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We give new methods for calculating the time-domain response for a finite-length distributed
RC line that is stimulated by a ramp input. The following are our contributions. First, we
obtain the solution of the diffusion equation for a semiinfinite distributed RC line with ramp
input. We then present a general and, in the limit, exact approach to compute the time-domain
response for finite-length RC lines under ramp input by summing distinct diffusions starting
at either end of the line. Next, we obtain analytical expressions for the finite time-domain
voltage response for an open-ended finite RC line and for a finite RC line with capacitive load.
The delay estimates using this method are very close to SPICE-computed delays. Finally, we
present a general recursive equation for computing the higher-order diffusion components due
to reflections at the source and load ends. Future work extends our method to response
computations in general interconnection trees by modeling both reflection and transmission
coefficients at discontinuities.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—
VLSI; B.7.2 [Integrated Circuits]: Design Aids—layout; F.2.1 [Analysis of Algorithms and
Problem Complexity]: Numerical Algorithms and Problems—computation of transforms

General Terms: Algorithms, Design, Performance, Theory, Verification

Additional Key Words and Phrases: Diffusion equation analysis, ramp input response, VLSI
interconnects

1. INTRODUCTION

Estimating delays on VLSI interconnections is a key element in timing
verification, gate-level simulation and performance-driven layout design.
Because of the highly resistive nature of the wires, present-day tools model
the wires inside integrated circuits as distributed RC lines. The analysis of
finite RC transmission lines with step input is widely discussed in the
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literature, e.g., [Antinone and Brown 1983; Peirson and Bertnolli 1969;
Wilnai 1971; Sakurai 1983]. The standard approach is to first calculate the
transfer function; then, by approximating the transfer function, both trans-
form-domain and time-domain responses are obtained for different configu-
rations of the finite RC line with step input. Using different approaches to
invert the Laplace transform of the response, Kahng and Muddu [1994,
1996], Mattes [1993], and Rao [1995] have all obtained the exact time-
domain response for a finite-length open-ended RC line. The most recent of
these works, by Rao, also extends the traditional transform-domain analy-
sis to calculate the time-domain response for a finite RC line with capaci-
tive load impedance. A direct solution of the open-ended finite RC line
response, i.e., directly in the time-domain as an infinite series, was first
given by Kaufman and Garrett [1962]. Kahng and Muddu [1994, 1996]
calculated the time-domain response in a finite distributed RC line with
source and load impedances; the total response was shown to be equal to an
infinite sum of diffusion equation solutions, with each diffusion starting at
either the source or load end of the line.

None of these previous works gives an understanding of the interconnect
response to input signals with nonzero transition time. It is more reason-
able to model the input signal from drivers to interconnect lines as a finite
ramp input. However, analysis of finite RC transmission lines under ramp
input has received comparatively little attention. Kaupp [1989] analyzed
RC interconnections under finite ramp input by assuming infinitely long
transmission lines. Extending this work, Abuelma’atti [1990] approximated
the transfer function of a semiinfinite line using a linear function, and
proposed a model for RC lines under ramp input. Recently, Menezes et al.
[1994] proposed a methodology for RC interconnect synthesis under ramp
input using the first few moments of the transfer function. Nevertheless, no
analytical solution for the time-domain transient response of a finite
distributed RC line with source and load impedances under finite ramp
input has been obtained in the literature.

We analyze finite distributed RC lines under ramp input, using a new
technique based on solving the diffusion equation and applying the method
of images [Kahng and Muddu 1994, 1995]. Using this new technique, we
are able to analytically obtain the transient time-domain response of a
finite RC line for different cases of source and load impedances. Our
contributions are the following:

—We first obtain the time-domain response of a semi-infinite RC line for
both infinite and finite ramp inputs by solving the diffusion equation
with appropriate boundary conditions. This result matches the semi-
infinite ramp response given in Kaupp [1989].

—We then provide a general approach to compute the time-domain re-
sponse for finite RC lines by summing distinct diffusions starting at
either end of the line; each of these can be viewed as traveling either
forward or backward along the line, in analogy with reflections. In the
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limit, this approach gives an exact analysis, but only a few reflections are
needed to achieve accurate response computations.

—We obtain the analytical expressions for the time-domain voltage re-
sponse under ramp input for an open-ended finite RC line and for a finite
RC line with capacitive load. To the best of our knowledge, these results
are completely new; there is no previous literature on this subject. We
compare delay estimates from our approach and from SPICE with URC
(Uniform Distributed RC) model for RC lines: using only the first few
reflected diffusion components in the voltage response, our delay esti-
mates are very close to SPICE-computed delays. Finally, we present a
general recursive equation for computing the higher order diffusion
components due to reflections at the source and load ends of the intercon-
nect line. Our method is simple and can be extended to response
computations in general interconnection trees by modeling both reflec-
tion and transmission coefficients at discontinuities.

2. SEMI-INFINITE RC LINE ANALYSIS

Consider the semi-infinite distributed RC line shown in Figure 1. The
voltage and current on a uniform distributed RC line is governed by the
diffusion equation

rc
­v~ x, t!

­t
5

­2v~ x, t!

­ x2
(1)

where v( x, t) is the voltage on the line at position x and at time t, and r
and c are resistance and capacitance per unit length, respectively. The
solution to the diffusion equation under various boundary conditions has
been well studied [Kevorkian 1990]. The work of Kahng and Muddu [1994]
showed that the time-domain response of a finite-length RC line with step
input was equal to an infinite sum of diffusion equation solutions, with
each diffusion starting at either the source or the load end of the line.

Here, we are interested in calculating the response for a finite RC line
under finite ramp input. For a semi-infinite RC line the total voltage on the
line is due to only the incident diffusion component, i.e., the incident

Fig. 1. A semi-infinite distributed RC line and position x along the line.
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propagation of voltage. We will first solve the above diffusion equation for
the semi-infinite line, then address the more general case where the total
voltage response on the line is the sum of incident and reflected diffusion
components. The initial and boundary conditions for the semi-infinite line
under finite ramp input (Figure 2) are

IC: v~ x, 0! 5 0 for all x $ 0

BC1: v~0, t! 5 vin~t! 5
V0

TR

@tU~t! 2 ~t 2 TR!U~t 2 TR!# for all t $ 0

where U(t) denotes the step function.
We first consider an infinite ramp input since any finite ramp can be

expressed as the sum of two shifted infinite ramps (Figure 2); the time-
domain response for a shifted infinite ramp can be derived from the infinite
ramp response by a change of time variable and the response for a finite
ramp is obtained by adding the responses due to two infinite ramps. Using
u( x, t) to represent the response for an infinite ramp input, the diffusion
equation and new boundary conditions are:1

rc
­u~ x, t!

­t
5

­2u~ x, t!

­ x2

IC: u~ x, 0! 5 0 for all x $ 0

BC1: u~0, t! 5
V0

TR

z t z U~t! for all t $ 0

1In the transform and time domains, we use U( x, s) and u( x, t) to, respectively, indicate the
response for the infinite ramp input, and V( x, s) and v( x, t) to, respectively, indicate the
response for the finite ramp input.

Fig. 2. A ramp input function: (a) finite ramp with rise time TR; and (b) finite ramp
decomposed into two shifted infinite ramps.
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The diffusion equation for step input has a boundary condition that is
constant with respect to time. For a ramp input this boundary condition is
a function of time, so it is difficult to derive the solution in the same way as
for a step input. However, differentiating the diffusion equation in time
and using the variable w( x, t) 5 ­u( x, t)/­t, we again obtain a diffusion
equation,

rc
­w~ x, t!

­t
5

­2w~ x, t!

­ x2

with initial and boundary conditions obtained by taking the time derivative
of the boundary conditions of u( x, t). The initial condition remains the
same, but the boundary condition for the new diffusion equation becomes
constant in time, i.e., similar to that for a step input:

IC: w~ x, 0! 5 0 for all x $ 0

BC1: w~0, t! 5
V0

TR

U~t! for all t $ 0

The solution for the diffusion equation under step input can be obtained
using the parabolic substitution of the variable h 5 x=rc/(2t) [Kahng and
Muddu 1994] as

w~h! 5 C1E
0

h

e (2y2/ 2)d y 1 C2 .

The initial condition (IC) that the line is quiet at t 5 0 implies
C1 5 2=2/(p)C2. The boundary condition BC1 implies that the derivative
of voltage with respect to time at the front end of the line (i.e., at position
x 5 0) is constant and equal to V0/TR for all t . 0. Using this condition in
the above equation yields C2 5 (V0/TR). Therefore,

w~ x, t! 5
V0

TR
F1 2 erfS h

Î2
D G 5

V0

TR

erfcS b

Î4t
D , (2)

where x is the position at which the response is calculated and b 5 x=rc 5
=RxCx, Rx 5 xr, Cx 5 xc. From this, the incident diffusion component for
the semi-infinite RC line under infinite ramp input, which we denote as
uI( x, t), can be derived as:2

2Observe that Eq. (3) also applies for the finite-length distributed RC line with perfectly
matched load because there is no reflection at the load, i.e., there is only the incident diffusion
voltage along the line.
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uI~ x, t! 5 E
t50

t5t

w~ x, t!dt

5 E
t50

t5t V0

TR

erfcS x Îrc

4t
Ddt

5
V0

TR
F S t 1

RxCx

2 D erfcS ÎRxCx

4t D 2 ÎRxCxt

p
e2~RxCx/~4t!!GU~t!

5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t!GU~t!. (3)

Then, the time-domain response for the incident diffusion component
vI( x, t) with a finite ramp input can be written in terms of the infinite
ramp response:3

vI~ x, t! 5 uI~ x, t! 2 uI~ x, t 2 TR!

5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t!GU~t!

2
V0

TR
F S t 2 TR 1

b2

2 D erfcS b

Î4~t 2 TR!
D

1 b Î~t 2 TR!

p
e2b2/~4~t2TR!!GU~t 2 TR!. (4)

As expected, the second term in the above equation is zero for t # TR,
so the finite ramp response is given by Eq. (3) for t # TR and by Eq. (4) for
t $ TR.

The infinite ramp response in the transform domain can be obtained by
taking the Laplace transform of the time-domain response given in Eq. (3),
which yields UI( x, s) 5 (V0/TRs2) z e2 ÎRxCxs. Similarly, the finite ramp

3We can also compute the response for ramp input by using the transfer function of the
semi-infinite RC line, HI( x, s) 5 e2x=rcs and the infinite ramp input, Uin(s) 5 V0/TR z 1/s2.
The incident diffusion component in the transform domain is

UI~ x, s! 5
V0

TRs2
z e2ÎRxCxs 5

V0

TRs2
z e2bÎs .

The time-domain response obtained by applying the inverse Laplace transform tables in
Campbell and Foster [1957] is exactly equal to the response computed in Eq. (3).
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response in the transform domain from the corresponding time-domain
expression given in Eq. (4) can be obtained as

VI~ x, s! 5
V0

TRs2
~1 2 e2sTR!e2ÎRxCxs 5 Vin~s!e2bÎs (5)

where Vin(s) 5 V0/TRs2 (1 2 e2sTR) represents the finite ramp input
shown in Figure 2(a). Figure 3 shows the substantial difference in the
response for step versus ramp input.4 The above analytical expressions for
the ramp input response allow direct and efficient computation of delay
estimates for ramp and piecewise-linear inputs, which may enhance
present-day iterative methodologies for interconnect optimization.

We may rewrite the infinite ramp response of Equation (3) in terms of a
new time variable t 5 (t/RxCx) to obtain

uI~ x, t! 5
V0

tR
F S t 1

1

2
D erfcS Î 1

4t
D 2 Ît

p
e21/~4t!GU~t!

where tR 5 TR/RxCx is a “relative” rise time (i.e., normalized to the time
constant of the position x of the line). Observe that the response at a given
position on the semi-infinite line is a function of only the input rise time
and the new time variable t. Thus, the relative delay (defined as threshold

4Recall that the response for the semi-infinite line under step input [Kahng and Muddu 1994]
is vI( x, t) 5 V0erfc(b/=4t).

Fig. 3. Response behavior for semi-infinite line with step and finite ramp inputs. The
rise-time and the position time constant RxCx are both taken to be 15 ps.
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delay Dth divided by RxCx) under ramp input is a function of only tR, i.e.,

Dth

RxCx

5 f~tR!.

Figure 4 plots the ramp input response for various example rise times. An
accurate model for interconnect delay under ramp input can be obtained by
fitting a polynomial in the single variable tR, but we do not discuss such
methods in the present paper.

3. FINITE RC LINE ANALYSIS

For a general finite RC line with source and load impedance as shown in
Figure 5, the incident propagation of voltage in the transform domain can
be obtained as

VI~ x, s! 5 VA~s!e2ÎRxCxs .

The voltage at the front end of the line (i.e., at A) is

VA~s! 5 Vin~s! z
Z0

Z0 1 ZS

5 Vin~s! z
~1 2 GS~s!!

2

where GS(s) is the reflection coefficient at the source. So, the incident

Fig. 4. Response for finite ramp input under different relative rise times tR 5 TR/RxCx. The
position time constant RxCx is taken to be 15 ps.
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voltage on the line is

VI~ x, s! 5 Vin~s!
~1 2 GS~s!!

2
e2ÎRxCxs .

The total voltage for a finite line (Figure 5) is the summation of the
incident diffusion component and reflected diffusion components that arise
at the source (S) and load (L) discontinuities. In other words, the time-
domain expansion for total voltage is

vTot~ x, t! 5 vI~ x, t! 1 O
i51

`

vRi~ x, t!

where vI( x, t) [ voltage due to the incident diffusion and vRi
( x, t) [

voltage due to the ith reflection. (In our notation, Ri refers to the ith
reflected diffusion starting from either the source or the load discontinuity;
i basically represents the number of trips up and down the line.) Similarly,
the total voltage in the transform domain is

VTot~ x, s! 5 VI~ x, s! 1 O
i51

`

VRi~ x, s!.

In general, vRi
( x, t) can be calculated through convolution of the reflected

diffusion (taking into account position displacement) with the reflection
coefficients gS(t) or gL(t). (Note that, e.g., gS(t) 5 +21 {GS(s)}.)

The reflection coefficient at the source in the transform domain is
GS(s) 5 (ZS 2 Z0)/(ZS 1 Z0), and the reflection coefficient at the load is
GL(s) 5 (ZL 2 Z0)/(ZL 1 Z0). As shown in Kahng and Muddu [1996], the
voltage at the position x in Figure 5 due to the first reflection at the load
can be calculated from the incident wave and shifting in position by h 1
h 2 x 5 2h 2 x, i.e.,

VR1~ x, s! 5 GL~s!VI~2h 2 x, s!.

Fig. 5. A distributed RC line of length h and position x along the line.
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The corresponding time-domain expression is

vR1~ x, t! 5 E
t50

t

gL~t 2 t!vI~2h 2 x, t!dt,

i.e., the first reflected voltage travels distance h to the end of the line
before reflection, then additional distance h 2 x to reach the specified
location. Another explanation for the reflection voltages is by applying the
symmetry argument in the Method of Images (or Reflections) [Kevorkian
1990; Kahng and Muddu 1996] to satisfy the boundary condition at the end
of the line x 5 h. The total voltage on the line can also be proved to be
equal to the sum of incident and reflected diffusion components by consid-
ering the response obtained from the 2-port transfer function of the line
[Kahng and Muddu 1996]. The total voltage can be expressed in the
transform domain as a summation of various reflected components

VTot~ x, s!

5 VI~ x, s! 1 O
n51

`

~GL
n~s!GS

n21VI~2nh 2 x, s! 1 GL
n~s!GS

n~s!VI~2nh 1 x, s!!

(6)

and the time-domain response is

vTot~ x, t! 5 vI~ x, t! 1 O
n51

`

@an~t! ^ vI~2nh 1 x, t! 1 bn~t! ^ vI~2nh 1 x, t!#

(7)5 vI~ x, t! 1 O
n51

` F E
t50

t

an~t 2 t!vI~2nh 2 x, t!dt

1 E
t50

t

bn~t 2 t!vI~2nh 1 x, t!dtG
where an(t) and bn(t) represent odd and even nth reflection coefficient
values. This methodology allows us to compute the response under ramp
input for various cases of the finite-length line. The total response can be
approximated by considering the analytical expressions for the first few
reflection components; for higher accuracy, additional terms can be incor-
porated by using numerical techniques.
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4. OPEN-ENDED FINITE RC LINE ANALYSIS

As noted in the Introduction, the finite open-ended line with step input has
been extensively treated in the literature. Such a line with ideal source has
ZS 5 0 (i.e., GS(s) 5 21 and gS(t) 5 d(t)) and ZL 5 ` (i.e., GL(s) 5 1 and
gL(t) 5 d(t)). Proceeding from Eqs. (3) and (4), the time-domain response
of incident diffusion component for the infinite ramp can be expressed in
terms of the line time constant RhCh as

uI~ x, t! 5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t!GU~t!

5
V0

TR
F S t 1

x2

2h2
RhChD erfcS x

h ÎRhCh

4t D
2

x

h ÎRhCht

p
e2~ x/h!2RhCh/~4t!GU~t!

where b 5 =RxCx 5 (x/h)=RhCh, and Rh 5 hr and Ch 5 hc respectively
denote the total resistance and total capacitance of the finite RC line. Hence,
the time-domain response of the incident diffusion component for the finite
ramp is

vI~ x, t! 5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t!GU~t!

2
V0

TR
F S t 2 TR 1

b2

2 D erfcS b

Î4~t 2 TR!
D

1 b Î~t 2 TR!

p
e2b2/~4~t2TR!!GU~t 2 TR!.

(8)

Since all the coefficients of reflection are constants for an open-ended line
with an ideal source, the total response can be computed from the incident
diffusion component via shifts in the time variable, i.e., the total response
in the transform domain is

VTot~ x, s! 5 VI~ x, s! 1 O
n51

`

@GL
n~s!GS

n21~s!VI~2nh 2 x, s!

1 GL
n~s!GS

n~s!VI~2nh 1 x, s!#

5 VI~ x, s! 1 O
n51

`

@~21!n21VI~2nh 2 x, s! 1 ~21!nVI~2nh 1 x, s!#
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and the corresponding time-domain expression is

vTot~ x, t! 5 vI~ x, t! 1 O
n51

`

@~21!n21vI~2nh 2 x, t! 1 ~21!nvI~2nh 1 x, t!#

where VI( x, s) and vI( x, t) represent the incident diffusion per Eqs. (5)
and (8). Figure 6 compares the voltage response at the end of the line
between SPICE and an approximation which sums only up to the first four
reflected diffusion components.

5. FINITE RC LINE WITH CAPACITIVE LOAD

In this section, we derive the time-domain response under ramp input for a
finite distributed RC line of length h with capacitive load CL at the end of
the line (Figure 7). To our knowledge, the results of this section are also
completely new. Recall from Equation (7) that the total response on the line
is obtained by summing an infinite series of diffusion components due to
reflections at the load and source. We will see that approximating the total
response by considering up to just the first four reflections is already quite
close to the SPICE-computed response. We now review the calculation of
these four components (some details must be omitted for space reasons). If
desired (e.g., for larger loads than those we consider), more reflection
components can be calculated by using numerical techniques which, along
with a general recursive equation for computing the higher order diffusion
components, are discussed in Section 6.

Fig. 6. Response at the end of an open-ended line for a finite ramp with rise time TR 5
RhCh, using SPICE and an approximation which sums up to the first four reflected diffusion
components.
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Incident Diffusion. The first component of the total response is the
incident diffusion voltage, derived in Eqs. (3) and (4):

uI~ x, t! 5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t!GU~t!

vI~x, t! 5
V0

TR
FSt 1

b2

2 DerfcS b

Î4t
D 2 bÎt

p
e2b2/~4t!GU~t!

2
V0

TR
FSt 2 TR 1

b2

2 DerfcS b

Î4~t 2 TR!
D 1 bÎ~t 2 TR!

p
e2b2/~4~t2TR!!GU~t 2 TR!.

Diffusion components for reflections are computed by multiplying the
reflection coefficients with the incident diffusion response in the transform
domain as described in Section 3.

First Reflection. The reflection coefficient at the load for a load imped-
ance of ZL 5 1/(sCL) is

GL~s! 5
ZL 2 Z0

ZL 1 Z0

5
1 2 q Îs

1 1 q Îs

where q 5 CL=Rh/Ch 5 (CL/Ch)=RhCh. The voltage response of the first
reflected diffusion can be obtained from Eq. (7):

VR1~ x, s! 5 GLVI~2h 2 x, s!

5
V0

TRs2
~1 2 e2sTR!

12qÎs

11qÎs
expS2

~2h2x!

h
ÎsRhChD .

Fig. 7. Distributed RC line of length h with capacitive load CL.
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The infinite ramp input response is

UR1~ x, s! 5
V0

TRs2

1 2 q Îs

1 1 q Îs
expS2

~2h2x!

h
ÎsRhChD

5
V0

TRs2

1 2 q Îs

1 1 q Îs
e2b Îs

where b 5 ((2h 2 x)/h)=RhCh. To compute the time-domain response we
express the response in the transform domain in the form of F(=s)/=s. Let

F1~s! 5
V0

TRs3

1 2 qs

1 1 qs
e2bs 5

V0

TR
F 1

s3
2

2q

s2
1

2q2

s
2

2q2

~s 1 1/q!
G e2bs .

The response in the transform domain can be expressed as

UR1~ x, s! 5
F~ Îs!

Îs
5

V0

TR
F 1

s2
2

2q

s3/ 2
1

2q2

s
2

2q2

Îs~ Îs 1 1/q!
G e2bÎs .

The inverse transform of UR1
( x, s) can be computed by inverting each term

of the above equation using the identity proved in Appendix A, so that the
time-domain response for the first reflected diffusion is obtained as

uR1~ x, t! 5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t! 2 4q Î t

p
e2b2/~4t!

1 2qb erfcS b

Î4t
D

1 2q2 erfcS b

Î4t
D 2 2q2e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
D GU~t!.

(9)

Thus, for a finite ramp input the time-domain response is given by

vR1~ x, t! 5 uR1~ x, t! 2 uR1~ x, t 2 TR!.

Second Reflection. The voltage response of the second reflected diffu-
sion component due to the source discontinuity with GS(s) 5 (ZS 2 Z0)/
(ZS 1 Z0) 5 21 is given by

VR2~ x, s! 5 GS~s!GL~s!VI~2h 1 x, s! 5 2GL~s!VI~2h 1 x, s!.
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The time-domain response for infinite ramp input can be calculated from
the first reflected diffusion component as

uR2~ x, t! 5
V0

TR
F2S t 1

b2

2 D erfcS b

Î4t
D 1 b Î t

p
e2b2/4t 1 4q Î t

p
e2~b2/~4t!!

2 2qb erfcS b

Î4t
D

2 2q2 erfcS b

Î4t
D 1 2q2e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
D GU~t! (10)

where b 5 ((2h 1 x)/h)=RhCh, whence the time-domain response under
finite ramp input is

vR2~ x, t! 5 uR2~ x, t! 2 uR2~ x, t 2 TR!.

Third Reflection. In the transform domain, the third reflected diffusion
component is

VR3~ x, s! 5 GS~s!GL~s!2VI~4h 2 x, s!

5
2V0

TRs2
~1 2 e2sTR!

~1 2 q Îs!2

~1 1 q Îs!2
expS2

~4h2x!

h
ÎsRhChD

and the infinite ramp response is

UR3~ x, s! 5
2V0

TRs2

~1 2 q Îs!2

~1 1 q Îs!2
expS2

~4h2x!

h
ÎsRhChD

5
2V0

TRs2

~1 2 q Îs!2

~1 1 q Îs!2
e2b Îs

5
F3~ Îs!

Îs

where b 5 ((4h 2 x)/h)=RhCh and the function F3(s) is given by

F3~s! 5 2
V0

TRs3S1 2 qs

1 1 qsD
2

e2bs

5
V0

TR
F2

1

s3
1

4q

s2
2

8q2

s
1

8q2

~s 1 1/q!
1

4q

~s 1 1/q!2G e2bs

.
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Thus, the infinite ramp response can be expressed as

UR3~ x, s! 5
F3~ Îs!

Îs

5
V0

TR
F2

1

s2
1

4q

s3/ 2
2

8q2

s
1

8q2

Îs~ Îs 1 1/q!
1

4q

Îs~ Îs 1 1/q!2G e2bÎs .

The inverse transform of UR3
( x, s) can be computed by inverting each term

of the above equation; the inverse transform of the first four terms can be
obtained from the analysis of the First Reflection, above. The time-domain
expression for the last term can be calculated by considering the function

F4~s! 5
4q

~s 1 1/q!2
e2bs

whose corresponding time-domain function is f4(t) 5 4q(t 2 b)e2(t 2 b)/q

U(t 2 b). The inverse transform of the last term is obtained using the
identity in Appendix A as

f4~ x, t! 5
1

Îpt
E

x50

`

e2x2/~4t!f4~ x!dx

5
4q

Îpt
E

x50

`

e2x2/~4t!~ x 2 b!e2~ x2b!/qdx

5 8q Î t

p
expS2S Ît

q
1

b

2 Ît
D 2

1
~t 1 qb!

q2 D
2 4qS2t

q
1 bD e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
D .

The time-domain response for the third reflected diffusion for an infinite
ramp is

uR3~ x, t! 5
V0

TR
F2S t 1

b2

2 D erfcS b

Î4t
D 1 b Î t

p
e2b2/~4t! 1 8q Î t

p
e2b2/~4t!

2 4qb erfcS b

Î4t
D
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2 8q2 erfcS b

Î4t
D 1 8q2e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
D

1 8 Î t

p
expS2S Ît

q
1

b

2 Ît
D 2

1
~t1qb!

q2 D
2 4~2t 1 qb!e ~t1qb!/q2

erfcSÎt

q
1

b

2Ît
DU~t! (11)

and the finite ramp time-domain response is vR3
( x, t) 5 uR3

( x, t) 2
uR3

( x, t 2 TR).

Fourth Reflection. Similarly, the voltage response of the fourth reflection
at the source is VR4

(x, s) 5 GS(s)2GL(s)2VI(4h 1 x, s) 5 GL(s)2VI(4h 1 x, s),
and the time-domain response for infinite ramp input is

uR4~ x, t! 5
V0

TR
F S t 1

b2

2 D erfcS b

Î4t
D 2 b Î t

p
e2b2/~4t! 2 8q Î t

p
e2b2/~4t!

1 4qb erfcS b

Î4t
D 1 8q2 erfcS b

Î4t
D 2 8q2e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
D

2 8 Î t

p
expS 2 S Ît

q
1

b

2 Ît
D 2

1
~t 1 qb!

q2 D
1 4~2t 1 qb!e ~t1qb!/q2

erfcS Ît

q
1

b

2 Ît
DU~t!

(12)

where b 5 ((4h 1 x))/=RhCh; the response for the finite ramp input is
vR4

( x, t) 5 uR4
( x, t) 2 uR4

( x, t 2 TR). If we approximate the total
response for infinite ramp input by considering only up to these first four
reflections, we have

uTot~ x, t! < uI~ x, t! 1 uR1~ x, t! 1 uR2~ x, t! 1 uR3~ x, t! 1 uR4~ x, t! (13)

and the total response for the finite ramp input is

vTot~ x, t! 5 utot~ x, t! 2 uTot~ x, t 2 TR!

< @vI~ x, t! 1 vR1~ x, t! 1 vR2~ x, t! 1 vR3~ x, t! 1 vR4~ x, t!#. (14)

We call the approximation of Eq. (14) the Diff4 model. Table I compares
Diff4 delay estimates at different threshold values for a wide range of
capacitive loads, versus the SPICE URC (Uniform Distributed RC) model.
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The delay estimates using our new diffusion equation approach are very
close to the SPICE-computed delays, even though only four reflections are
considered. Figure 8 gives a comparison of the voltage response between
SPICE and the Diff4 model for the case of load factor CL/Ch 5 1.0. Since
the response is computed solely by evaluating of diffusion component
expressions, the efficiency of this approach is at least 2 or 3 orders of
magnitude faster than SPICE.

6. GENERALIZATION OF THE REFLECTED COMPONENT COMPUTATION

While the previous section gave analytical expressions for the first four
reflection components, we now discuss methods to compute higher-order
components of the infinite ramp response; from these, the components of
the finite ramp response easily follow. In general, the (infinite or finite)
ramp response in the transform domain is a function of reflection coeffi-
cients and the incident voltage. From Eq. (6), the 2nth reflected component
at the source is given by UR2n

( x, s) 5 GS(s)nGL(s)nUI(2nh 1 x, s), and the
(2n21)th reflected component at the load is similarly given by UR2n21

( x, s)
5 GS(s)n21GL(s)nUI(2nh 2 x, s). The time-domain response for each
reflected diffusion component can be computed using the above method
(Section 5) for obtaining an exact analytical expression. To generalize the
computation of each time-domain reflected diffusion component, we may
apply two different techniques: (i) a numerical integration approach, and
(ii) recursive error function evaluation.

Table I.

A comparison of delay values at the end of the line ( x 5 h) between SPICE URC model
and the analytical expression computed from diffusion analysis using up to the first four
reflection components. The input rise time considered to be equal to line time constant,
TR 5 RhCh 5 15 psec.
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6.1 A Numerical Integration Approach

Here and in the next section, we consider the time-domain expression for
the 2nth source reflection component (the (2n21)th load reflection compo-
nent is analogous). Assuming resistive source and capacitive load imped-
ances, the reflection coefficients can be represented as

GS~s! 5 2
~1 2 p Îs!

~1 1 p Îs!
GL~s! 5

~1 2 q Îs!

~1 1 q Îs!

where p 5 RS/Rh=RhCh and q 5 CL/Ch=RhCh. Substituting for the
reflection coefficients and incident voltage and using b 5 ((2nh 1 x)/h)=RhCh,
the infinite ramp response in the transform domain is given by

UR2n~ x, s! 5 GL
n~s!GS

n~s!VI~2nh 1 x, s! 5 GL
n~s!GS

n~s!
V0e2bÎs

TRs2

5 ~21!n
V0

TRs2

~1 2 p Îs!n

~1 1 p Îs!n11

~1 2 q Îs!n

~1 1 q Îs!n
e2bÎs .

The response in the time domain for this reflected component can be
evaluated by expressing UR2n

in the form F(=s)/=s and applying the
identity of Appendix A. To evaluate the integral in the identity we need the
time-domain expression f(t) of the function. Hence, we first apply partial

Fig. 8. Response for a finite RC line with capacitive load under finite ramp input, calculated
using both the SPICE URC model and the Diff4 model. The rise time of the input is TR 5
RhCh and the load factor is CL/Ch 5 1.0.
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fraction expansion to the function as

F~s! 5 ~21!n
V0

TRs3

~1 2 ps!n

~1 1 ps!n11

~1 2 qs!n

~1 1 qs!n
e2bs

5
V0~21!n

pTR
FD1

s
1

D2

s2
1

D3

s3
1

A1

~s 1 1/p!
1

A2

~s 1 1/p!2
1 . . .

1
An11

~s 1 1/p!n11
1

B1

~s 1 1/q!
1

B2

~s 1 1/q!2
1 . . . 1

Bn

s 1 1/q)nG e2bs

where Ai, Bi, and Di are the coefficients corresponding to each pole of the
function. The inverse transform for this function is easily obtained as

f~t! 5
V0~21!n

pTR
FD1 1 D2~t 2 b! 1 D3

~t 2 b!2

2
1 A1e ~t2b!/p

1 . . . 1
An11

n!
~t 2 b!ne ~t2b!/p 1 B1e ~t2b!/q 1 . . .

1
Bn

~n 2 1!!
~t 2 b!n21e ~t2b!/qGU~t 2 b!

and the time-domain response for the reflection component UR2n
( x, s) can

be calculated by numerical integration as

uR2n~ x, t! 5
1

Îpt
E

x50

`

e2x2/~4t!f~ x!dx.

6.2 Recursive Error Function Evaluation

A final (an alternative) for calculating the time-domain response is by
recursive error function evaluation. Instead of calculating the inverse
transform of the function F(s) and using numerical integration, we may
rewrite the reflected component in the transform domain in the form
F(=s)/=s and then calculate the inverse transform, i.e.,

UR2n~ x, s! 5
F~ Îs!

Îs

5
V0~21!n

pTR
FD1

s
1

D2

s3/ 2
1

D3

s2
1

A1

Îs~ Îs 1 1/p!
1

A2

Îs~ Îs 1 1/p!2

1 . . . 1
An11

Îs~ Îs 1 1/p!n11
1

B1

Îs~ Îs 1 1/q!
1

B2

Îs~ Îs 1 1/q!2
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1 . . . 1
Bn

Îs~ Îs 1 1/q!nG e2bÎs .

The inverse transform for UR2n
( x, s) can now be obtained by taking inverse

transforms separately for each term in the above expression. The time-
domain expression for the 2nth reflection component can be obtained in the
form of recursive error functions as (see Appendix B)5

uR2n~ x, t! 5
V0~21!n

pTR
FD1erfcS b

Î4tD 1 2D2Î t

p
e2b2/~4t! 2 bD2erfcS b

Î4tD
1 D3S t 1

b2

2 D erfcS b

Î4tD 2 bD3Î t

p
e2b2/~4t!

1 O
k51

n11

Ak~4t!~~n21!/ 2!expS t

p2
2

b

pD erfc ~n21!Sb 2 ~2t/p!

Î4t D
1 O

k51

n

Bk~4t!~~n21!/ 2!expS t

q2
2

b

qD erfc ~n21!Sb 2 ~2t/q!

Î4t D (15)

which can be evaluated using the recursive expression for the error
function [Abramowitz and Stegun 1972], i.e.,

erfc ~n!~ z! 5 2
z

n
erfc ~n21!~ z! 1

1

2n
erfc ~n22!~ z!

5
2

Îp
E

t5z

` ~t 2 z!n

n!
e2t2

dt.

Thus, the time-domain response for the finite ramp input can be obtained
as

vR2n~ x, t! 5 uR2n~ x, t! 2 uR2n~ x, t 2 TR!.

7. CONCLUSIONS

We have analyzed finite distributed RC lines under ramp input via a new
technique based on solving the diffusion equation and using reflected

5Appendix B gives two general transform pair relationships that can be used to invert the
terms of general reflection component expressions. The time-domain expression of either
transform pair can be written in a compact form consisting of recursive error functions, or
directly as an integral form obtained from the identity in Appendix A.
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diffusion components to account for reflections at the source and load end of
the line. Our general and, in the limit, exact approach computes the
time-domain response for finite RC lines under ramp input by summing
distinct diffusions starting at either end of the line. We then derived the
time-domain voltage response for various configurations of the RC line. To
the best of our knowledge, these results are completely new; there is no
previous literature on this subject. Delay estimates using our new approach
(the Diff4 model incorporating up to the first four reflection components)
are very close to SPICE-computed (URC model) delays. Finally, we present
two methodologies, including a general recursive equation, for computing
the higher-order diffusion components due to reflections at either the
source or load end. Ongoing work extends this approach to response
computations in arbitrary interconnection trees by modeling both reflection
and transmission coefficients at discontinuities, e.g., we might derive the
input ramp for each interconnect from the response at the end of the
previous (upstream) interconnect.

APPENDIX A: LAPLACE TRANSFORM IDENTITY

We present the following identity, which is useful in calculating time-
domain expressions for the distributed RC line from the corresponding
transform domain expressions.

THEOREM. Let f(t) and F(s) be a Laplace transform pair. Then

F~ Îs!

Îs
N

1

Îpt
E

u50

`

e2u2/~4t!f~u!du.

PROOF. Any function f(u) can be expressed using the delta function as

f~u! 5 E
u050

`

f~u!d~u 2 u0!du0 5 E
u050

`

f~u0!d~u 2 u0!du0 .

Applying this to the time-domain function that is to be inverted, we get

1

Îpt
E

u50

`

e2u2/~4t!f~u!du 5
1

Îpt
E

u50

`

e2u2/~4t!duS E
u050

`

f~u0!d~u 2 u0!du0D
5

1

Îpt
E

u050

`

f~u0!du0E
u50

`

e2u2/~4t!d~u 2 u0!du

5
1

Îpt
E

u050

`

f~u0!e2u0
2/~4t!du0 .
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Taking the Laplace transform for the above equation,

E
t50

`

e2stdtS 1

Îpt
E

u50

`

e2u2/~4t!f~u!duD 5 E
t50

`

e2stdt
1

Îpt
E

u050

`

f~u0!e2u0
2/~4t!du0

5 E
u050

`

f~u0!du0E
t50

` 1

Îpt
e2u0

2/~4t!e2stdt.

Note [Healey 1967] that the integral with respect to t is a Laplace transform of

E
t50

` 1

Îpt
e2u0

2/~4t!e2stdt 5
e2u0Îs

Îs
.

Substituting in the above equation and using the definition of Laplace
transform, we get

E
t50

`

e2stdtS 1

Îpt
E

u50

`

e2u2/~4t!f~u!duD 5 E
u050

`

f~u0!
e2u0Îs

Îs
du0

5
1

Îs
E

u050

`

e2u0Îsf~u0!du0 5
F~ Îs!

Îs
.

Therefore, the transform pair is given by

1

Îpt
E

u50

`

e2u2/~4t!f~u!du N
F~ Îs!

Îs
.

APPENDIX B: TRANSFORM PAIR RELATIONS FOR FUNCTIONS OF =s

Here we present general transform pairs for functions of =s with repeated
poles, which are used in computing the time-domain diffusion response
components for distributed RC lines. Using these transform pairs, the
diffusion components can be expressed in a compact form consisting of
recursive error functions. Because of the recursive nature of the expres-
sions, they can be easily used within a simulation methodology to compute
the response as a function of time.

Transform Pair 1

e2bÎs

sn
N ~4t!n21erfc ~2n22!S b

Î4t
D .
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PROOF. Consider the following function F(s) 5 e2bs/s2n21, and the
function in the time-domain is given by

f~t! 5
~t 2 b!2n22

~2n 2 2!!
U~t 2 b!

where U(t) is a step function. Now from the identity in the Appendix A, we
can express the required transform pair in terms of the function as

e2bÎs

sn
5

F~ Îs!

Îs
.

Therefore, the inverse transform is obtained as

e2bÎs

sn
N

1

Îpt
E

u50

`

e2u2/~4t!f~u!du

N
1

Îpt
E

u5b

`

e2u2/~4t!
~u 2 b!2n22

~2n 2 2!!
du

N~4t!n21
2

Îp
E

x5~b/Î4t!

`

e2x2~x2b/Î4t!2n22

~2n22!!
dx

N~4t!n21erfc ~2n22!S b

Î4t
D .

We can express the last integral in the form of nth error function by using
the integral definition [Abramowitz and Stegun 1972],

erfc ~n!~ z! 5
2

Îp
E

t5z

` ~t 2 z!n

n!
e2t2

dt

where n 5 1, 2, 3, . . . . The nth error function can also be expressed
recursively as

erfc ~n!~ z! 5 2
z

n
erfc ~n21!~ z! 1

1

2n
erfc ~n22!~ z!

with the initial cases given by

erfc ~21!~ z! 5
2

Îp
e2z2

erfc ~0!~ z! 5 erfc~ z! 5
2

Îp
E

t50

z

e2t2

dt. e
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Transform Pair 2. Using the Transform Pair 1 approach, we can also
obtain the following relationship:

e2bÎs

Îs~ Îs 2 a!n
N ~4t!~n21!/ 2e ~a2t1ab!erfc ~n21!Sb 1 2ta

Î4t
D .
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