
Automating Exercise Generation: A Step towards Meeting
the MOOC Challenge for Embedded Systems

Dorsa Sadigh
UC Berkeley

dsadigh@berkeley.edu

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Mona Gupta
UC Berkeley

monagupta@berkeley.edu

ABSTRACT
The advent of massively open online courses (MOOCs) poses
several technical challenges for educators. One of these chal-
lenges is the need to automate, as much as possible, the
generation of problems, creation of solutions, and grading,
in order to deal with the huge number of students. We col-
lectively refer to this challenge as automated exercise gen-
eration. In this paper, we present a step towards tackling
this challenge for an embedded systems course. We present
a template-based approach to classifying problems in a re-
cent textbook by Lee and Seshia, and outline approaches
to problem and solution generation based on mutation and
satisfiability solving. Several directions for future work are
also outlined.

Keywords
Embedded systems education, massively open online courses,
problem generation, solution generation, automated grading
and feedback, exercise generation

1. INTRODUCTION
University education is in the midst of a sea change, with the
rise of massively open online courses (MOOCs) [6]. Start-
ing with the widely-publicized online courses at Stanford
University, several universities are engaged in offering on-
line versions of regular courses, through companies such as
Coursera [1] and Udacity [3] and initiatives such as edX [2].
In addition to creating an easy access to a standard curricu-
lum, MOOCs allow students to learn at their own speed and
learn from each other using online social networking tools.
Enrollments of several tens of thousands of students have
been reported for some courses. This massive scale poses
significant technical challenges. One of these challenges cen-
ters on homework exercises and exam problems: creating a
large and diverse set of problems of varying difficulty, auto-
matically grading them, preventing cheating, and providing
customized feedback and new practice problems to students.

This paper describes our first steps towards addressing this
challenge for an embedded systems course. The context for

our work is the undergraduate course on Embedded Systems
at UC Berkeley [12] and its supporting textbook [14]. We
summarize here some salient points about the course and
textbook made in a paper at the 2010 edition of this work-
shop [13]. The course and accompanying book take a cyber-
physical systems approach to embedded systems education.
They focus on how to model and design the joint dynamics of
software, networks, and physical processes, specify proper-
ties thereof, and verify these properties. In contrast, many
other courses and books focus instead on specific mecha-
nisms such as interrupt controllers, memory architectures,
assembly-level programming device driver design, network
interfaces, and scheduling strategies. Accordingly, the text-
book [14] is organized into three major parts: Modeling,
Design, and Analysis. Modeling is the process of gaining a
deeper understanding of a system through imitation. Mod-
els specify what a system does. Design is the structured
creation of artifacts. It specifies how a system does what
it does. Analysis is the process of gaining a deeper under-
standing of a system through dissection. It specifies why a
system does what it does (or fails to do what a model says
it should do). The textbook includes several exercises to
help students learn the basics of modeling, design, and anal-
ysis of embedded systems. Students taking the course at
UC Berkeley not only solve these homework exercises from
the textbook, but also concurrently perform “hands-on” lab-
oratory assignments and projects — this interplay between
the textbook material and the lab work is described in an
accompanying paper at this workshop [15].

In this paper, we address the three problems of automat-
ically generating new problems, automatic solution genera-
tion, and auto-grading. Automatic problem generation in-
volves the following task: given a sample problem, generate
a new problem that is of “similar difficulty” to the sample.
Thus, problem generation is fundamentally about synthesis.
Solution generation is the task of automatically solving a
mathematical formalization of a given problem. If one for-
malizes the problem in a suitable logical theory, a solution
generator becomes a decision procedure for that logic. Fi-
nally, auto-grading involves checking whether a candidate
solution is indeed a valid solution to the given problem. We
collectively refer to these three problems as exercise gener-
ation.

Consider first the task of automatic problem generation. It
is unrealistic and also undesirable to completely remove the
instructor from the problem generation process, since this
is a creative process that requires the instructor’s input to
emphasize the right concepts. However, some aspects of

problem generation can be tedious for an instructor, and
moreover, generating customized problems for students in
a MOOC is impossible without some degree of automation.
Additionally, creating many different versions of a problem
can be effective at reducing cheating by blind copying of
solutions.

Examining problems from all three parts of the Lee and
Seshia textbook, we take a template-based approach to au-
tomatic problem generation. Specifically, several existing
exercises in the book are shown to conform to a template.
The template identifies common elements of these problems
while representing the differentiating elements as parameters
or “holes”. In order to create a new problem, the template
essentially must be instantiated with new parameter values.
However, it is often useful to create new problems that are
“similar” in difficulty to existing hand-crafted problems. To
facilitate this, we generate new problems using a bounded
number of mutations to an existing problem, under suitable
constraints and pruning to ensure well-defined results. An
instructor can then select results that look reasonable to him
or her.

Automatic solution generation and auto-grading are, at least
in theory, somewhat easier problems. For several of the
problems in the textbook that we examined, the solution
generation and auto-grading problems reduce to particu-
lar classes of decision problems often encountered in formal
verification, and existing techniques based on model check-
ing [7], Boolean satisfiability (SAT) solving [17], and satisfi-
ability modulo theories (SMT) solving [4] can be employed.

Automatic exercise generation has been studied previously
for pedagogy in mathematics. Jurkovic [11] presented an
approach based on instantiating parameters of algebra prob-
lems with random constants. Singh et.al [18] propose a so-
lution for generating algebra proof problems in a three step
fashion of query generation, query execution and query tun-
ing, where the first two steps are done automatically and
query tuning is done by a human expert. However, there is
no previous published work on automatic exercise generation
for embedded systems.

In the rest of this paper, we describe our approach for two
types of problems: (i) those relating to the design and ver-
ification of extended finite-state machine (FSM) or modal
models (Sec. 2), and (ii) those relating to real-time schedul-
ing (Sec. 3). We conclude with an outline of future directions
in Sec. 4.

We make one final note before diving into the details. While
the setting of MOOCs provides a strong motivation for au-
tomating exercise generation, any automated techniques will
also prove useful in the traditional course setting. In fact, it
is in the latter setting that the ideas described herein will be
tested in the Fall 2012 offering of the Berkeley undergradu-
ate embedded systems class.

2. MODEL-BASED PROBLEMS
Model-based problems, also referred to herein as state-machine
problems, study the interaction between three entities:

• Models: These are extended finite-state machines, pre-
sented either as a single automaton or as a composition

of components modeling the system and its environment;
• Properties: These are the specifications that the model

must satisfy, given in mathematical logic, or as automata,
or even in (structured) natural language (English text),
and
• Traces: The traces are either witnesses, demonstrating

desired behavior, or counterexamples, showing undesir-
able behavior of a model, given a property.

In the remainder of this section, we present a few examples
of model-based problems in Lee and Seshia [14] and explain
how many of these problems can be generalized into a single
template. Given this template, it can be instantiated in sev-
eral ways to obtain different kinds of model-based problems.
We discuss how these variants can be automatically solved
and graded. Moreover, given an existing problem from the
textbook, we illustrate how one can use a mutation-based
approach to generate similar problems.

2.1 Generalizing Problem Instances to Tem-
plates

We surveyed exercises of the textbook [14] and noticed that
a large number of them address an interaction between mod-
els, specifications and traces. Generalizing the form of this
interaction, we sought to generate a template such that any
model-based problem from the book will be an instance of
this template. To do problem generation, we would need
to choose a fresh instance of this template that is created
based on a given problem. However, drawing any instance
of this template blindly is not a sufficient answer for auto-
matic problem generation. We would also wish to define a
measure of difficulty since a sample instance of a generated
template can be placed in a range from trivially-easy prob-
lems to unintentionally-difficult ones. The example below
from Chapter 3 of [14] is an illustration of a model-based
problem.

Example 2.1. This problem considers a Finite State
Machine that models arrivals of pedestrians at a crosswalk.
We assume that the traffic light at the crosswalk is controlled
by the FSM shown in the Figure 1. In all cases, assume a
time triggered model, where both the pedestrian model
and the traffic light model react once per second. Assume
further that the composition of the two models is a syn-
chronous composition.

For the given pedestrian model (shown in Figure 2), find
a trace whereby “a pedestrian arrives but the pedestrian is
never allowed to cross.” That is, at no time after the pedes-
trian arrives is the traffic light in state red.

This example examines a composition of a system model
and an environment model. Furthermore, it asks for a trace
such that a given specification holds on that trace. Based
on this example and others similar to it in the textbook, we
generate the following template:

Template 2.1. Given a model 〈M〉 [composed of syn-
chronous/asynchronous compostion of a system model 〈S〉
and an environment model 〈E〉 assuming the models are time

Figure 1: Traffic Light Model

Figure 2: Two State Pedestrian Model

triggered/event triggered], and given a property 〈φ〉 in LTL
/English. Find a trace 〈ψ〉 that violates 〈φ〉 / satisfies 〈φ〉 .

Any instance of this template, with fresh values of 〈M〉 (〈E〉
or 〈S〉 if the problem is directly based on a composition M
of S and E), 〈φ〉 or 〈ψ〉 generates a new problem. Also, it is
possible to toggle other keywords of each of these three en-
tities to create variations of the same problem. Some of the
keywords of models mentioned in this template are whether
there is a synchronous or asynchronous compostion, or if
the model is time triggered or event triggered. The specifi-
cation 〈φ〉 can be given in linear temporal logic or in English
instructions. The trace 〈ψ〉 is also either a witness that sat-
isfies the property specified by 〈φ〉 or it is a counterexample
that proves the property 〈φ〉 is not satisfied.

Figure 3: Models, Properties and Traces

Given Find Variations Exercise
#

〈φ〉 〈M〉 (i)φ ∈ English
or LTL
(ii)use hybrid
systems for
M
(iii)Modify
pre-existing
M

3.1, 3.2,
3.3, 4.1,
4.2, 4.3,
4.4, 4.5,
4.6, 4.8,
9.4, 9.6,
13.2, 13.3

〈M〉 〈ψ〉 (i)reachable
trace
(ii)describe
output

3.3, 3.5,
4.2

〈M〉 〈φ〉 Models can be
given in code
or formal de-
scription

3.2, 12.3

〈M〉 & 〈ψ〉 〈ψ〉 Given input
trace → find
output trace

9.5

〈M〉 & 〈φ〉 〈ψ〉 Find coun-
terexample or
witness trace

3.4, 4.3,
12.1

Table 1: Classification of Model-Based Problems in
Lee and Seshia [14], First Edition, Version 1.06

After investigating the exercises from certain relevant chap-
ters (Ch. 3,4,9,12,13) of Lee and Seshia [14], we found that
more than 60% of problems fit into the model-based cate-
gory, where there is a relation between models, properties
and traces that fits Template 2.1. Figure 3 is an illustra-
tion of the three entities, and their characteristics. At any
point, given one or two of these entities, we can ask about
instances of the unknown entity. Table 1 groups exercises
into different classes based on what is given and what is
to be found. Each group represents an interaction between
models, properties and traces. The first column shows the
given entity, and the second column is the unknown entity.
The third column shows some of the variations of the same
class of problem. Example 2.1, fits into the last row since
the model of traffic light and pedestrian are given, and the
student is asked to find a trace 〈ψ〉 that satisfies some given
property 〈φ〉 described in English. In Example 2.1, model
〈M〉 is a synchronous composition of two other models 〈S〉
and 〈E〉 which are given in Figure 1 and Figure 2. Based
on the construction of Template 2.1, we can assume that a
template can be built for all other categories of Table 1 by
taking the same approach.

2.2 Automatic Solving and Grading
Looking back at Table 1, we first attempt to find a solution
technique for each category defined in that table (i.e., each
row). Since model-based problems are intended to teach
some of the major concepts of analysis, synthesis and verifi-
cation, it is not unexpected to find that these exercises are
simplified versions of well-defined research problems: syn-
thesis from high-level specifications, repair, simulation, spec-
ification mining, and model checking. Several techniques
and tools presented in conferences such as CAV, EMSOFT,
TACAS, HSCC, DAC, PLDI, etc. can be leveraged to solve
these problems.

Given Find Solution Technique
〈φ〉 〈M〉 Constrained Synthesis or Repair
〈M〉 〈ψ〉 Simulation of Model
〈M〉 〈φ〉 Specification Mining

〈M〉 & 〈ψ〉 〈ψ〉 Simulation with Guidance
〈M〉 & 〈φ〉 〈ψ〉 Model Checking

Table 2: Techniques to Find Solutions for Model-
Based Problems

Table 2 states a solution technique for each problem category
listed in Table 1. One concern might be that techniques
such as automata-theoretic synthesis or model checking, in
spite of the many advances, are computationally expensive
to run as auto-graders. However, it is important to note
that the textbook problems are usually small and their size
can be limited to within the capacity of existing tools. For
instance, going back to the traffic light example, we know
that the state space of traffic light and pedestrian models
are fairly small; therefore, developed tools can easily handle
solving the model checking problem described in Example
2.1. Specifically, translating the pedestrian and traffic light
models as Promela Source Code for the SPIN model checker,
and the specificaion as an LTL formula φ = G(pedestrian→
¬(F SigR)), SPIN easily finds a trace that satisfies φ. The
solution is a trace that starts from (Red, None) and makes
a transition to (Green, Waiting).

Automatic grading is simpler than finding a solution. For
example, for a problem requiring designing a model from a
specification, the solution technique involves verifying that
the model satisfies the stated specification. For a problem
requiring verifying if a model satisfies a stated property, if
the answer is negative, the auto-grading problem simply in-
volves simulating the stated counterexample on the model
and monitoring if the property is satisfied.

2.3 Problem Generation
We now discuss how new problems similar to existing ones
can be generated by modifying various elements of existing
problems — the model 〈M〉, the specification 〈φ〉, or the
trace 〈ψ〉.

2.3.1 Modifying 〈M〉
Based on Table 1, all the categories except for the first row
(constrained synthesis) require a given model 〈M〉. There-
fore, one important way of generating new problems is to
create new versions of models in existing problems. For in-
stance, we can generate a new problem based on Example
2.1 by only changing the composed model 〈M〉 (or 〈E〉 or
〈S〉). In the case of Example 2.1, it is sufficient to give a
variation of the pedestrian model 〈E〉. A possible variation
is to change the pedestrian model from the state machine
shown in Figure 2 to the state machine in Figure 4. This
change increments the number of states of 〈E〉 by one, and
it will further create new transtions.

Based on Example 2.1 and other similar examples, we be-
lieve that building new models generally involves making
small changes to the original model. Creating these small
changes can be achieved by mutating the first model using
some mutation operator. Below, we list a sampling of muta-
tion operators we have explored. Some of these operators are
defined by Hierons and Merayo in [9]. In addition to those,

Figure 4: Three-State Pedestrian Model

we have added incrementing or decrementing the number of
states, which potentially creates new transitions.

1. Changing the initial state
2. Changing the target state of a transition
3. Creating a new transition
4. Incrementing or decrementing the number of states by

one

The mutants generated by these mutation operators can
serve as fresh models for new problems. The difficulty of
these new models are directly affected by the number of
mutations made on the original model 〈M〉. To create small
changes, we only consider the nth order mutant (as defined
in [9]), where the new model is created after a sequence
of n mutation operators. The value of n is a measure of
the change in difficulty. Although restricting the number
of mutations n does not guarantee the level of difficulty of
the new models, this approach eliminates a large number of
trivial or unintentionally complex models. We also prune
out more mutants by eliminating non-receptive models. (A
state machine is receptive if, for each state, there is at least
one defined transition on each input symbol [14].)

Using this bounded mutation approach, we have created
fresh models based on the original 〈M〉. In Example 2.1,
by mutating the pedestrian model with combinations of the
first three mutations listed above, it is possible to create 32
new, receptive models. These models are generated using
up to five mutations, from 1st order to 5th order. They
are summarized in Table 3. For this particular model, five
different elements of the model can be mutated — the four
possible transitions and the one choice of initial state —
and so the space of mutations is relatively small and can
be enumerated within a second. As a model becomes more
complex, the size of a model’s mutation space will increase
accordingly, and a goal-directed search will need to be per-
formed. For all models, there is a saturation point at which
no more receptive models may be produced using the given
types of mutations. However, in order to generate inter-
esting problems, the mutants should also model plausible
scenarios. For this example, manual inspection reveals that
slightly under one-third of the generated mutants are able
to plausibly model a real-world scenario. These numbers are
listed in the last column of Table 3. The vast majority of
these mutants were produced by one or two mutations, much

lower than the saturation limit. Given a fixed set of specifi-
cations or traces, and the generated mutants, we can easily
create fresh problems from different categories of Table 2.

Num. of Num. of Types of Num. of
Mutations Models Mutations Realistic

Created (number) Models
1 4 Adding a new transi-

tion (4)
4

2 8 Combination of
adding new transi-
tions and changing
initial state(4)
Changing end points
of two transitions (4)

4

3 8 New transition,
changing initial
state, changing end
point (4)
New transition,
changing end points
of two transitions (4)

2

4 8 New transition,
changing initial
state, changing end
points of two transi-
tions (4)
New transition,
changing end points
of three transitions
(4)

0

5 4 New transition,
changing initial
state, changing
end points of three
transitions (4)

0

6+ 0 None 0

Table 3: Mutants for Pedestrian Model in Fig. 2

One of the generated mutant pedestrian models is shown in
Fig. 5. The initial state has been changed and a self-loop
added to the“waiting” state indicating that a pedestrian can
continue to wait even when the walk signal turns green.

2.3.2 Modifying 〈ψ〉
In addition to changing the model 〈M〉, we would like to
modify a given trace 〈ψ〉. Having a fixed model, by changing
some of the traces, we can create new simulation problems.
Example 2.2 is another exercise from Chapter 3 of [14] that
describes a simulation problem.

Example 2.2. Consider the state machine in Figure 6.
State whether each of the following is a behavior for this
machine. For readability, absent is denoted by the shorthand
a and present by the shorthand p.
(a) x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, 0, . . .)
(b) x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, a, . . .)
(c) x = (a, p, a, p, a, . . .), y = (a, 1, a, 0, a, . . .)

In this case, to generate new problems, we perform random
simulation on the model shown in Figure 6. The output of
a random simulation is a set of traces Ψ. For any ψ ∈ Ψ we

Figure 5: Mutant Two-State Pedestrian Model. The
model differs from Fig. 2 in the initial state and the
extra self-loop in the waiting state.

Figure 6: Example 2.2 Simulation Model

genereate ψ′, where ψ′ is created by a bounded number of
modifications on inputs and outputs of ψ. Then, the same
question about simulation of model 〈M〉 can be asked given
ψ′ instead of ψ. In Example 2.2, assume ψ is the trace given
in (a) ψ = {x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, 0, . . .)}. By
only modifying the fifth output of ψ from 0 to absent, we can
generate ψ′ = {x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, a, . . .)}.
This new trace is in fact the second trace given in part (b) of
Example 2.2. So we can conclude that modifying traces can
easily generate new problems about the same fixed model
〈M〉.

2.3.3 Modifying 〈φ〉
The last entity that we would like to modify in the model-
based problems are specifications. Several model-based de-
sign problems involve giving the student a specification and
asking for a model that satisfies the specification. These
problems are the first type listed in Table 1, categorized as
constrained synthesis or repair problems.

Modifying the specification φ in an existing problem can
generate new problems in this category. Example 2.3 from
Chapter 4 of [14] illustrates a synthesis problem where the
specification φ is given as an English instruction in two dif-
ferent parts.

Example 2.3. Automobiles today have the features listed
below. Implement each feature as an extended finite-state
automaton.
(a) The dome light is turned on as soon as any door is
opened. It stays on for 30 seconds after all doors are shut.
(b) Once the engine is started, a beeper is sounded and a red
light warning is indicated if there are passengers that have
not buckled their seat belt. The beeper stops sounding after
30 seconds, or as soon the seat belts are buckled, whichever
is sooner. The warning light is on all the time the seat belt

is unbuckled.

In this example, the specification can be translated to tem-
poral logic, specifically linear temporal logic (LTL). By mod-
ifying the temporal logic formula, one can generate variants
of the problem.

Consider part (a). Let DiOpen indicate that the ith door is
open, and lighton to indicate that the dome light is turned
on. Assume each step corresponds to one second. Then, the
property in (a) can be specified as follows:

G
[
(D1Open ∨D2Open ∨D3Open ∨D4Open)→

(lighton ∧ Xlighton ∧ . . . ∧ X
30lighton)

]
We can generalize this property into a template of the form:

G
[
φ→ (

k∧
i=0

X
kψ)
]

where φ, ψ and k are parameters to be instantiated with
some user guidance.

For example, the instructor could modify the LTL formula
for part (a) to model a car-alarm feature, by changing φ
to a formula Locked∧DoorOpenAttempt, change k to 600,
and ψ to a new proposition alarmon, thus indicating the
property that if the car is locked when someone attempts
to open the door, the car alarm goes off and continues for 5
minutes. This problem variant is essentially the same as the
existing problem (and of similar difficulty), but it is quite a
different property from the application perspective.

3. REAL-TIME SCHEDULING PROBLEMS
These problems study different scheduling strategies for real-
time systems. They generally ask for an unknown variable
(execution time, period, deadline, etc.) given all the other
information for a specific scheduling strategy with defined
properties.

As in the previous section, we begin with a few example
scheduling exercises from Chapter 11 of Lee and Seshia [14],
and generalize these to a template. We describe how solu-
tions can be automatically generated and graded. We also
describe how new problems can be generated from the tem-
plate. In both cases, the common thread is to use satisfia-
bility solving.

3.1 From Problem Instances to Templates
We begin with an exercise from Chapter 11 of [14] that
demonstrates our approach:

Example 3.1. This problem studies fixed priority schedul-
ing. Consider two tasks to be executed periodically on a
single processor, where task1 has period p1 = 4 and task2
has period p2 = 6. Let the execution time of task1 be e1 = 1.
Find the maximum value for the execution time e2 of task2
such that the rate monotonic schedule is feasible.

Next, we generalize from this example to a template in the
same fashion that Template 2.1 was built.

Template 3.1. Consider 〈n〉 periodic/sporadic tasks,
with execution times 〈e1,...,n〉, periods 〈p1,...,n〉, and (op-
tionally) deadlines 〈d1,...,n〉 with fixed/dynamic priorities,
with /without a precedence graph, on 〈m〉 processors. Given
values for some of the parameters, and a choice of schedul-
ing strategy 〈S〉 [RM,EDF,. . .] compute (max/min) values
for the remaining parameters so that the schedule satisfies a
desired property (is feasible, or achieves a particular proces-
sor utilization, etc.).

(Here RM and EDF stand for “rate-monotonic” and “earliest
deadline first” respectively.)

Not every instance of Template 3.1 can be taken as a mean-
ingful real-time scheduling problem. Several constraints be-
tween the parameters and keywords of this template need to
be satisfied in order to generate well-formed and non-trivial
problems. These constraints depend on the scheduling strat-
egy we intend to use.

Example 3.2 is a slight variation of Template 3.1 where Ear-
liest Deadline First scheduling strategy is studied. The only
difference between this example and Example 3.1, other than
the desired scheduling strategy, is having dynamic priorities
and introducing deadlines. It is easy to imagine how a simple
constrained mutation-based procedure can generate Exam-
ple 3.2 from Example 3.1. In fact, Example 3.2 is the second
exercise from Chapter 11 of [14] (Version 1.06).

Example 3.2. This problem studies dynamic-priority
scheduling. Consider two tasks to be executed periodically
on a single processor, where task 1 has period p1 = 4 and
task 2 has period p2 = 6. Let the deadlines for each invoca-
tion of the tasks be the end of their period. That is, the first
invocation of task 1 has deadline 4, the second invocation of
task 1 has deadline 8, and so on.
Let the execution time of task 1 be e1 = 1. Find the max-
imum value for the execution time e2 of task 2 such that
EDF is feasible.

3.2 Automatic Solving and Grading
Finding a solution for real-time scheduling problems depend
on the given scheduling strategy. Closed-form formulas re-
lating the various parameters for different scheduling strate-
gies can be obtained from books and monographs on the
subject, such as the excellent book by Buttazzo [5].

Thus, to automatically solve a scheduling problem, we only
need to encode the formula for a solver that can handle
the operators appearing in it. Satisfiability modulo theories
(SMT) solvers [4], which are SAT-based theorem provers,
have made tremondous progress over the past decade, and
can be used as back-end solvers.

An SMT solver finds a satisfying assignment for the un-
known parameters given all the other parameters in the
statement of problem. For instance, to find a solution for
Example 3.1, we need to analyze rate monotonic schedules.
Based on Liu and Layland’s theorem [16] (shown as Theo-
rem 1), we derive Equation 1, which describes the relation
between periods and maximum execution times of a rate
monotonic scheduler with two tasks.

Figure 7: Rate Monotonic Schedule for Example 3.1

Figure 8: Earliest Deadline First for Example 3.2

Theorem 1. Given a preemptive, fixed priority scheduler
and a finite set of repeating tasks T = τ1, τ2, . . . , τn with as-
sociated periods p1, p2, . . . , pn and no precedence constraints,
if any priority assignment yields a feasible schedule, then the
rate monotonic priority assignment yields a feasible sched-
ule.

Formulating Equation 1 as an SMT problem, and feeding it
to an SMT solver will result in a correct satisfying solution
for maximum execution time of the second task e2. This
schedule is illustrated in Figure 7.

[p1 < p2]→ dp2
p1
e ∗ e1 + e2 = p2 (1)

[4 < 6]→ d6
4
e ∗ 1 + e2 = 6 =⇒ e2 = 4

The equation for rate monotonic schedules can be general-
ized for n tasks, as shown in Equation 2. Here we assume
an ordering on the periods of tasks such that pi < pi+1 (pi
represents the period of τi).

[p1 < · · · < pn]→ dpn
p1
e ∗ e1 + · · ·+ d pn

pn−1
e ∗ en−1 + en = pn

(2)

The same idea can be applied to other scheduling strategies
using corresponding formulas. For instance, we will have
a different formula for solving Example 3.2. Equation 3
shows this formula, which corresponds to an Earliest Dead-
line First scheduling strategy with dynamic priorities for
two tasks. This schedule is shown in Figure 8.

e1
p1

+
e2
p2

= 1 (3)

1

4
+
e2
6

= 1 =⇒ e2 =
9

2
= 4.5

To summarize: the solution approach for real-time schedul-
ing problems satisfying Template 3.1 is as follows: given a

parameterized formula for the desired scheduling strategy,
in order to compute a solution, we plug in values for the
known parameters and solve for the unknown parameters
using an SMT solver.

Auto-grading for this class of problems is also very easy: we
simply plug in the values for parameters into the formula
and check that the identity is satisfied.

3.2.1 Implementation Details
We model the formulation for the desired scheduling strategy
in SMT format, and represent the integers in formulations as
bit vectors. We use finite-precision bit-vector arithmetic for
two reasons: (i) to bound the search to small values a stu-
dent can work with, and (ii) to handle non-linear operations
such as division, for which there good solvers handling inte-
ger arithmetic do not exist. Using Beaver (an SMT Solver
for Bit-Vector Arithmetic) [10], we were able to find a solu-
tion for execution time of the second task e2 in 0.073 seconds
for the rate monotonic schedule (Example 3.1), and in 0.346
seconds for the Earliest Deadline First scheduling strategy
(Example 3.2).

3.3 Problem Generation
In addition to automatically solving real-time scheduling
problems, we would like to automatically create new ones.
Problem generation for this group of exercises is relatively
more straightforward than for “design” problems that in-
volve generating a model from a specification. Using the
same template-based approach, we only need to provide new
values for periods, execution times and deadlines. Further-
more, we can toggle the keywords in Template 3.1 such as
periodicity, preemptiveness, priority type, etc. While pro-
viding fresh values for the paremeters, we also need to con-
sider the constraints between the keywords and parameters
of the template. Consider the following two examples of
constraints:

1. For rate-monotonic scheduling, the problem should have
periodic tasks. However, for earliest deadline first, one
can have sporadic tasks as well.

2. To create new problems based on Example 3.1, we can
generate random values for p1, p2 and e1 such that the
following constraints hold:

p1 < p2, e1 < p1, p1 6 | p2

where p1 6 | p2 denotes “p1 does not divide p2”.

Table 4 shows 10 of these randomly generated values with
respect to the above constraints. Also just to put a bound
on time, we added an additional restriction that e1, p1, p2 ∈
[1, 20]. Each triple of values in Table 4 yields a new problem
variant: for each of these, we can still ask for maximum
value of e2 such that there exists a feasible rate monotonic
schedule.

4. CONCLUSIONS
In this paper, we discussed automated exercise generation,
one of the technical challenges associated with the advent of
massively open online courses (MOOCs). We presented an
approach we are developing for the undergraduate embedded
systems course at UC Berkeley. This approach is based on
generalizing existing exercise problems into templates that

e1 p1 p2 e1 p1 p2
1 10 11 5 19 20
10 19 20 6 7 11
1 5 14 6 15 20
2 11 19 3 6 9
4 10 17 4 6 17

Table 4: Random Generated Parameters for RM
Schedules

capture common structure, and adapting techniques devel-
oped for formal verification and synthesis to generate so-
lutions and problems. We demonstrated our approach for
two types of problems: model-based problems, and real-time
scheduling problems.

This effort is very much a work-in-progress, and much re-
mains to be done. Several problems in Lee and Seshia [14]
do not fit the templates we presented in this paper, such as
those that are based on code and involve reasoning about the
effect of interrupts or threads. However, even these problems
have their own templates. Indeed, we often train students
to “find the template” by solving several problems and re-
flecting on the common solution technique that they applied
to these problems.

A second, very interesting direction is to automatically gen-
erate customized feedback for students who make errors in
their solutions. For model-based problems, this essentially
reduces to the problem of error localization — a problem
that is also well-studied by the formal methods and design
automation communities.

We are starting to look into integrating the techniques de-
scribed in this paper with model-based design frameworks
with graphical modeling languages such as Ptolemy II [8],
LabVIEW, and Simulink/Stateflow.

Finally, the ultimate goal would be an interactive exercise
creation toolkit for instructors, where instructors express
their creative insights about a particular problem (e.g., by
stating the atomic propositions that define the new con-
text for a model-based design problem), and the tool then
generates a list of suggested new problems for use in the
course. As a concrete example, suppose that we have a traf-
fic light controller design problem for cars, and the instructor
wants to turn this into a railway crossing problem. What
is the best interaction model between instructor, tool, and
students? What underlying computational engines do we
need? How can students and instructors cooperate, assisted
by algorithms, to provide customized feedback and a better
learning experience? This paper is a first step towards de-
veloping such a toolkit, which we hope to make available to
the wider community.

Acknowledgments
This work was supported in part by NSF CAREER grant
#0644436, NSF Expeditions grant #1139138, and by an Al-
fred P. Sloan fellowship.

5. REFERENCES
[1] Coursera. http://www.coursera.org.
[2] edX. http://www.edx.org.

[3] Udacity. http://www.udacity.com.
[4] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.

Satisfiability modulo theories. In A. Biere, H. van
Maaren, and T. Walsh, editors, Handbook of
Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[5] G. C. Buttazzo. Hard Real-Time Computing
Systems-Predictable Scheduling Algorithms and
Applications, volume 24. Springer-Verlag, 2011.

[6] T. Chea. Elite colleges transform online higher
education. http://finance.yahoo.com/news/
elite-colleges-transform-online-higher-124855202.
html, August 2012. Associated Press.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[8] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Sachs, and Y. Xiong. Taming
heterogeneity - the ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, January 2003.

[9] R. M. Hierons and M. G. Merayo. Mutation testing
from probabilistic finite state machines. Journal of
Systems and Software (JSS), 82(11):1804–1818, 2009.

[10] S. Jha, R. Limaye, and S. Seshia. Beaver: Engineering
an efficient smt solver for bit-vector arithmetic. In
Computer Aided Verification, volume 5643 of Lecture
Notes in Computer Science, pages 668–674, 2009.

[11] N. Jurkovic. Diagnosing and correcting students’
misconceptions in an educational computer algebra
system. In In Symbolic and Algebraic Computation
(ISSAC), pages 195–200, 2001.

[12] E. Lee and S. Seshia. EECS 149: Introduction to
Embedded Systems.
http://chess.eecs.berkeley.edu/eecs149.

[13] E. A. Lee and S. A. Seshia. An introductory textbook
on cyber-physical systems. In Proc. Workshop on
Embedded Systems Education (WESE), October 2010.

[14] E. A. Lee and S. A. Seshia. Introduction to Embedded
Systems: A Cyber-Physical Systems Approach.
http://leeseshia.org, first edition, 2011.

[15] E. A. Lee, S. A. Seshia, and J. C. Jensen. Teaching
embedded systems the berkeley way. In Proc.
Workshop on Embedded Systems Education (WESE),
October 2012.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real time
environment. ACM, 20(1):46–61, 1973.

[17] S. Malik and L. Zhang. Boolean satisfiability: From
theoretical hardness to practical success.
Communications of the ACM (CACM), 52(8):76–82,
2009.

[18] R. Singh, S. Gulwani, and S. Rajamani. Automatically
generating algebra problems. In Intl. Conf. of the
Association for the Advancement of Artificial
Intelligence (AAAI), 2012.

