodes involved, these two notions are equivalent.

Remark. (1) The union of all partial match relations Si in Gi for Q is a super set of
the maximum match relation S in the entire data graph G for Q, i.e., S ⊆

∪k
i=1 Si.

(2) A slightly revised version of procedure DualSim (Section 4), which further deals with
boundary nodes, can be adopted to compute the maximum partial match relation Si in
Gi for Q, via dual simulation.

With these, one can easily verify the following properties. Consider a ball Ĝ[vi, dQ]
located in site Mi, in which node vi is a boundary node of fragment Gi.

(1) Ball Ĝ[vi, dQ] is necessarily shipped to another site Mj if and only if there is a
boundary node vj in fragment Gj such that there exists an edge (vi, vj) or (vj , vi) in the
match graph w.r.t. the maximum match relation S in G for Q.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

(2) If node vi does not appear in the maximum partial match Si, then there is no need
to ship ball Ĝ[vi, dQ] to any other site.

(3) If there exists no parent or child of node vi that appears in the maximum partial
match Sj in another fragment Gj for Q, then there is no need to ship ball Ĝ[vi, dQ] to
site Mj . Recall that we maintain locally all the neighboring nodes for boundary nodes.

Here properties (2) and (3) follow from property (1) and the fact S ⊆
∪k

i=1 Si.

Algorithm. We are now ready to introduce the ball pruning based algorithm.

(1) After receiving the pattern graph Q from the coordinator, all sites Mi (i ∈ [1, k])
compute, in parallel, the maximum partial match relation Si via dual simulation in
fragment Gi for Q, by calling the revised procedure DualSim.

(2) Then all sites Mi send in parallel those boundary nodes vi of fragment Gi to all
other sites Mj such that node vi (a) appears in Si and (b) has a parent or child node in
fragment Gj located in site Mj .

(3) After that, all sites Mi trigger in parallel the shipments of balls Ĝ[vi, dQ] to an-
other site Mj if boundary node vi (a) appears in Si and (b) has a parent or child node
appearing in Sj in fragment Gj for Q.

(4) After ball shipments are done, all sites Mi call the optimized algorithm Match+in
parallel to compute the local match result Θi, by treating the maximum partial match
Si as the initial candidate matches.

(5) Finally, all partial match results are sent back and assembled at the coordinator.
We refer to this optimized version of Algorithm dMatch as dMatch+, by (a) adopting

Match+, instead of Match, for local computation in dMatch; and (b) leveraging the ball
pruning technique for data shipments.

Example 5.3: Consider the pattern graph Q1 and the distributed data graph Gd dis-
cussed in Example 5.2. We show how the optimized algorithm dMatch+ works on Q1

and Gd and prunes unnecessary data shipments.
After receiving pattern graph Q1 for both sites M1 and M2, they first call dMatch+ to

compute in parallel the partial match relations in fragments Gd,1 and Gd,2 in sites M1

and M2, respectively. Here the partial match relation is empty in site M1, and hence,
no ball shipments are needed from sites M1 to M2. Only site M1 retrieves the ball with
center Bio4 from M2. Finally, dMatch+ computes the maximum perfect graphs following
the same line as dMatch in Example 5.2.

Note that here dMatch+ avoids ball shipments with ball pruning. 2

Remark. Along the same lines as the dual simulation filtering technique for the cen-
tralized algorithm dMatch, a large number of nodes in data graphs are filtered after
computing the maximum partial match relation. As a result, unnecessary ball ship-
ments are avoided. In addition, we only need to ship those balls whose centers are at-
tached to the nodes falling into a maximum partial match relation, and hence further
reduce ball shipments. This optimization technique is particularly effective when the
number of boundary nodes is large. As will be seen in Section 6, dMatch+ outperforms
dMatch in terms of data shipment, especially when Q is relatively large.

6. EXPERIMENTAL STUDY
We next present an extensive experimental study of strong simulation. Using both
real-life social networks and synthetic data, we conducted three sets of experiments to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

evaluate: (1) the effectiveness of strong simulation vs. conventional subgraph isomor-
phism [Ullmann 1976] and graph simulation [Henzinger et al. 1995], (2) the perfor-
mance of our centralized algorithm Match, and (3) the performance of our distributed
algorithm dMatch. We also evaluated the effectiveness of our optimization techniques..

Experimental setting. We used the following datasets.

Real-life graph data. We used two real-life network datasets.
(1) Amazon records a product co-purchasing network with 548,552 product nodes and
1,788,725 product-product directed edges2. An edge from product x to y indicates that
if people buy x, then the chances are that they will also buy y with high probability.
(2) YouTube provides a video network with 155,513 video nodes and 3,110,120 video-
video directed edges3. An edge from video x to y indicates that if one watches x, then
he is also very likely to watch y.

Synthetic graph generator. We adopted the graph-tool library4 to produce both pattern
graphs and data graphs. It is controlled by three parameters: the number n of nodes,
the number nα of edges, and the total number l of node labels. Given n, α, and l, the
generator produces a graph with n nodes, nα edges, and the nodes are randomly labeled
from a set of l labels.

Algorithms. We implemented the following algorithms, all in Python.

(1) Our centralized algorithms Match and Match+.

(2) Our distributed algorithms dMatch and dMatch+.

(3) The centralized algorithm [Henzinger et al. 1995], denoted by Sim, and the dis-
tributed algorithm [Ma et al. 2012], denoted by dSim, for graph simulation.

(4) The approximate matching algorithm TALE of [Tian and Patel 2008].

(5) The approximate matching algorithm, denoted by MCS, that utilizes the approxi-
mation algorithm of [Kann 1992] for computing maximum common subgraphs.

(6) We adopted the VF2 algorithm [Cordella et al. 2004] for subgraph isomorphism in
the iGraph package [Csardi and Nepusz 2006]. We also implemented a distributed al-
gorithm based on VF2 for subgraph isomorphism, denoted by dVF2, by replacing Match
with VF2 in algorithm dMatch for strong simulation. Note that subgraph isomorphism
is a stronger notion than strong simulation, and hence, it also has the data locality
property. This guarantees the correctness of the distributed algorithm dVF2.

Consider pattern graph Q(Vq, Eq) and data graph G(V , E). For approximate match-
ing algorithms TALE and MCS, there are possibly 2|V | number of subgraphs of G to
compare with Q, beyond reach in practice. Hence, we chose to compare the subgraphs
of G having the same number of nodes as Q. We adopted the same setting as [Tian and
Patel 2008] for TALE here. For MCS, a subgraph Gs(Vs, Es) of G matches pattern graph
Q if |mcs(Q,Gs)|

max(|Vq|,|Vs|) ≥ 0.7, where |mcs(Q,Gs)| is the number of nodes in the maximum
common subgraph mcs(Q,Gs) of Q and Gs computed via the algorithm of [Kann 1992].

2http://snap.stanford.edu/data/index.html
3http://netsg.cs.sfu.ca/youtubedata/
4http://projects.skewed.de/graph-tool/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

QA GA G'A

"Parenting

& Families"

"Health, Mind

& Body"

"Children's

Books"

"Home

& Garden"

146

109

166097

165975

78064 118 165897

814

15397

281

3327 623

(a) Amazon

23

433 1006

1105

1302 845

117

803
"Entertainment"

"Film & Animation" "Music"

"Sports"

QY GY

23

433

1105

1302

GY,1 GY,2

23

433

1105

845

1006

1105117

803

GY,3

(b) YouTube

Fig. 12. Real-life matches on real-life data

All the experiments were run on a cluster of 30 machines, all with Intel(R) Xeon(R)
E5620 CPU and 48GB of memory. Each test was repeated over 5 times, and the average
is reported here.

Experimental results. We next present our findings. In all the experiments, we fixed
l = 200, and set α = 1.2 by default when generating pattern and data graphs.

Exp-1: Quality of matches. In the first set of experiments, we evaluated the quality
of matches found by strong simulation vs. matches found by subgraph isomorphism
and graph simulation. We first illustrate two example matches of strong simulation
on real-life data. We then test the quality of matches with five measures: three close-
ness measures, the number of matched subgraphs and the sizes of matched subgraphs.
These together are to show that strong simulation is capable of capturing structures
of pattern and data graphs.

(1) We first designed pattern graphs, and manually checked the quality of matches
returned by Match, VF2 and Sim. We find that Match is able to identify sensible matches.

We illustrate this with two example pattern graphs. Two real-life pattern graphs QA

and QY are shown in Figures 12(a) and 12(b), respectively.
(1) Pattern graph QA is to find all “Parenting & Families” books in the Amazon network
data (a) that are co-purchased with both “Children’s Books” and “Home & Garden”
books; and (b) that are co-purchased with “Health, Mind & Body” books and vice versa.
(2) Pattern graph QY poses a request on the YouTube network data, searching for all
“Entertainment” videos (a) that are related to both “Film & Animation” and “Music”
videos; and further, (b) for each such “Entertainment” video x, there is another “sports”

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

video that is related to the “Film & Animation” and “Music” videos to which the video
x is related.

In data graphs GA and GY , nodes are books and videos, respectively, labeled with
their ids, and they only match the nodes of QA and QY with the same geometry shapes,
e.g., circles, ellipses, and regular squares and pentagons.

The match results of QA and QY are shown in Figures 12(a) and 12(b), respectively.
For pattern graph QA, subgraph GA is a sensible match found by Match, but it was

not found by VF2. Subgraph G′
A is a match found by Sim in which the “Parenting &

Families” books are not co-purchased with both “Children’s Books” and “Home & Gar-
den” books, among other things, and was successfully filtered by Match and VF2. These
tell us that strong simulation is able to identify sensible matches that subgraph iso-
morphism fails to catch, and moreover, to eliminate excessive matches found by graph
simulation that do not make sense.

For pattern graph QY , subgraph GY is a match found by Match, while subgraphs
GY,1, GY,2 and GY,3 are three separate matches found by VF2. This example shows
how strong simulation reduces the sizes of matches found by subgraph isomorphism,
without loss of information.

(2) To further measure the quality of matches found, we use the following three close-
ness measures:
mat−closeness = #matches subIso / #matches found,
dia−closeness = diameter(pattern graphs) / average−diameter(matched subgraphs found),
deg−closeness = average−degree(pattern graphs) / average−degree(matched subgraphs found).

Here (a) #matches subIso and #matches found are the total numbers of nodes in matches
found by VF2 and those by a comparative algorithm (Sim, Match, VF2, TALE, MCS),
respectively; (b) diameter(pattern graphs) and average−diameter(matched subgraphs found)
are the diameters of the pattern graphs and the average diameters of matched
subgraphs returned by those algorithms, respectively; and (c) average−degree(pattern
graphs) and average−degree(matched subgraphs found) are the average degrees of pattern

graphs, and the matched subgraphs returned by the algorithms, respectively. Recall
that matches found by VF2 are also matches found by Match and Sim, by Proposi-
tion 3.1. Hence mat−closeness is essentially the ratio of matched nodes found by VF2
to the entire matches found by Sim, Match, VF2, TALE or MCS. Intuitively, mat−closeness,
dia−closeness and deg−closeness are to evaluate the ability of those graph pattern matching
algorithms to identify sensible node matches, and to preserve the diameter and aver-
age degree of pattern graphs. Note that for all these closeness measures, the closer to
1, the better, and for VF2, its mat−closeness, dia−closeness and deg−closeness are always 1.
(i) To evaluate the impact of pattern graphs Q, we fixed |V |, e.g., Amazon with 31245
nodes, YouTube with 9368 nodes, and synthetic data with 5 × 104 nodes, respectively,
while varying |Vq| from 2 to 20. Note that it took VF2 hours on all three datasets.
Hence, we used randomly sampled smaller subgraphs of the original data graphs with
hashing functions, commonly used in practical large-scale data process systems such
as MapReduce [Dean and Ghemawat 2004] and Pregel [Malewicz et al. 2010].
(ii) To evaluate the impact of data graphs G, we fixed pattern graphs Q with |Vq| = 10
and varied the size of data graphs. We varied |V | from 3 × 103 to 3 × 104 nodes for
Amazon and from 103 to 104 for YouTube. For synthetic data, we varied |V | from 104 to
105. We used relatively smaller data graphs since VF2 does not scale with large graphs.

The closeness results are reported in Figures 13(a), 13(b), 14(a), 14(b) 15(a), 15(b),
13(c), 13(d), 14(c), 14(d) 15(c), 15(d), 13(e), 13(f), 14(e), 14(f) 15(e), and 15(f). Note that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20

m
at

-C
lo

se
ne

ss
VF2

Match

MCS

TALE

Sim

(a) Vary |Vq| (Amazon)

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

m
at

-C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(b) Vary |V | × 3× 103 (Amazon)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

di
a-

C
lo

se
ne

ss

TALE

MCS

VF2

Match

(c) Vary |Vq| (Amazon)

0.5

0.75

1.0

1.25

1.5

1 2 3 4 5 6 7 8 9 10

di
a-

C
lo

se
ne

ss

TALE

MCS

VF2

Match

(d) Vary |V | × 3× 103 (Amazon)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(e) Vary |Vq| (Amazon)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(f) Vary |V | × 3× 103 (Amazon)

Fig. 13. Match quality evaluation on Amazon: closeness

we did not report dia−closeness of Sim since in all cases the single matched subgraph
returned is disconnected, i.e., dia−closeness is treated as zero for all cases. Observe the
following. (1) The mat−closeness of Match is consistently in the range of [70%, 80%] with
various pattern and data graphs, while Sim is in [25%, 38%], TALE is in [35%, 42%],
and MCS is in [46%, 57%], respectively. Hence, Match does much better than Sim (up to
50%), TALE (up to 36%) and MCS (up to 23%) for identifying matched nodes. Indeed,
70% to 80% of the matched nodes found by Match are exactly those found by VF2, which
enforces strict topological matching. Recall that Match is able to find sensible matches

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20

m
at

-C
lo

se
ne

ss
VF2

Match

MCS

TALE

Sim

(a) Vary |Vq| (YouTube)

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

m
at

-C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(b) Vary |V | × 103 (YouTube)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

di
a-

C
lo

se
ne

ss

TALE

MCS

VF2

Match

(c) Vary |Vq| (YouTube)

0.5

0.75

1.0

1.25

1.5

1 2 3 4 5 6 7 8 9 10

di
a-

C
lo

se
ne

ss
TALE

MCS

VF2

Match

(d) Vary |V | × 3× 103 (YouTube)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(e) Vary |Vq| (YouTube)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(f) Vary |V | × 3× 103 (YouTube)

Fig. 14. Match quality evaluation on YouTube: closeness

missed by VF2 (Examples 1.1 and 2.1 and quality test (1) above). That is, the [20%,
30%] matches found by Match, but missed by VF2, further contain matched nodes that
are sensible. (2) The dia−closeness of Match is consistently in the range of [75%, 96%] in
all cases, while TALE is in [94%, 136%], and MCS is in [95%, 131%]. Thus Match is able
to return matched subgraphs whose diameters are closer to the ones of the pattern
graphs, compared to those matched subgraphs returned by TALE (up to 11%) and MCS
(up to 6%). Here the dia−closeness of TALE and MCS is larger than 1 for the majority
of cases since a large portion of matches found by them contain node mismatches and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20

m
at

-C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(a) Vary |Vq| (Synthetic)

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

m
at

-C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(b) Vary |V | × 103 (Synthetic)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

di
a-

C
lo

se
ne

ss

TALE

MCS

VF2

Match

(c) Vary |Vq| (Synthetic)

0.5

0.75

1.0

1.25

1.5

1 2 3 4 5 6 7 8 9 10

di
a-

C
lo

se
ne

ss

TALE

MCS

VF2

Match

(d) Vary |V | × 3× 103 (Synthetic)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(e) Vary |Vq| (Synthetic)

0.5

0.75

1.0

1.25

1.5

2 4 6 8 10 12 14 16 18 20

de
g-

C
lo

se
ne

ss

VF2

Match

MCS

TALE

Sim

(f) Vary |V | × 3× 103 (Synthetic)

Fig. 15. Match quality evaluation on synthetic data: closeness

have much smaller diameters than the pattern graphs. (3) The deg−closeness of Match is
consistently in the range of [77%, 95%] in all cases, while TALE is in [58%, 96%], MCS
is in [61%, 94%], and Sim is in [38%, 89%]. This further shows that Match does better at
preserving the degrees of pattern graphs than TALE (up to 19%), MCS (up to 16%) and
Sim (up to 39%). These together tell us that Match is better at preserving structures of
pattern graphs.

(3) In the same setting as (2) above for testing closeness, we tested the numbers of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

2000

4000

6000

2 4 6 8 10 12 14 16 18 20

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

Match

(a) Vary |Vq| (Amazon)

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

Match

(b) Vary |V | × 3× 103 (Amazon)

2000

4000

6000

2 4 6 8 10 12 14 16 18 20

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

 Match

(c) Vary |Vq| (YouTube)

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

Match

(d) Vary |V | × 103 (YouTube)

2000

4000

6000

8000

2 4 6 8 10 12 14 16 18 20

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

Match

(e) Vary |Vq| (Synthetic)

2000

4000

6000

8000

10 20 30 40 50 60 70 80 90 100

of

 m
at

ch
ed

 s
ub

gr
ap

hs TALE
MCS
VF2

Match

(f) Vary |V | × 103 (Synthetic)

Fig. 16. Match quality evaluation: # of matched subgraphs

matched subgraphs in data graphs returned by Match, VF2, TALE and MCS. We did not
report Sim since it always returns at most one matched subgraph.

The results are reported in Figures 16(a), 16(b), 16(c), 16(d), 16(e), and 16(f). They
tell us that Match returns much less matched subgraphs than VF2: it returns consis-
tently around 25% to 38% of matched subgraphs of VF2, for synthetic graph, Amazon
and YouTube alike. For approximate matching algorithms TALE and MCS, it is obvious
that they return much more subgraphs than VF2. Indeed, as shown in Fig. 16(f), for ex-
ample, Match returns 2144 matched subgraphs compared to 4792 by VF2, 5843 by MCS

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

Table III. Match quality evaluation: sizes of matched subgraphs

#nodes [0, 9] [10, 19] [20, 29] [30, 39] [40, 49] ≥ 50
Amazon 0 98 23 0 0 0
YouTube 0 21 18 1 1 0
Synthetic 0 187 113 65 6 0

and 7328 by TALE, on a synthetic data graph with 105 nodes. This confirms that Match
effectively reduces the sizes of match results, and hence, allows users to effectively
analyze the match results on large graphs in practice.

In addition, the number of matched subgraphs decreases when the size of pattern
graphs increases, and it increases when the size of data graphs increases, as expected.
We also find that although VF2 may find exponentially matches in theory, it does not
happen very often in practice.

(4) In the same setting as (2) for testing closeness with smaller datasets, e.g., Amazon
with 31245 nodes, YouTube with 9368 nodes, and synthetic data with 100000 nodes,
we tested the sizes of the matched subgraphs in data graphs returned by algorithms
Match and Sim.

For Sim, it returns a single matched subgraph with 103, 177 and 311 nodes in
Amazon, YouTube and synthetic data, respectively. For Match, the results are reported
in Table III. Their matched subgraphs are typically small, where (a) all matched sub-
graphs have less than 50 nodes, and (b) over 80% of matches have less than 30 nodes,
on real-life and synthetic data. This tells us that strong simulation indeed restricts the
sizes of matches, due to the duality and locality.

Exp-2: Performance of centralized algorithms. In the second set of experiments,
we evaluated the performance of our algorithms Match, Match+ and algorithms Sim
and VF2. Algorithm VF2 does not scale well with large data graphs, e.g., it took VF2
more than three hours on data graphs with 5 × 106 nodes (when α = 1.2). Hence,
we only report the performance of VF2 on the small real-life datasets of Amazon and
YouTube that were used to evaluate the quality of matches. For large synthetic data
graphs, we only report the other three algorithms Match, Match+ and Sim. In all of our
experiments, we also found that TALE and MCS were even much slower than VF2, and
hence we did not report the running time of TALE and MCS here.

(i) To evaluate the impact of pattern graphs Q, we used two small real-life datasets
(Amazon and YouTube) and one large synthetic dataset. We fixed Amazon, YouTube and
the synthetic data to have 3 × 104 nodes, 104 nodes and 5 × 106 nodes, respectively,
while varying the number |Vq| of pattern nodes from 2 to 20 or the density αq of pattern
graphs from 1.05 to 1.35 (i.e., increasing the number of edges in pattern graphs).

(ii) To evaluate the impact of data graphs G, we used the same datasets as above. We
fixed pattern graphs with |Vq| = 10, while varying the number |V | of nodes of Amazon,
YouTube and the synthetic data from 6 × 103 to 3 × 104, 2 × 103 to 104 and 106 to 107,
respectively, or varying the density α of data graphs from 1.05 to 1.35.

In the settings of (i) and (ii), we evaluated the running time of the algorithms con-
cerned. We report our findings below.

(1) The impacts of pattern graphs on the elapsed time of algorithms VF2, Match, Match+

and Sim are reported in Figures 17(a), 17(b), 17(c) and 17(d) for real-life datasets and
in Figures 17(e) and 17(f) for synthetic datasets, respectively. Observe the following.

(a) When varying |Vq|. (i) As shown in Figures 17(a) and 17(c),VF2 is consistently much
slower than the other three algorithms on both Amazon and YouTube, It is about 100

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)
VF2

Match
Match+

Sim

(a) Vary |Vq| (Amazon)

5

50

500

5000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

) VF2
Match

Match+

Sim

(b) Vary αq (Amazon)

1

10

100

1000

4000

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

VF2
Match

Match+

Sim

(c) Vary |Vq| (YouTube)

3

30

300

3000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

VF2
Match

Match+

Sim

(d) Vary αq (YouTube)

200

400

600

800

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

Match
Match+

Sim

(e) Vary |Vq| (synthetic)

250

500

750

1000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

Match
Match+

Sim

(f) Vary αq (synthetic)

Fig. 17. Performance evaluation of centralized algorithms: vary pattern graphs

times slower than Match+ when Vq ≥ 4 on the two real-life datasets. For instance,
it took VF2 hours on Amazon and YouTube. Note that, however, when |Vq| = 2, VF2
is almost as efficient as the other algorithms. This is consistent with the complexity
analysis of VF2: VF2 is in low PTIME when |Vq| = 2. (ii) As shown in Fig. 17(e), all these
algorithms scale well with |Vq| on large data graphs, except VF2.

(b) When varying the density αq of pattern graphs. (i) Figures 17(b) and 17(d) show
that on real-life datasets (Amazon and YouTube), VF2 is consistently much slower than

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

1

10

100

1000

4000

6 9 12 15 18 21 24 27 30

T
im

e(
se

co
nd

) VF2
Match

Match+

Sim

(a) Vary |V | × 103 (Amazon)

1

10

100

1000
2000

2 3 4 5 6 7 8 9 10

T
im

e(
se

co
nd

) VF2
Match

Match+

Sim

(b) Vary |V | × 103 (YouTube)

200

400

600

800

1 2 3 4 5 6 7 8 9 10

T
im

e(
se

co
nd

)

Match
Match+

Sim

(c) Vary |V |×106 (synthetic)

500

1000

1500

2000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

Match
Match+

Sim

(d) Vary α (synthetic)

Fig. 18. Performance evaluation of centralized algorithms: vary data graphs

the other three algorithms on both Amazon and YouTube, which is similar to the case
when varying |Vq| on real-life datasets. Indeed, the running time of VF2 is consistently
over 1700s for Amazon while it is always under 80s for the other three algorithm. (ii)
Figure 17(f) shows that that these algorithms scale well with the density αq on large
data graphs, except VF2. Algorithms Match and Match+ are slower than Sim, as ex-
pected. Indeed, this is a price that has to be paid in exchange for better match quality.
We did not report the performance of VF2 in Figures 17(e) and 17(f) since it could not
run to completion when |Vq| ≥ 4.

Finally, observe that the running time of all algorithms increases when |Vq| or αq

increases. This is consistent with the complexity analyses of these algorithms.

(2) The impacts of data graphs on the running time of algorithms VF2, Match, Match+

and Sim are shown in Figures 18(a) and 18(b) for real-life datasets and Figures 18(c)
and 18(d) for synthetic datasets.

These results are consistent with the results of varying pattern graphs. (a) As shown
in these figures, all these algorithms except VF2 scale well with the size of data graphs
and with the density α of data graphs; (b) algorithms Match and Match+ are slower
than Sim; and (c) the running time of VF2 increases far more substantially with the
size and density of data graphs than the others. For example, the running time of
Match+ increased from about 100s to 600s when the number of nodes of the synthetic
data varied from 106 to 107; in contrast, VF2 spent nearly 4000s on Amazon data with
3× 104 nodes, but only around 30s on Amazon graphs with 3× 103 nodes.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

1

10

100

1000

8000

10 12 14 16 18 20 22 24 26 28 30

T
im

e(
se

co
nd

) dVF2
dMatch

dMatch+

dSim

(a) Time: vary k (Amazon)

600

1200

2400

4800

10000

70000

10 12 14 16 18 20 22 24 26 28 30

of

 s
hi

pp
ed

 n
od

es
(l

og
sc

al
e)

dSim
dMatch

dMatch+

(b) Data: vary k (Amazon)

0.6

6

60

600

6000

10 12 14 16 18 20 22 24 26 28 30

T
im

e(
se

co
nd

) dVF2
dMatch

dMatch+

dSim

(c) Time: vary k (YouTube)

300

600

1200

2400

4800

10000

20000

10 12 14 16 18 20 22 24 26 28 30

of

 s
hi

pp
ed

 n
od

es
dSim

dMatch
dMatch+

(d) Data: vary k (YouTube)

100

400

700

1000

10 12 14 16 18 20 22 24 26 28 30

T
im

e(
se

co
nd

)

dMatch
dMatch+

dSim

(e) Time: vary k (|V |=108)

2000

20000

200000

2000000

10000000

10 12 14 16 18 20 22 24 26 28 30

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(f) Data: vary k (|V |=108)

Fig. 19. Performance evaluation of distribute algorithms: vary k

(3) The experimental results in (1) and (2) above also verify that our optimization
techniques are effective. Indeed, the running time of Match+ is consistently about 2/3
of the time taken by Match, a significant improvement.

These results tell us that all algorithms except VF2 scale well w.r.t. large data graphs
on single machines, and the optimization techniques are effective.

Exp-3: Performance of distributed algorithms. In the last set of experiments,
we evaluated the efficiency and data shipment of our distributed algorithms dMatch,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

1

10

100
1000

10000

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)
dVF2

dMatch
dMatch+

dSim

(a) Time: vary |Vq| (Amazon)

50

500

5000

500000

2 4 6 8 10 12 14 16 18 20

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(b) Data: vary |Vq| (Amazon)

1

10

100
1000

10000

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

dVF2
dMatch

dMatch+

dSim

(c) Time: vary |Vq| (YouTube)

10

102

103

104

105

106

2 4 6 8 10 12 14 16 18 20

of

 s
hi

pp
ed

 n
od

es
dSim

dMatch
dMatch+

(d) Data: vary |Vq| (YouTube)

200

400

600

800

1000

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

dMatch
dMatch+

dSim

(e) Time: vary |Vq| (|M |=20, |V |=108)

102

103

104

105

106

107

2 4 6 8 10 12 14 16 18 20

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(f) Data: vary |Vq| (|V |=108, |M |=20)

Fig. 20. Performance evaluation of distributed algorithms: vary |Vq |

dMatch+ and algorithms dSim and dVF2. All the datasets are partitioned with a modulo
hashing function: hash(id)mod k, where id is the identifier of a node and k is the number
of participating machines. This partitioning approach has been commonly adopted in
large-scale data processing systems, such as MapReduce [Dean and Ghemawat 2004]
and Pregel [Malewicz et al. 2010]. Here we did not report the performance of algorithm
dVF2 on large synthetic graphs as dVF2 did not run to completion in this case.

(i) To evaluate the impacts of the number k of machines, we fixed pattern graphs with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

0.5

5

50

500

5000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

dVF2
dMatch

dMatch+

dSim

(a) Time: vary αq (Amazon)

1000

5000

10000

50000

100000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(b) Data: vary αq (Amazon)

1.0

10

100

1000

3000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

dVF2
dMatch

dMatch+

dSim

(c) Time: vary αq (YouTube)

1000

4000

7000

10000

1.05 1.10 1.15 1.20 1.25 1.30 1.35

of

 s
hi

pp
ed

 n
od

es dSim
dMatch

dMatch+

(d) Data: vary αq (YouTube)

100

200

300

400

500

600

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

dMatch

dMatch
+

dSim

(e) Time: vary αq (synthetic)

4x103

8x103

1.6x104

3.2x104

4x106

1.05 1.10 1.15 1.20 1.25 1.30 1.35

of

 s
hi

pp
ed

 n
od

es dSim
dMatch

dMatch+

(f) Data: vary αq (synthetic)

Fig. 21. Performance evaluation of distributed algorithms: vary αq

|Vq| = 10 and αq = 1.2, and data graphs with |V | = 5 × 105, 105 and 108 for Amazon,
YouTube and synthetic data, respectively, and α = 1.2, while varying k from 10 to 30.

(ii) To evaluate the impacts of pattern graphs Q, we fixed k = 20 and data graphs using
the same setting as (i), while varying |Vq| from 2 to 20 or αq from 1.05 to 1.35.

(iii) To evaluate the impacts of data graphs G, we fixed |Vq| = 10 and k = 20, while
varying |V | from 0.5× 105 to 5.0× 105, 0.1× 105 to 1.0× 105 and 0.5× 108 to 1.5× 108 for
Amazon, YouTube and synthetic data, respectively, or α from 1.05 to 1.35.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

1

10

100

1000

5000

1 2 3 4 5 6 7 8 9 10

T
im

e(
se

co
nd

)
dVF2

dMatch
dMatch+

dSim

(a) Time: vary |V | (Amazon: ×5×104)

100

500

1000

5000

10000

1 2 3 4 5 6 7 8 9 10

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(b) Data: vary |V | (Amazon: ×5×104)

1

10

100

1000

5000

1 2 3 4 5 6 7 8 9 10

T
im

e(
se

co
nd

)

dVF2
dMatch

dMatch+

dSim

(c) Time: vary |V | (YouTube: ×104)

150

300

1000

4000

8000

1 2 3 4 5 6 7 8 9 10

of

 s
hi

pp
ed

 n
od

es
dSim

dMatch
dMatch+

(d) Data: vary |V | (YouTube: ×104)

200

400

600

800

1000

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

T
im

e(
se

co
nd

)

dMatch
dMatch+

dSim

(e) Time: vary |V |×108 (|M |=20)

9x103

9x104

9x105

9x106

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

of

 s
hi

pp
ed

 n
od

es

dSim
dMatch

dMatch+

(f) Data: vary |V |×108 (|M |=20)

Fig. 22. Performance evaluation of distributed algorithms: vary |V |

In the settings of (i), (ii) and (iii), we evaluated the elapsed time and the data ship-
ment (i.e., the number of shipped nodes) for those distributed algorithms concerned.
We report our findings as follows.

(1) The results on the running time of algorithms dVF2, dMatch, dMatch+ and dSim
are reported in Figures 19(a), 19(c), 20(a), 20(c), 21(a), 21(c), 22(a) and 22(c) for real-
life datasets (Amazon and YouTube) and Figures 19(e), 20(e), 21(e), 22(e) and 23(a) for
synthetic datasets, respectively. One can observe the following in these figures.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

0

200

400

600

800

1.05 1.10 1.15 1.20 1.25 1.30 1.35

T
im

e(
se

co
nd

)

dMatch
dMatch+

dSim

(a) Time: vary α

7x103

7x104

7x105

7x106

1.10 1.15 1.20 1.25 1.30 1.35

of

 s
hi

pp
ed

 n
od

es dSim
dMatch

dMatch+

(b) Data: vary α

Fig. 23. Performance evaluation of distributed algorithms: vary α

(a) On all the datasets, the running time of all algorithms decreases w.r.t. the number
k of participating machines, as expected.

(b) Our algorithms dMatch and dMatch+ are slower than dSim. This is easy to under-
stand since graph simulation is solvable in quadratic time, while strong simulation is
solvable in cubic time. Moreover, the data shipment is fast and takes a small portion of
time in a cluster of machines. However, as shown in Figures 19(a), 19(c) and 19(e), the
more machines are used, the more benefits that dMatch and dMatch+ obtain. Indeed,
the running time of dMatch increased over 4 times when the number k of machines
used decreased from 30 to 10, while dSim increased only 2.4 times when k varied in the
same way. This means our distributed algorithms are more capable of exploring the
advantages of distributed computing paradigm, which is consistent with the locality
analysis of strong simulation.

(c) The running time of all algorithms increases w.r.t. the pattern graph sizes (i.e., |Vq|
and αq) and data graph sizes (i.e., |V | and α), as shown in Figures 20(a), 20(c), 20(e)
and 21(a), 21(c), 21(e).

(d) Figures 19(e), 20(e), 21(e), 22(e) and 23(a) tell us that all the algorithms except dVF2
scale well in all cases. When data graphs are large, dVF2 is about 1000 times slower
than the other algorithms.

(e) Our optimization techniques are effective: dMatch+ takes about 2/3 to 3/4 of the
running time of dMatch on large synthetic data, which is consistent with the results
of the centralized setting. For real-life data, dMatch+ takes about [78%, 85%] and
[70%, 77%] of the running time of dMatch on Amazon and YouTube, respectively. In-
deed, dMatch+ is efficient, e.g., it only took 270s for data graphs with |V | = 108, pattern
graphs with |Vq| = 10 and k = 30. Note that dMatch+ has less advantage than dMatch
on Amazon since the number of boundary nodes of a fragmented Amazon is relatively
small. Indeed, Amazon is a relatively sparse graph with its α = 1.08 (recall that m = nα

for a graph with n nodes and m edges). For YouTube, it is much better as its α is around
1.2. In addition, the edges of both Amazon and YouTube form small dense clusters that
are connected sparsely, which further reduces the number of boundary nodes.

(2) The results on the the number of shipped nodes of algorithms dMatch, dMatch+ and
dSim are reported in Figures 19(b), 19(d), 20(b), 20(d), 21(b), 21(d), 22(b), and 22(d) for
real-life datasets (Amazon and YouTube) and Figures 19(f), 20(f), 21(f), 22(f), and 23(b)
for synthetic datasets, respectively. Note that dVF2 shipped the same amount of data

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

as dMatch did in all datasets. Hence we do not report the number of shipped nodes of
dVF2 here. One can observe the following from these figures.

(a) The shipped data increases when k increases for both real-life and synthetic data,
as shown in Figures 19(b), 19(d) and 19(f). Indeed, the data graph is partitioned and
distributed across k machines. Since the number of boundary nodes increases with the
increase of the number of partitions, the shipped data increases as well. Nevertheless,
the amount of data shipped is low: for example, it accounts for around 10−2 and 10−3

to 10−4 of the entire data graph when k = 30 for real-life and synthetic data sets,
respectively, and it is even 4× 10−4 for synthetic data with 108 nodes.

(b) The shipped data increases when the number |Vq| of pattern graphs increases, as
shown in Figures 20(b), 20(d) and 20(f). When pattern graphs are larger, so are their
diameters; hence the increase in the amount of data shipped. Nonetheless, the shipped
data accounts for only 10−3 of the entire synthetic data even when |Vq| = 20.

(c) The shipped data of our algorithms dMatch and dMatch+ decreases when the density
αq of pattern graphs increases, as shown in Figures 21(b), 21(d) and 21(f). Indeed,
when the number |Vq| of nodes in the pattern graphs is fixed, the larger αq is, the
smaller their diameters are. Hence the amount of data shipped decreases. Different
from dMatch and dMatch+, dSim is not very sensitive to the density of pattern graphs.

(d) The data shipped increases when data graphs get larger and denser, as shown in
Figures 22(b), 22(d), 22(f) and 23(b). Indeed, the larger or denser the data graphs are,
the more boundary nodes there are, and hence, the more data shipped. Again, the
amount of data shipment is indeed rather small, compared to the entire datasets, e.g.,
data shipped only accounts for 10−3 of the two real-life datasets, and is only 3.5× 10−4

for synthetic graphs with |V | = 1.5× 108.

(e) Our algorithms dMatch and dMatch+ shipped much less nodes than dSim on all
datasets, e.g., the number of nodes shipped by dSim was about [15, 20] times larger
than those by dMatch+ on YouTube when |Vq| = 10.

(f) Our optimization techniques are effective, which reduce the amount of data ship-
ment, since dMatch+ consistently shipped less nodes than dMatch on all datasets, espe-
cially on those large and dense synthetic data graphs. For example, dMatch+ shipped
only 70% of those nodes shipped by dMatch on synthetic data when |V | = 1.5× 108 and
αq = 1.05. Similar to the case for testing the running time, dMatch+ has much more sig-
nificant advantage over dMatch on large and dense synthetic data graphs than spatial
real-life data graph Amazon, for the same reason.

Summary. From these experimental results we find the following. (1) Strong simula-
tion is able to identify sensible matches that are not found by subgraph isomorphism,
and eliminate insensible matches found by graph simulation. In addition, it finds high
quality matches that retain graph topology. Indeed, 70%-80% of matches found by sub-
graph isomorphism are retrieved by strong simulation, (up to 50%) better than graph
simulation, without paying the price of intractable complexity and large number (or
size) of matches. (2) Our algorithms for strong simulation, centralized or distributed,
are efficient and scale well with the size and density large-scale data graphs, e.g., it
took 270 seconds when |V | = 108, |Vq| = 10 and |M | = 30. (3) Our optimization tech-
niques are effective, reducing the running time by at least 25%, 23% and 15% on syn-
thetic data, YouTube and Amazon, respectively. (4) The locality of strong simulation
allows efficient distributed evaluation algorithms, which incur network overhead of
only 10−2 to 10−4 of the entire data graphs.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

7. RELATED WORK
Strong simulation was introduced in [Ma et al. 2011]. This article extends [Ma et al.
2011] by including (a) proofs for all the results; (b) optimization techniques for the dis-
tributed algorithm of strong simulation (Section 5.2); and (c) an extensive experimen-
tal study compared to the preliminary study of [Ma et al. 2011] (Section 6). We remark
that strong simulation preserves the topology of graphs and has the same complexity
as earlier extensions [Fan et al. 2010a; Fan et al. 2011] of graph simulation [Milner
1989].

There has been a host of work on graph pattern matching via subgraph isomorphism
(e.g., [Tian and Patel 2008; Tong et al. 2007; Zou et al. 2009]; see [Aggarwal and Wang
2010; Gallagher 2006] for surveys). In light of its intractability, approximate matching
has been studied to find inexact solutions, which allows node/edge mismatches [Aggar-
wal and Wang 2010; Tian and Patel 2008]. This work differs from approximate match-
ing in that no node/edge mismatches are allowed, and that the number of matches via
strong simulation is linear in the size of the data graph rather than exponential for (ap-
proximate) subgraph isomorphism. Extensions of subgraph isomorphism are studied
in [Fan and Bohannon 2008; Fan et al. 2010b; Zou et al. 2009], which extend mappings
from edge-to-edge to edge-to-path. Nevertheless, these problems remain NP-complete.

Closer to this work are bounded simulation [Fan et al. 2010a] and graph pattern
queries of [Fan et al. 2011]. The former extends graph simulation [Milner 1989] by
allowing bounds on the number of hops in pattern graphs, and the latter further ex-
tends [Fan et al. 2010a] by incorporating regular expressions as edge constraints on
pattern graphs. Graph pattern matching via these extensions are in cubic-time [Fan
et al. 2010a; Fan et al. 2011]. As remarked earlier, these notions of graph simulation
may fail to capture the topology of graphs, and yield false matches or too large a match
relation. These are precisely the problems that strong simulation aims to rectify, by
imposing additional constraints (duality and locality) on graph simulation.

Restricting search in a confined space has been adopted by keyword search on
graphs [Li et al. 2008; Qin et al. 2009; Kargar and An 2011], in which the diame-
ter of the identified subgraphs is bounded by a parameter r, determined by experts.
Similarly, the data locality of strong simulation restricts the search space of a match
graph in a ball. However, the radius of balls is determined by pattern graphs only, and,
hence there is no need for any prior knowledge to explicitly set up such a parameter.

Schema extraction is to discover the implicit structure of semi-structured data,
which has no schema predefined. It has proved effective in query formulation and opti-
mization [Abiteboul et al. 1999; Goldman and Widom 1997]. Schema of semi-structured
data is often extracted via a mild generalization of graph simulation that deals with la-
beled edges [Abiteboul et al. 1999]. Nevertheless, topology preservation is not an issue
in schema extraction, and no previous work there has studied how graph simulation
should be refined to capture topology.

Query minimization, as a classical optimization technique, has been well studied
for SQL queries [Abiteboul et al. 1995], XPath (e.g., [Chen and Chan 2008]), graph
simulation [Bustan and Grumberg 2003] and graph pattern queries [Fan et al. 2011].
This work explores it for graph pattern matching via strong simulation.

Distributed query processing has been studied for relational data [Kossmann 2000]
and XML [Cavendish and Candan 2008; Cong et al. 2007]. There has also been recent
work on distributed graph processing to manage large-scale graphs [Dean and Ghe-
mawat 2004; Giatsoglou et al. 2011; Malewicz et al. 2010]. However, to the best of our
knowledge, (a) the only prior methods for distributed computation of graph simula-
tion [Milner 1989] are [Ma et al. 2012] and [Fan et al. 2012b] for restricted pattern

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

queries, and (b) no previous work has studied distributed computation of its exten-
sions [Fan et al. 2010a; Fan et al. 2011], not to mention strong simulation proposed in
this work.

In this work, we assume that data graphs are already partitioned. Indeed, how data
graphs are partitioned may have a significant impact on the evaluation of strong sim-
ulation. Graph partitioning is a traditional problem that has been extensively studied
since 1970’s [Kernighan and Lin 1970; Karypis and Kumar 1998; Yang et al. 2012]. It
is to find a set of non-overlapping fragments for a given graph such that (a) all frag-
ments have a roughly equal number of nodes, and (b) the number of edges connecting
nodes in different fragments is minimized. Although graph partitioning is an NP-hard
problem [Garey and Johnson 1979], large-scale graph partitioning tools are available
such as the well-known METIS [Karypis and Kumar 1998]. A refined partition of data
graphs could certainly benefit the computation of strong simulation. Hence, the prior
work is essentially orthogonal, but complementary, to this work.

8. CONCLUSION
We have proposed strong simulation to rectify problems of graph pattern matching
based on subgraph isomorphism and graph simulation. We have verified, both analyt-
ically and experimentally, that strong simulation has several salient features, notably
(1) it is capable of capturing the topological structures of pattern and data graphs; (2)
it retains the same cubic-time complexity as previous extensions of graph simulation,
(3) it demonstrates data locality and allows efficient distributed evaluation algorithms,
and (4) it finds bounded matches. Our experimental results have also verified the ef-
fectiveness of our optimization techniques.

Several topics are targeted for future work. First, we are to extend strong simulation
by incorporating regular expressions on edge types, along the same lines as [Fan et al.
2011]. Second, our distributed algorithms just aim to demonstrate the data locality of
strong simulation. More sophisticated algorithms can be developed in the distributed
setting, with better performance guarantees. Finally, for large graphs, cubic time is
still too expensive. We are to explore new techniques to speed up the computation.
In particular, we are investigating the following strategies: (lossy) graph compression
schemes that preserves strong simulation [Fan et al. 2012a], view-based graph pattern
matching [Halevy 2001], metrics to rank match graphs and to return top-ranked match
graphs without computing the entire set of all matches [Fan et al. 2013a], incremental
methods for strong simulation to minimize unnecessary recomputation in response to
(typically frequent) changes to real-life graphs [Fan et al. 2013b], and distributed algo-
rithms in the GraphLab model [Low et al. 2010]. We expect that combinations of these
strategies will yield effective and efficient methods for computing strong simulation
in large real-life graphs. When necessary, inexact algorithms should be developed to
compute matches in big graphs, ideally with certain performance guarantees.

ACKNOWLEDGMENTS

Ma is supported in part by NSFC grant 61322207, NGFR 973 grant 2014CB340304 and 863 grant
2013AA01A213. Fan is supported in part by the 973 Programs 2012CB316200 and 2014CB340302,
Guangdong Innovative Research Team Program 2011D005 and the Shenzhen Peacock Program
1105100030834361 of China, as well as EPSRC EP/J015377/1, UK.

References
Serge Abiteboul. 1997. Querying Semi-Structured Data. In ICDT.
Serge Abiteboul, Peter Buneman, and Dan Suciu. 1999. Data on the Web: From Relations to Semistructured

Data and XML. Morgan Kaufmann.
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

Charu C. Aggarwal and Haixun Wang. 2010. Managing and Mining Graph Data. Springer.
Sihem Amer-Yahia, Michael Benedikt, and Philip Bohannon. 2007. Challenges in Searching Online Com-

munities. IEEE Data Eng. Bull. 30, 2 (2007), 23–31.
Joel Brynielsson, Johanna Hogberg, Lisa Kaati, Christian Mȧrtenson, and Pontus Svenson. 2010. Detecting

Social Positions Using Simulation. In ASONAM.
Nancy Buchan and Rachel Croson. 2004. The boundaries of trust: own and others’ actions in the US and

China. Journal of Economic Behavior & Organization 55, 4 (2004), 485–504.
Doron Bustan and Orna Grumberg. 2003. Simulation-based minimazation. ACM Trans. Comput. Log. 4, 2

(2003), 181–206.
Dirceu Cavendish and K. Selçuk Candan. 2008. Distributed XML processing: Theory and applications. J.

Parallel Distrib. Comput. 68, 8 (2008), 1054–1069.
Alan Chia-Lung Chen, Shang Gao, Panagiotis Karampelas, Reda Alhajj, and Jon G. Rokne. 2011. Finding

Hidden Links in Terrorist Networks by Checking Indirect Links of Different Sub-Networks. In Coun-
terterrorism and Open Source Intelligence. 143–158.

Ding Chen and Chee Yong Chan. 2008. Minimization of tree pattern queries with constraints. In SIGMOD.
Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis. 2007. Distributed query evaluation with perfor-

mance guarantees. In SIGMOD.
Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph Isomorphism

Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 10 (2004), 1367–
1372.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction to Algo-
rithms. The MIT Press.

G. Csardi and T. Nepusz. 2006. The igraph software package for complex network research. InterJournal
Complex Systems 1695 (2006).

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI.

R. Diestel. 2005. Graph Theory. Springer.
Agostino Dovier and Carla Piazza. 2003. The Subgraph Bisimulation Problem. IEEE Trans. Knowl. Data

Eng. 15, 4 (2003), 1055–1056.
Wenfei Fan and Philip Bohannon. 2008. Information Preserving XML Schema Embedding. TODS 33, 1

(2008).
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. 2011. Adding Regular Expressions to

Graph Reachability and Pattern Queries. In ICDE.
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. 2010a. Graph Pattern

Matching: From Intractable to Polynomial Time. PVLDB 3, 1 (2010), 264–275.
Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. 2010b. Graph Homomorphism Re-

visited for Graph Matching. PVLDB 3, 1 (2010), 1161–1172.
Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012a. Query Preserving Graph Compression. In

SIGMOD.
Wenfei Fan, Xin Wang, and Yinghui Wu. 2012b. Performance Guarantees for Distributed Reachability

Queries. PVLDB 5, 11 (2012), 1304–1315.
Wenfei Fan, Xin Wang, and Yinghui Wu. 2013a. Diversified Top-k Graph Pattern Matching. PVLDB (2013).
Wenfei Fan, Xin Wang, and Yinghui Wu. 2013b. Incremental Graph Pattern Matching. TODS (2013). to

appear.
Arash Fard, Amir Abdolrashidi, Lakshmish Ramaswamy, and John A. Miller. 2012. Towards efficient query

processing on massive time-evolving graphs. In CollaborateCom.
Brian Gallagher. 2006. Matching structure and semantics: A survey on graph-based pattern matching. AAAI

FS. (2006).
Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company.
Maria Giatsoglou, Symeon Papadopoulos, and Athena Vakali. 2011. Massive Graph Management for the

Web and Web 2.0. In New Directions in Web Data Management 1. Springer.
Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. In VLDB.
Martin Grohe. 2010. From polynomial time queries to graph structure theory. In ICDT.
Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB J. 10, 4 (2001), 270–294.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:45

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. 1995. Computing simulations on finite and infinite
graphs. In FOCS.

Viggo Kann. 1992. On the Approximability of the Maximum Common Subgraph Problem. In STACS.
M. Kargar and A. An. 2011. Keyword search in graphs: finding r-cliques. PVLDB 4, 10 (2011), 681–692.
George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel Scheme for Partitioning Irreg-

ular Graphs. SISC 20, 1 (1998), 359–392.
Brian W Kernighan and S. Lin. 1970. An efficientheuristic procedure for partitioning graphs. Bell System

Technical Journal 49, 1 (1970), 13–21.
Arijit Khan, Yinghui Wu, Charu C Aggarwal, and Xifeng Yan. 2013. NeMa: fast graph search with label

similarity. PVLDB 6, 3 (2013), 181–192.
Donald Kossmann. 2000. The State of the art in distributed query processing. ACM Comput. Surv. 32, 4

(2000), 422–469.
Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. 2008. EASE: an effective 3-in-1

keyword search method for unstructured, semi-structured and structured data. In SIGMOD.
David Liben-Nowell and Jon M. Kleinberg. 2003. The link prediction problem for social networks. In CIKM.
Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. 2006. GPLAG: detection of software plagiarism by

program dependence graph analysis. In KDD.
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein.

2010. GraphLab: A New Parallel Framework for Machine Learning. In UAI.
Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. 2011. Capturing Topology in Graph Pattern

Matching. PVLDB 5, 4 (2011), 310–321.
Shuai Ma, Yang Cao, Jinpeng Huai, and Tianyu Wo. 2012. Distributed graph pattern matching. In WWW.
Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and

Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. In SIGMOD.
Robin Milner. 1989. Communication and Concurrency. Prentice Hall.
Christos H Papadimitriou. 1994. Computational Complexity. Addison-Wesley.
L. Qin, J.X. Yu, L. Chang, and Y. Tao. 2009. Querying communities in relational databases. In ICDE.
Einat Sprinzak, Shmuel Sattath, and Hanah Margalit. 2003. How reliable are experimental protein–protein

interaction data? Journal of molecular biology 327, 5 (2003), 919C923.
Loren G. Terveen and David W. McDonald. 2005. Social matching: A framework and research agenda. In

ACM Trans. Comput.-Hum. Interact. 401–434.
Yuanyuan Tian and Jignesh M. Patel. 2008. TALE: A Tool for Approximate Large Graph Matching. In ICDE.
Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. 2007. Fast best-effort pattern

matching in large attributed graphs. In KDD.
Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (1976), 31–42.
Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. 2012. Towards effective partition management for

large graphs. In SIGMOD.
Lei Zou, Lei Chen, and M. Tamer Özsu. 2009. DistanceJoin: Pattern Match Query In a Large Graph

Database. PVLDB 2, 1 (2009), 886–897.

Received January 2013; revised May 2013; accepted September 2013

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

