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1. INTRODUCTION

Hypercubes, i.e., binary n-cube interconnection systems, have been exten-
sively studied in recent years [Chiu et al. 1994; Choi and Somani 1993;
Gaughan and Yalamanchili 1993; Kim and Das 1994; Ohring and Das 1996;
Seitz 1985]. An n-dimensional (n-D) hypercube network has N = 2" nodes
with each node assigned an n-bit address (x,,_4, x,,_9, . . . , Xo) between 0
and N — 1. Two nodes are considered neighbors if their addresses differ
only in one bit. Each node is thus connected to exactly n neighbors through
n pairs of unidirectional busses or links. An n-D hypercube can be con-
structed recursively from two (n — 1)-D hypercubes.

Hypercubes have a regular structure with high connectivity and low
diameter, allowing flexible and efficient communication between any two
processors in the system, and the ability to tolerate faults in the system.
These advantages have led to numerous hypercube multiprocessor imple-
mentations, e.g., Intel iPSC-2, iPSC-860, nCUBE, nCUBE-10, etc. nCUBE
corporation is actively developing newer hypercube-based designs. Re-
cently, product networks based on a Cartesian product of one network to
another are being investigated, e.g., a folded Peterson cube [Ohring and
Das 1996] involves Cartesian product of a folded Peterson graph and the
hypercube. The routing strategy in such a product network involving a
hypercube requires the use of an existing hypercube routing algorithm.
Thus, development of improved routing schemes in the hypercube intercon-
nection system has important implications for such systems.

There are many different methods of message communication in inter-
connection networks such as a hypercube, e.g., packet switching, circuit
switching, virtual cut-through, wormhole switching, pipelined -circuit
switching, etc. An explanation of the different switching techniques can be
found in Gaughan and Yalamanchili [1993]. In this article, we focus only on
the circuit-switched routing. However, as we explain later, the algorithms
developed here are easily modifiable to work with other switching tech-
niques, including wormhole routing.

The circuit-switched scheme completely reserves the path from a source s
to its destination d before message transmission begins. The links in the
path are released only after the message transmission is completed. In
reserving links in an s-d path, a preferred approach (e.g., used in Intel’s
iPSC-860) is to use the reserve-and-hold policy. The reserve-and-hold
scheme waits at an intermediate node until the partial reserved path can
be advanced toward the destination node by reserving an appropriate
outgoing link. Thus, it is possible that it can lead to a deadlock state if
there are cyclic dependencies among the sources reserving the partial paths
toward their destinations. A simple example of deadlock for a 2-D hyper-
cube is shown in Figure 1. Suppose that each of the messages at a processor
node shown in Figure 1(a) simultaneously tries to reserve links from source
to destination clockwise around the hypercube and that each succeeds in
reserving the first link (indicated by darker lines in Figure 1(b)). The
hypercube in Figure 1(b) is in a deadlocked state, since no message can

ACM Transactions on Computer Systems, Vol. 15, No. 2, May 1997.



168 . Ausif Mahmood et al.

<2,1> <3,0>

<source, destination> @ °
N
\\“a @

reserved
by <21>

reserved

reserved
by <3,0>

by <0,3>

reserved
by

BPS b =30

Fig. 1. (a) message requests in a 2D hypercube; (b) a deadlock in reserving links for the
messages in (a).

completely reserve the path to its destination in order to complete its
transmission and release the links it has reserved.

Various algorithms have been designed to achieve deadlock-free, circuit-
switched routing. These algorithms can be classified as either oblivious
(nonadaptive) or adaptive. An adaptive algorithm provides many possible
routes between a source and its destination. Adaptive algorithms can be
minimal or nonminimal. Minimal algorithms allow only minimum-distance
paths between a source and a destination node, while nonminimal algo-
rithms allow paths of any length, possibly even of infinite length. Mini-
mum-distance routing algorithms generally result in a simpler router
design and thus have been used in most existing hypercube implementa-
tions. In this article, we focus on minimal, adaptive, circuit-switched
routing algorithms using the reserve-and-hold strategy.

2. EXISTING HYPERCUBE ROUTING ALGORITHMS

One popular, deadlock-free, circuit-switched routing method used in hyper-
cubes is known as the E-cube algorithm [Sullivan and Brashkow 1977]. It
reserves the links in a strictly increasing (or decreasing) order of the
dimensions in which the binary representations of the source and destina-
tion nodes differ. This algorithm is minimal and oblivious. The E-cube
routing algorithm has the advantage of simplicity. However, since there is
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only one prescribed path for a source-destination (s-d) pair, much of the
hypercube’s flexibility is not utilized.

Some hypercube routing algorithms have been developed for wormhole
routing [Dally and Seitz 1987; Duato 1994; Gravano et al. 1992; Lin and
Lin 1994a; Yang and Tsai 1993]. It has been shown that any circuit-
switched routing algorithm is easily modifiable to work for the wormhole
routing [Boppana et al. 1992; Gaughan and Yalamanchili 1993]. In worm-
hole routing, a message is broken into small fixed-size blocks called flits.
Each node has a buffer space of only one flit per incoming link. The flits are
pipelined through the network as links are incrementally acquired toward
the destination. A link is released after the last flit in the message goes
through it. Wormhole routing often uses virtual channels which are time
multiplexed over a physical channel. Dally and Seitz [1987] introduced the
concept of a channel dependency graph and showed that an algorithm for
wormhole routing can be deadlock free if the dependency graph is acyclic.
The channel dependency graph depicts the dependencies between the
channels (links) of the interconnection system as implied by the allowed
routing. Dally and Seitz also introduced a methodology to develop deadlock-
free routing algorithms. In their scheme, physical channels corresponding
to cycles are split into a group of virtual channels; the virtual channels are
ordered; and routing is restricted to visit channels in decreasing order to
eliminate cycles in the channel dependency graph.

A minimum-distance, adaptive wormhole routing algorithm reported by
Gravano et al. [1992] uses four virtual channels per physical link to achieve
deadlock-free routing. Another algorithm reported by Lin and Lin [1994a]
uses (n + 1)/2 virtual channels per physical link to achieve minimal,
adaptive deadlock-free wormhole routing in an n-D hypercube. Recently, an
improved approach to designing adaptive wormhole routing has been
presented by Duato [1994]. The general drawback of the virtual-channel
approach is that the addition of virtual channels adds extra overhead in
message communication and setup. In addition, it has been shown that this
mechanism perturbs the network’s balance, resulting in nonuniform traffic
flow through the network and degraded performance [Bolding 1992; Chien
1993].

An adaptive, minimal routing algorithm has been presented by Konstan-
tinidou [1990]. This algorithm has the drawback that it causes the node
whose address is all ones to become a hotspot, creating a critical problem in
system performance [Chiu et al. 1994]. Another algorithm, presented by Li
[1994], allows £ + 1 simultaneous disjoint paths from a source to a
destination node that is a Hamming distance £ from the source. A number
of nonminimal, wormhole routing algorithms have been proposed by Bold-
ing et al. [1994], Fulgham [1993], Kim and Shin [1993], and Ngai and Seitz
[1989]. A nonminimal algorithm has the potential to cause infinite-length
paths known as livelocks, and thus some mechanism is needed to avoid
these. Although it has been shown that the chaos router reduces network
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Table I. An Example Showing Allowed Paths in the
Turn Model and UP Preference Algorithms

PATH PATH Allowed by Allowed by
(by node order) (by transition order) Turn Model UP Preference
3—-2—0—4 Dy—D,—U, Yes Yes
3—-2—6—4 D,—U,—D, No Yes
3—=>7—6—4 U,—D,—D, No Yes
3—1—-0—4 D,—D,—U, Yes No
3—-1—-5—4 D,—U,—D, No No
3—=>7—5—4 U,—D,—D, No No

congestion [Bolding et al. 1994; Fulgham 1993], the livelock prevention
implementation has been difficult for circuit-switched applications [Chiu et
al. 1994]. Thus in this work we focus only on minimal algorithms.

Of the known existing, minimal, circuit-switched routing algorithms, the
Turn Model [Glass and Ni 1994] and the UP (or DOWN) Preference [Chiu et
al. 1994] algorithms have previously shown the greatest flexibility in
providing deadlock-free paths from a source to its destination. The Turn
Model algorithm [Glass and Ni 1994] is developed by analyzing the direc-
tions in which packets can turn in a network and the cycles they form. By
removing the turns that can cause deadlocks (cycles in the associated
channel dependency graph), a deadlock-free routing is obtained. The Turn
Model and UP Preference algorithms are defined in terms of up and down
transitions. If bit x; in dimension i in the source address changes from 0 to
1 in order to proceed toward its destination, it is considered an up
transition U;. Similarly, a down transition D; changes x; from 1 to 0. The
Turn Model algorithm operates in two phases:

(1) PHASE 1 (down phase): All down transitions required between a
source and its destination can be traversed in any order.

(2) PHASE 2 (up phase): The up transitions are completed in any order.

The UP Preference algorithm [Chiu et al. 1994] specifies that any up
transition U; can be made at any point in the order of required transitions,
but a down transition D; can be made only after all lower-dimension
transitions have been completed. Table I shows all possible paths from
node 3 to node 4 and whether or not each path is allowed by the UP
Preference and the TURN Model algorithms. The last three paths in Table I
are not allowed by the UP Preference algorithm because D, occurs before
the D, transition.

Chiu et al. [1994] have shown that the UP Preference algorithm is
deadlock free because it yields acyclic channel dependency graphs. Note
that the UP Preference scheme is not optimal in terms of the flexibility in
allowed paths. For example, in a 3D hypercube, the path 3—1—5—4 is not
allowed by the UP Preference rule. However, if this is added to the set of
allowed paths, the resulting channel dependency graph is still acyclic. As
the next section shows, a new class of routing algorithms developed in this
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Fig. 2. Channel dependency graph for the 2D hypercube with unrestricted routing.

article improves Chiu et al.’s algorithms by providing an increased number
of allowed paths, while still remaining deadlock free. In fact, the set of
paths allowed by one of the new algorithms is a superset of those allowed
by the UP Preference rules. Thus we designate this new algorithm as the
Extended-UP Preference algorithm. Not all members of our new class of
algorithms perform equally well. In particular, the Turn Model algorithm is
a member of this new class which is shown to perform poorly, and it allows
fewer s-d paths in a hypercube than, for example, the Extended-Up
Preference algorithm.

3. EXTENDED-UP PREFERENCE ALGORITHM

The Extended-UP Preference algorithm is based on extending the deadlock-
free routing in a 2D hypercube, as defined by the UP Preference rule, to
general n-D hypercubes but relaxing the global restriction that down
transitions cannot precede lower-dimension transitions. That is, the Ex-
tended-UP Preference algorithm uniformly applies the UP Preference rule to
each of the 2D subcubes traversed in an s-d path within a larger hyper-
cube. This results in a deadlock-free routing with much more flexibility
than the original UP Preference algorithm. The reasons for treating the
overall routing in terms of 2D subcube traversals are that a 2D cube is the
smallest network that contains physical loops and that the cycles in the
channel dependency graph are related to these physical loops. After elimi-
nating cycles in a 2D hypercube by removing the minimum possible
number of edges in the channel dependency graph, we extend the deadlock-
free routing scheme to general n-D hypercubes.

The channel dependency graph D defined by Dally and Seitz [1987], for a
given interconnection network I and routing function R, is a directed
graph, D = G(C, E). The vertices of D are the channels of I. The edges of
D are the pairs of channels connected by R as

E ={(c;, ¢;)|R(c;, n) = c; for somen € N}

where c; and c; are the channels in I; and N is the set of processing nodes
in the interconnection network. Figure 2 shows the channel dependency
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graph for a 2D hypercube without any restrictions in routing messages
from a source to a nonadjacent destination. Each vertex in Figure 2
corresponds to a physical link or channel in the 2D hypercube and is
identified by the nodes that it connects. For example, the vertex labeled 1,3
corresponds to the channel from node 1 to node 3. An edge in the graph in
Figure 2 exists if that path is allowed by the routing criterion. For example,
the edge labeled 1—+3—2 indicates that the path 1—-3—2 is allowed by the
routing algorithm and that it uses the channels 1,3 and 3,2.

Since there are two cycles created in the channel dependency graph
shown in Figure 2, unrestricted routing can deadlock. In order to remove
the potential for deadlocks, at least one edge must be removed from each of
the two cycles. If the top edges, labeled 2—0—1 and 3—1—0, are removed,
then each of the two cycles in Figure 2 is broken. This results in one
possible deadlock-free routing scheme in the 2D hypercube. Incidentally,
this particular deadlock-free routing is the same as that allowed by the UP
Preference rule in a 2D hypercube.

Notice that there are 16 possible deadlock-free routing solutions, depend-
ing upon which combination of edges is removed from the two cycles in the
channel dependency graph for a 2D hypercube. By uniformly applying one
of these deadlock-free routing solutions to all the 2D subcubes in a larger
hypercube, a deadlock-free routing algorithm can be obtained. Section 3.1
elaborates on the various members of this new class of algorithms. One
member of our new class of algorithms is obtained when the UP Preference
rule on a 2D hypercube is extended by uniformly applying it to all the 2D
subcubes in an n-D hypercube. The resulting routing is deadlock free and
has greater flexibility than the original UP Preference algorithm of Chiu et
al. [1994].

It should be noted that Duato’s recent theory in developing adaptive
wormhole routing [Duato 1994] can allow cyclic dependencies among chan-
nels as long as there exists an escape route which is fully connected. In
Duato’s scheme, usually one virtual channel implements the E-cube routing
algorithm (escape route), while the other virtual channels use fully adap-
tive routing. Deadlock freedom is guaranteed by the existence of an acyclic
channel dependency graph for the escape route only when considering all
direct, indirect, and cross dependencies between the escape and other
routes. It is important to note that our article concerns circuit-switched
routing without using any virtual channels. Thus, in our case it is required
that the entire channel dependency graph be acyclic for deadlock-free
operation.

Extended-UP Preference Routing Criterion. The Extended-UP (Ex-UP)
Preference rule is equivalent to applying the standard UP Preference rules
uniformly to all 2D subcubes in a larger hypercube, without any additional
restriction. Thus, in the sequence of up and down links (transitions)
traversed in the path from a source to its destination within an n-D
hypercube, the UP Preference rule must be satisfied for any two consecutive
transitions in the path. As an example of this rule, the path 3—1—5—4,
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which was not allowed by the UP Preference rule, is allowed under the
Ex-UP Preference scheme. This can be seen by the transitions involved in
3—1—5—4, which are D;—Uy,—D,. Each of the consecutive 2D subcubes
traversed in this routing do satisfy the UP Preference rule, i.e., D;—U, and
U,—D, are both individually allowed under the UP Preference, and thus
collectively D, —=U,—D, (path 3—1—5—4) is legal under the Ex-UP Pref-
erence rule.

In general, any path created from a sequence of allowed 2D subpaths (by
the UP Preference rule) is an allowed path in the Ex-UP Preference scheme.
The only constraints are “local,” i.e., within each 2D face. Consequently, the
Ex-UP Preference algorithm falls within the category of greedy optimization
algorithms. A formal description of the Ex-UP Preference rule follows from
defining the set of up transitions UT(s, d) and the set of down transitions
DT(s, d) needed in traversing a path from a source s to a destination d:

UT(s,d)={il0=i=(n—1),8=0,d =1}

DT(s,d)={il0=i=(n—-1),s;,=1,d;= 0}

For an s-d pair of nodes (X, Y), suppose a path has been established up to
an intermediate node I as (X, ..., H, I, ..., Y). In establishing the path
from H to I, if a transition in dimension prev_dim is taken, then the
following are set:

If I = X, then previous_transition = UP, prev_dim = —1
If an up transition occurred in the link from H to I
previous_transition = UP else previous_transition = DOWN
If (previous_transition = UP)
lock_dimension = —1 else lock_dimension = prev_dim

The following rules are applied to determine if the next link of dimension
greater than lock_dimension can be reserved from I:

—A j-dimension link (j > lock_dimension) from I can be reserved if j €
UT,Y)
—A j-dimension link (j > lock_dimension) from I can be reserved if j €
DT, Y) AND [{ m|m >j ANDm € UTU, Y)} OR
{ m, lock_dimension = m < j ANDm ¢ (UTU,Y) U DT, Y))}]
—A j-dimensional link from I cannot be reserved if j & (UT(, Y) U DT, Y))

Note the added flexibility in Ex-UP Preference routing as compared to the
UP Preference rule; the Extended concept does not necessarily restrict a
down transition in dimension i if the transitions in dimensions less than i
remain, in order to proceed to the destination. Such a down transition can
be taken in the Ex-UP Preference scheme (but not in UP Preference) if an up
transition of dimension greater than i is remaining. In order to prevent
deadlocks, all transitions whose dimensions are less than ¢ are considered
to be locked once a down transition in dimension i is taken. When an up
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Fig. 3. Channel dependency graph for the 2D hypercube under Ex-UP Preference rule.

transition of dimension higher than the lock_dimension occurs, it unlocks,
i.e., allows all remaining transitions in any dimension. Theorem 3.1 for-
mally demonstrates that the Ex-UP Preference scheme results in a dead-
lock-free routing.

THEOREM 3.1. If an algorithm based on the Ex-UP Preference criteria is
used to route messages in an n-D hypercube (n = 2), no deadlocks in
routing can occur.

Proor. We use induction to prove this theorem. The associated channel
dependency graphs are derived at each step to show that they are acyclic.

Base Case: n = 2. For the 2D hypercube, the Ex-UP Preference rule
disallows the paths 2—0—1 and 3—1—0. The resulting channel depen-
dency graph is shown in Figure 3. Since it is acyclic, the Ex-UP Preference
routing in a 2D hypercube is deadlock free.

Inductive Step. We assume that the theorem holds for hypercubes of
dimension 2, 3, ..., n, and we show that it holds for a hypercube of
dimension n + 1.

Consider that the hypercube of dimension n + 1 is partitioned along
dimension n into two subcubes, N, and N, each of dimension n. All
processor nodes in N, have addresses with a zero in the nth-dimension bit
(i.e., (n + 1)th bit). Similarly, the processor nodes in N; have addresses
with a one in the most significant bit. Let C7j and C7 be the channel
dependency graphs for N, and N, respectively, corresponding to the
Ex-UP Preference rule. By the induction hypothesis, Cj and C7 are acyclic.

When N, and N, are connected to form the (n + 1)-D hypercube, there
are 2" "1 additional links (channels) formed between the two n-D subcubes.
Half of these, corresponding to the up links from N, to N, are denoted as
the set

ULn+1 = {(Oa 271)’ (]-a 2" + 1)7 I (271 - 1) 2m*t — 1)}

The other half corresponds to the down links from N; to N, forming the set
of links

DLn+1: {(zn’ 0)7 (271 + 17 1)7 e (2n+1 - 17 2" — 1)}

ACM Transactions on Computer Systems, Vol. 15, No. 2, May 1997.



Routing in Hypercubes . 175

Fig. 4. Channel dependency graph for the (n + 1)-D hypercube under Ex-UP Preference rule.

The channel dependency graph for the (n + 1)-D hypercube based on the
Ex-UP Preference routing scheme is shown in Figure 4, where channel
dependencies internal to C} and C} are omitted. The links (channels) in
UL, ,, can appear as intermediate nodes in the channel dependency graph
for a path connecting a processor node in N, to a processor node in N;.
However, since a path beginning in N, cannot continue as a path in N,
under the Ex-UP Preference rule, the channels in DL, , ; cannot appear as
intermediate nodes in the channel dependency graph for a path connecting
a processor node in N; to a processor node in N,. This condition results
from the fact that a down transition in dimension n (bit position (n + 1))
can only be the last transition in the Ex-UP Preference rule, as otherwise it
will lock all lower dimensions, and there is no higher up transition left to
unlock these lower dimensions. Thus, the links in DL, , ; are not dependent
on any other links, as shown in Figure 4. Therefore the channel dependency
graph for the (n + 1)-D hypercube is acyclic and deadlock-free. [

3.1 The Class of Extended Algorithms

Since the Extended concept applies a deadlock-free solution obtained for a
2D hypercube to all the 2D subcubes traversed in an s-d path in a larger
hypercube, many deadlock-free routing algorithms can be devised. The
unrestricted routing in a 2D hypercube results in two independent cycles in
the channel dependency graph, as shown in Figure 2. A deadlock-free
routing algorithm in a 2D hypercube must disallow these cycles by removal
of one edge from each. Thus, there are 16 possible deadlock-free routing
schemes in a 2D hypercube.
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(a) Ex-UP Preference () Ex-DOWN Preference (¢) Ex-Reverse UP (d) Ex-Reverse DOWN
Preference Preference

Fig. 5. Disallowed paths in the Extended-UP/DOWN Preference group.

As shown earlier, the removal of the top edges in the two cycles in Figure
2 corresponds to disallowing the paths 2—0—1 and 3—1—0 (shown graph-
ically in Figure 5(a)) and is equivalent to the UP Preference algorithm of
Chiu et al. [1994] in a 2D hypercube. If the bottom two edges (1—-3—2 and
0—2—3) in Figure 2 are removed, the DOWN Preference solution results.
Similarly, the removal of the right and left edges in Figure 2 results in
Reverse UP Preference (disallowing paths 3—2—0 and 1—0—2) and Reverse
DOWN Preference (disallowing paths 0—1—3 and 2—3—1) algorithms,
respectively. A Reverse UP Preference algorithm allows up transitions in
any order, but a down transition can be taken only if all the higher
transitions have been completed. Similarly, the Reverse DOWN Preference
algorithm allows an up transition only if all higher-dimension transitions
have been completed. The disallowed paths in these four types of algo-
rithms are graphically shown in Figure 5. All other s-d paths in Figure 5
are allowed.

Figure 5 demonstrates that all the four different algorithms are closely
related, since they have the same pattern of disallowed paths. Further, by
processor relabeling, one case can be obtained from the other. For example,
if the processor address bits are all inverted in the UP Preference scheme,
the DOWN Preference scheme results. Similarly, the DOWN Preference and
the Reverse DOWN Preference schemes are related by a transposition of the
processor address bits. Because of the close relationship of these four 2D
hypercube routing solutions, their performance when extended in a uni-
form manner to a larger hypercube will also be similar to each other. They
are therefore considered to be equivalent; only the Extended-UP Preference
case will be studied in later sections.

Following similar reasoning, the remaining 12 deadlock-free solutions in
the 2D hypercube are also divided in three groups with four solutions in
each group.

Extended Hotspot Group. If the bottom edge in cycle 1 and the left edge
in cycle 2 of Figure 2 are removed by disallowing paths 1—3—2 and
2—3—1, respectively, a solution from the hotspot group results, as shown
in Figure 6. It is termed hotspot because the communication between
processor 1 and processor 2 is forced to go through processor 0. Under
heavy traffic, this will cause a larger message flow through node O,
resulting in an artificial hotspot. For this reason, the solutions from this
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Fig. 6. Disallowed paths in the Extended hotspot group.

group are not good candidates for use in routing implementations. This
solution corresponds exactly to the Turn Model algorithm applied to a
hypercube (i.e., P-cube “negative-first” algorithm of Glass and Ni [1994])
and performs poorly under traffic simulations because of its hotspot prop-
erties, as will be seen in Sections 4 and 5.

Extended Isolation Group. If the top edge in cycle 1 and the left edge in
cycle 2 of Figure 2 are removed by disallowing paths 2—0—1 and 2—3—1,
respectively, a solution from the isolation group results, as shown in Figure
7. In this scheme processor 2 cannot pass any messages to processor 1, and
thus the solutions from this group are not useful in deadlock-free routing
design.

Extended Inverse UP/DOWN Preference Group. If the left edge in cycle
1 and the right edge in cycle 2 of Figure 2 are removed by disallowing paths
0—1—3 and 1—-0—2, respectively, a solution from the Inverse UP/DOWN
Preference group results, as shown in Figure 8. This scheme is similar to
the Extended-UP/DOWN Preference group, and thus its performance
should also be similar.

3.2 Optimality of Extended Routing Algorithms

We show that the Extended class of routing algorithms results in an
optimal flexibility in the number of allowed paths in the sense that the
addition of any new path to the allowed set of paths by an extended
algorithm will result in deadlocks. To prove their optimality, we restrict
ourselves to the class of coherent routing functions as defined by Duato
[1994]. A routing function R for a given network is coherent iff, for every
path P that can be established by R, all subpaths of P are also paths of R.
All well-defined minimal-distance routing algorithms on the hypercubes
fall in this category.

THEOREM 3.2.1. For an n-D hypercube with n = 2, the Extended
algorithms are optimal in terms of the number of paths allowed while
remaining deadlock free.

ProOOF.

Case 1: 2D Hypercube. All s-d paths of length 1 (single link to neigh-
bors) are allowed in a 2D hypercube, since they cannot cause a deadlock.
For the paths of length 2, the unrestricted routing causes two independent

ACM Transactions on Computer Systems, Vol. 15, No. 2, May 1997.



178 . Ausif Mahmood et al.

€)
®

Fig. 7. Disallowed paths in the Extended isolation group.

Fig. 8. Disallowed paths in the Extended Inverse UP/ DOWN Preference group.

cycles in the channel dependency graph as was shown in Figure 2. The
Extended rule removes only one edge from each of the two cycles to make
the routing deadlock free (Figure 3). Thus the algorithm provides optimal
flexibility in routing in a 2D hypercube.

Case 2: n-D Hypercube (n > 2). All paths of length-/ links (I > 2) are
composed of a sequence of overlapping two-link paths. Allowing a length-/
path (I > 2) implies that all of the two-link paths it contains are also
allowed. A length-/ path is disallowed in an Extended algorithm if any
two-link paths it contains are disallowed. Thus if a disallowed length-/ path
(I > 2) is added to the set of allowed paths, then this path contains at least
one disallowed two-link path because the overall path is coherent. This will
cause the routing to deadlock, since all of the 2D subcubes are already
optimal in terms of allowed two-link paths. [

For example, in a 3D hypercube, the path 3—7—5—4 is disallowed in the
Ex-UP Preference rule. Allowing the path 3—7—5—4 will imply that the
two-link path 7—5—4 is also allowed, but that will cause a deadlock in the
2D subcube where the most significant bit is always a one (the path
7—b5—4 is disallowed by the UP Preference rule in this 2D subcube).
Further, it has also been proved recently by Lin and Lin [1994b] that the
Turn Model is optimal in the sense that it restricts the minimum number of
turns to avoid deadlock. We have shown earlier that the Turn Model is one
of the members of our new Extended class of algorithms. It is not useful in
practice, since it creates bottlenecks in routing traffic. Of the class of
extended algorithms, the algorithms belonging to the Extended UP/DOWN
Preference group and the Extended Inverse UP/DOWN Preference group
have the highest flexibility in terms of allowed s-d paths. Section 4
develops an exact comparison of the allowed s-d path counts among
different algorithms.
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4. ANALYTICAL COMPARISON OF ROUTING ALGORITHMS

One measure of the adaptivity provided by a minimum-distance routing
algorithm is the count of all allowed x-hop s-d paths in an n-D hypercube
where (2 = x = n). The one-hop path count is not interesting in the
comparison, since every routing algorithm allows all possible one-hop
paths, i.e., a path to the neighboring nodes. For a single quantitative
measure of the adaptivity provided by a minimum-distance routing algo-
rithm, we define the flexibility of an algorithm to be

N2hfalg + N3hfalg + + Nnhfalg

N*cue N*cue o Nn*cue
Flexibility,, = — - 2t-E o (1)
n—1
where N;j,_,;, and N;,_g.,;. are the number of allowed paths of length

i-hops in a given algorithm and the E-cube algorithm, respectively. The
flexibility as defined in (1) is a count of all allowed x-hop paths (2 = x = n)
in an algorithm, normalized by the path counts of the E-cube algorithm.
The flexibility provided by the E-cube algorithm according to Eq. (1) is thus
1, indicating that the E-cube algorithm provides a single path from a source
node to a destination node. A higher flexibility count is desirable for an
algorithm, since a greater number of alternate s-d paths would lessen
congestion under heavy or uneven traffic loads.

In order to calculate the flexibility provided by an algorithm according to
(1), separate counts of distinct allowed x-hop s-d paths must be deter-
mined. Note that in unrestricted routing, the number of n-hop s-d paths
(where the destination is the complement of the source) in an n-D hyper-
cube is 2" - n!. For example, a 2D hypercube has eight two-hop paths, i.e.,
two paths originating from each of the four nodes. It can be verified that
the number of (n — 1)-hop s-d paths is (2" - n!)/1!; the number of (n —
2)-hop s-d paths is (2" - n!)/2!; and so on. In general, the x-hop s-d path
count in unrestricted routing is given by Eq. (2):

2" n!

N;‘,'Bumst = m where (2=x=n—1) and n > 2. (2)

The superscripts in Eq. (2) indicate the dimension of the hypercube. Thus
the ratio of x-hop path counts in an n-D and (n — 1)-D hypercube is given
by

n-D
Nxh—unrest _ 2n

NE-DD )’

xh—unrest

(3)

Similar reasoning shows that for any coherent, restricted, minimum-
distance routing algorithm which scales uniformly according to the dimen-
sion of the hypercube, the increase in the number of allowed x-hop s-d
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paths from (n — 1)-D to n-D hypercube is also given by the factor of
2n/(n — x). Equation (4) states this and shows how the x-hop path count
can be recursively determined for any coherent path algorithm:

n-D _ (n—1)-D , 271 )
Nthalg xh—alg (n —x (4)
For example, the number of distinct two-hop paths in unrestricted routing
in a 2D hypercube is 8 (see Figure 2). In a 3D hypercube, since there are six
2D subcubes in it, this number increases by a factor of 6, as indicated by
Eq. (4). As another example, the three-hop paths allowed by the Turn
Model in a 3D hypercube are 24, whereas in a 4D hypercube it is 24 X 8, as
there are eight 3D subcubes in a 4D hypercube. The term 2n/(n — x), when
n = x + 1, is essentially the number of (n — 1)-D subcubes in an n-D
hypercube. When n > x + 1, the relative increase in the number of x-hop
paths in an n-D hypercube as compared to the (n — 1)-D hypercube is less,
due to duplication or sharing of some of the smaller subcubes in the larger
hypercube.

Returning to Eq. (4), we see that the starting point for building the
recursion is the count of all allowed two-hop s-d paths in a 2D hypercube.
Since Eq. (4) is valid only up to (n — 1)-hop counts, expressions for n-hop
s-d path counts allowed by various algorithms are needed to compute their
flexibility. An n-hop s-d path in a minimum-distance routing algorithm
traverses all dimensions in linking a source to its destination. Thus, for
each of the 2" nodes in an n-D hypercube, each source node has only one
destination node that is n hops away. The n-hop path count is then the
aggregate of all the paths allowed by an algorithm in establishing a link
from each node in the hypercube to its complement node. The E-cube
algorithm, being nonadaptive, allows only one such s-d path per node.
Thus there is a total of 2" n-hop s-d paths (because there are 2" nodes) in
an n-D hypercube denoted by N™;° z..0.:

NZ;LIlEcube =2" (5)

The total number of allowed n-hop s-d paths in the UP Preference and
the Turn Model is similar and given by Eq. (6).

n-D _ n-D _
Nnh—UP—Preference - Nnh—Turn - (n + 1)' (6)

For example, the number of allowed two-hop paths in a 2D hypercube in
the Turn and UP Preference algorithms is 6 (Figures 3 and 6); three-hop
counts in a 3D hypercube is 24; four-hop counts in a 4D hypercube is 120.
The increase in n-hop count in an n-D hypercube as compared to the (n —
1)-D hypercube is by a factor of half the number of (n — 1)-D subcubes in
an n-D hypercube. The expression for the n-hop s-d path counts allowed in
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the Ex-UP Preference algorithm is given recursively by (7),

n—1
(n — 1)! .
NP o opprer = 2+ N~ 1D + NP o upPre (7)
h—Ex-UP-Pref — (n— l)h Ex-UP-Pref ,:21 (i — Dln —i)! h—Ex-UP-Pref

where Nlh UP- Preference =1

Equation (7) is obtained by induction on n-D hypercubes for n > 1. The
first term in Eq. (7) represents the allowed n-hop paths that correspond to
extensions, by an additional (terminating) hop, of the allowed (n — 1)-hop
paths in the (n — 1)-D hypercubes it contains. The second term in the
equation represents the allowed n-hop paths created by inserting an
allowed intermediate link between two allowed subpaths of length i and
(n — 1 — 1). It is easy to verify that the n-hop count for the Ex-UP
Preference algorithm in 2D, 3D, 4D, and 5D hypercubes is 6, 26, 150, and
1082, respectively.

The unrestricted routing flexibility can also be computed to provide an
upper ceiling on the flexibility provided by a minimum-distance routing
algorithm. The n-hop s-d path count in unrestricted routing (which can
deadlock) is given by Eq. (8).

Nnh unrest (n])(zn) (8)

Flexibility defined by Eq. (1) can now be computed for algorithms in this
study. The log, plot of the flexibility of different algorithms for varying
hypercube sizes is shown in Figure 9. The Ex-UP Preference algorithm is
approximately five times more adaptive for a hypercube size of 10 than the
UP Preference and the Turn Model algorithms and about 100 times more
adaptive for a hypercube size of 20. The E-cube algorithm, which provides a
flexibility of 1 for all hypercube sizes, is not shown in Figure 9. The
flexibility provided by unrestricted routing (which does deadlock) is also
plotted in Figure 9, for comparison with the deadlock-free algorithms.

Although the UP Preference- and the Turn Model-based algorithms
provide the same count of x-hop s-d paths and thus the same flexibility as
defined by Eq. (1), their routing paths are different. As explained in Section
3, the Turn Model forces more messages through certain nodes and creates
artificial hotspots in routing the traffic. Thus, the flexibility count alone is
not a complete indicator of an algorithm’s performance. A good algorithm
should provide high flexibility and balance the traffic through different
nodes in a hypercube.

In order to quantitatively measure traffic balance under a routing
algorithm, we analyze the Intermediate Node Traffic Count (INTC) through
each node in the hypercube. Suppose the allowed paths between an s-d pair
P-Q are P-X—Y—Q and P>X—W—Q. Because the message has to pass
through node X to get from P to Q, the INT'C for X is 1. However, to proceed
further toward Q, the message could either go through Y or W. Hence, the
INTC for Y and W is 0.5, meaning there is a 50% chance of the message
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Fig. 9. Comparison of flexibility of different minimum-distance routing algorithms.

going through each if the s-d pair is P-Q. Similarly, if the routing
algorithm also allowed an additional s-d path from P to Q as P->L—-M—Q,
the INTC would become 2/3 for node X and 1/3 for nodes L, M, W, and Y.

By considering all s-d pairs for a given size hypercube and enumerating
the paths allowed by a routing algorithm, the INTC through each node can
be computed. The standard deviation of INTC for all nodes is then a good
measure of the balance in routing provided by an algorithm. Overall, the
desirable attributes in an adaptive routing algorithm are high flexibility
and low standard deviation of INTC. Table II lists the flexibility (as given
by Eq. (1)) and the standard deviation of INTC for hypercube sizes of up to
7. It can be seen from Table II that the Ex-UP Preference has the highest
flexibility of all the deadlock-free routing algorithms and a relatively low
standard deviation of the INTC values. Although E-cube has a 0 standard
deviation, its performance will be limited, since its flexibility is only 1. The
mean of INTC, also shown in Table II, depends only on the hypercube size
and is independent of the routing algorithm.

Despite the fact that the UP Preference and the Turn Model routing
algorithms have identical flexibility counts, the standard deviation of INTC
for the Turn Model is much higher. Figure 10 shows a plot of the INTC
through all nodes in a 7D hypercube for the three algorithms of interest.
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Table II. Flexibility and Standard Deviation of INTC for Different Algorithms

Mean Extended-UP  Unrestricted
Hypercube of E-Cube UP Preference  Turn Model Preference (deadlocks)
Size INTC (Flex., S.D.) (Flex., S.D.) (Flex., S.D.) (Flex., S.D.)  (Flex., S.D.)

3 4 (1,00 (225,229  (2.25,351)  (2.38,2.19) 4, 0)

4 17 (1,00 (4,7.84) (4, 12.45) (4.71,7.18) (10.67, 0)
5 49  (1,0)  (8.62,23.47) (8.62,38.08) (11.98,20.57) (38, 0)

6 120 (1,0)  (22.65,64.91) (22.65,107.21) (38.86,54.52)  (174.40, 0)
7 321 (1,00  (71.38,170.36) (71.38, 286.18) (155.54, 137.35) (985.33, 0)
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Fig. 10. Comparison of INTC for different algorithms in a 7D hypercube (a high value of
INTC indicates high traffic through a node).

The higher standard deviation of INTC in the Turn Model indicates its poor
balance in routing the traffic. Thus, its performance is expected to be poor
in comparison to UP Preference and Ex-UP Preference algorithms. The
traffic simulations in the next section confirm this result.

5. SIMULATION STUDY OF ROUTING ALGORITHMS

A discrete-event simulator was developed to study the performance of
various routing algorithms on a hypercube multiprocessor. The simulator
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models the hypercube by two unidirectional links between all neighboring
nodes, i.e., one outgoing link and one incoming link, to and from each
neighbor, respectively. Each node contains a message queue and an associ-
ated router controller. If the message queue is not empty, the controller
attempts to reserve a nonbusy link according to the routing algorithm
being implemented. It is assumed that it takes one time unit to reserve a
link if it is available. Once all links between a source and its destination
have been established, the message transmission takes place, consuming
an amount of time proportional to the size of the message. All of the links
involved in a transmission are released when the message transmission is
completed.

In our study, the message transmission times can vary between 100 and
900 time units. Both a uniform distribution of message lengths (with a
mean of 500) and a Poisson distribution of message lengths (with a mean of
250 time units) are included in the simulation model. The Poisson distribu-
tion allows fewer long messages than the uniform distribution. It has been
used in related simulation studies of routing schemes, such as in Chiu et al.
[1994], and represents many practical applications in a circuit-switched
hypercube system. In gathering statistics, 16,000 messages are generated
in an 8D hypercube. Of these, the first 3000 and the last 3000 messages are
ignored in order to ensure that routing performance results are indepen-
dent of initial loading and final unloading effects. The choice of an 8D
hypercube and 16,000 total messages allows the simulation to execute in a
reasonable amount of CPU time with stable results.

In the circuit-switched mode of routing, a source node has to finish the
transmission of a message before it can start another request. A node which
is not originating a message at a given time is considered to be idle. In
accordance with the message injection rate chosen, the simulator for this
study periodically determines the idle nodes and randomly picks one of
these nodes to become the source node for a message request. The destina-
tion node is then chosen according to the type of traffic being simulated.
Various traffic patterns were studied, including random destinations, bit-
complement, transpose, bit-reverse, geometric, and hotspot types.

The simulator keeps track of all nodes that are busy in originating a
message in every simulation time unit. The percent of busy nodes averaged
over the simulation time interval is defined in this work as the “traffic
load.” This load can be adjusted indirectly by changing the periodic mes-
sage injection rate into the system. For circuit-switched communication the
setup time, i.e., the time involved to reserve the links between a source and
destination, is directly proportional to the overall communication through-
put achievable. The average message size in the system affects this setup
time, since the links in the reserved path are occupied for a duration of
time that corresponds to the size of the message. For a given traffic type,
the simulator records the setup time for each message and keeps a running
average of the setup times for all messages. The average setup time for the
10,000 messages is normalized by dividing it with the average message
size.
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Fig. 11. Comparison of different routing algorithms under uniform distribution of destination
nodes with randomly distributed message lengths.

Figure 11 shows the average setup time for a random distribution of
destination nodes, where a source node is randomly selected from the list of
idle nodes and where the destination node is randomly picked to be any
node in the hypercube excluding the source node itself. The size of mes-
sages for the simulation shown in Figure 11 is set randomly to be between
100 and 900 with a mean of 500.

As can be seen from Figure 11, the Ex-UP Preference algorithm has the
lowest average setup time over the entire range of network traffic loads.
The Turn Model shows the worst performance of all the algorithms studied
because it creates bottlenecks in routing the messages, which is also
consistent with the results of Section 4. The UP Preference algorithm
performs worse than the E-cube algorithm for high traffic loads. This effect
was also noticed by Chiu et al. [1994]. This behavior occurs because
uniform traffic favors an algorithm with better traffic load-balancing
properties. Since E-cube creates perfect balance in routing (its standard
deviation of INTC is 0), it performs better than the UP Preference algo-
rithm. However, the E-cube does not perform as well as the Ex-UP
Preference algorithm. The Ex-UP Preference algorithm has a much higher
flexibility that compensates for a small loss in balance in routing the
traffic. Figure 11 also includes a graph for the Hierarchical version of the
Ex-UP/DOWN Preference algorithm. In the hierarchical scheme, the n-D
hypercube is divided in two n/2-D subcubes. The lower n/2-D subcube
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Fig. 12. Comparison of different routing algorithms under bit-reverse traffic with Poisson
distribution of message lengths.

routes the messages according to the Ex-UP Preference rule while the upper
n/2-D subcube follows the Ex-DOWN Preference rule. This scheme has a
potential to balance the traffic better, but it looses some flexibility, since all
required transitions in the lower n/2-D subcube have to be completed
before moving to the upper n/2-D subcube to avoid deadlocks. Figure 11
shows the Ex-Hierarchical scheme performs better than other algorithms,
but not as well as the Ex-UP Preference.

Figures 12 and 13 show the traffic simulation results for the bit-reverse
and bit-transpose traffics, respectively. In the bit-reverse traffic, a source
node with binary address (x,,_;, x,,_9, ..., Xo) sends a message to the
destination node with address (x,, %7, ..., %x,_1). In the bit-transpose
traffic, the destination is selected to be the node with address (x,,5_1,
Xpsoa—9s « -« X0y Xn_1s Xp_g9, - -+ X,,9). Both bit-reverse and bit-transpose
traffics occur in many practical computations and can cause worst-case
behavior in oblivious routers for hypercubes [Fulgham 1993]. Figures 12
and 13 show the superior performance of the Ex-UP Preference algorithm as
compared to other algorithms studied. The message lengths are based on a
Poisson distribution in these figures. The Ex-UP Preference algorithm
performs even better when the message lengths are uniformly distributed
or when a larger mean for the message lengths is used.
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Fig. 13. Comparison of different routing algorithms under bit-transpose traffic with Poisson
distribution of message lengths.

Figure 14 shows a comparison of different algorithms under hotspot
traffic. A source node selects the destination node to be either the hotspot
node or a randomly picked node. For this example the hotspot node is
selected 15% of the time.

In Figure 14, the hotspot node is the node with the highest address, i.e.,
11 ... 1. The results in this case also demonstrate the superior perfor-
mance of the Ex-UP Preference algorithm over other algorithms. Under
high traffic load, the E-cube algorithm approaches the performance of the
Ex-UP Preference algorithm. However, under light-to-medium traffic loads,
the E-cube algorithm has a poor setup time.

We also simulated a comparison of different algorithms under geometric
distribution of destinations. In this traffic, 50% of the destination nodes are
randomly chosen to be one-hop distance away from the source node, 25%
two-hops distance, 12.5% three-hops distance, and so on. This type of traffic
represents those applications in which communication takes place mostly
to neighboring nodes. Note that this traffic does not expose the flexibility of
a routing algorithm to its full extent. However, the Ex-UP Preference
algorithm still performs better than other algorithms, although the differ-
ence between UP Preference and Ex-UP Preference algorithms is relatively
small.
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Fig. 14. Comparison of different routing algorithms under hotspot traffic (15% hotspot
intensity) with Poisson distribution of message lengths.

A bit-complement traffic was also studied for the different algorithms.
Except for the Turn Model, the remaining algorithms perform very well
and are able to achieve the minimum possible setup time. This result is
expected, since bit-complement traffic allows each message to reach its
destination without causing a conflict with another message [Fulgham
1993]. In summary, all the various traffic simulations studied indicate the
superior performance of the Ex-UP Preference algorithm over the existing
popular algorithms.

6. APPLICATIONS TO OTHER NETWORKS/ROUTING SCHEMES

Although we have focused on the hypercube network in this article, the
approach followed here to develop optimal, minimum-distance, deadlock-
free routing algorithms can be applied to any recursively defined or
well-defined network. By removing the fewest paths needed to eliminate
cycles in the channel dependency graph in the smallest dimension (or
order) network with physical loop(s), a deadlock-free routing can be ob-
tained. By uniformly applying this routing to higher-order networks, a
deadlock-free routing algorithm can be devised. As an example of applica-
tion of the ideas developed in this article to other popular networks, we
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outline an improved routing algorithm for the k-ary n-cube interconnection
network in the following subsection.

6.1 Circuit-Switched Routing in the k-ary n-Cube Network

A k-ary n-cube network is a powerful class of networks of which the
hypercube (two-ary n-cube) is one member. It also includes many other
useful networks such as 2D toroidal mesh (k-ary two-cube), 3D mesh (k-ary
three-cube), etc. In general, a k-ary n-cube network has 2" nodes, such that
there are k£ nodes in each of the n dimensions. Each node is represented by
n digits where each digit is in base k. There are 2n outgoing connections
from each node, £1 mod % connections for each of the n digits representing
the node.

In developing the minimum-distance, deadlock-free, circuit-switched
routing in a k-ary n-cube network, note that the 2 nodes in each dimension
form a physical loop when 2 > 2 (for £ = 2 which is the hypercube, this is
an immediate one-hop loop and does not cause any problems in routing, as
previously shown in this article). Since deadlocks are related to the
physical loops, we need to restrict the routing in the 2 nodes within each
dimension. In addition, there are physical loops being created by the
interaction of different dimensions when n > 1. Thus, routing also has to
be restricted when we traverse different dimensions in an s-d path to make
it deadlock free. In order to describe our improved deadlock-free algorithm,
we use the same terminology as used by Boppana et al. [1992] to develop an
equivalent circuit-switching algorithm for the UP Preference scheme on the
k-ary n-cube network (the algorithm is referred to as f-cube routing by
Boppana et al.).

All nodes in the k-ary n-cube network use four outgoing links in each
dimension, termed as Sigma high, Sigma low, Eta high, and Eta low
[Boppana et al. 1992]. Two extra links are needed in this case over normal
networks to break the deadlock in each dimension [Boppana et al. 1992].
Sigma and Eta refer to the (+1 mod %) and (—1 mod %) connections,
respectively. For each of the Sigma or Eta connections, there are two
outgoing links from each node termed as the high and low links. For each
message originating from a source node s with address (s,,_;, ..., sg) fora
destination d labeled (d,,_;, ..., dg), first the required links in the s-d
path are determined from the following algorithm:

Algorithm for determining required link transitions:
Fori =0to(n — 1) /* n = number of dimensions, 2 = nodes in one
dimension */
lengthl = |s,—d,|; length2 = |k—lengthl|; /* to see if Sigma or Eta link
is a shorter path */
if (s; < d;) {
queueli] = high
if (lengthl <= length2)
link[i] = Sigma
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else link[i] = Eta }
else if (s; > d;) {
queueli] = low
if (lengthl <= length?2)
link[i] = Eta
else link[i] = Sigma }
else do nothing /* because s; = d; */

For example, in a 10-ary 2-cube system, if source node s is (8, 2), and the
destination node d is (1, 6), the required link transitions as computed from
the above algorithm are four Sigma-high links in dimension 0 and three
Sigma-low links in dimension 1. Note that the above algorithm restricts
choices of links within each dimension such that no deadlock is possible. If
within the same dimension, source node is higher than the destination
node, the low links will always be taken. Depending on which distance is
shorter to the destination, the Sigma (+1) or Eta (—1) directions are
pursued.

In order to remove the deadlock in routing due to interaction of different
dimensions, the f-cube in Boppana et al.’s algorithm (which is similar to the
UP Preference algorithm for the hypercube) states that a Sigma-high hop
can be taken at any point in the order of required transitions. However, a
Sigma-low or Eta-high or Eta-low hop in dimension i can be taken only if
all required hops in dimension 0 to (i — 1) have already been taken. Thus,
in a way very similar to the Ex-UP Preference development, we can improve
upon the f-cube algorithm by making it less strict in the order of allowed
transitions. The pseudocode for our improved algorithm as would be
implemented in a router in the k-ary n-cube network is as follows:

Improved routing algorithm for the k-ary n-cube system:
For each message request in the message queue in the router {
highest_Sigma-high_dimension = highest remaining Sigma-high
transition’s dimension (0 if no Sigma-high transition left)
If (message originated from this node) previous transition = Sigma-
high; I* initialize */
If (previous transition was Sigma-high)
start_dimension = lowest remaining transition’s dimension;

else start_dimension = previous transition’s dimension; /* since
previous transition was an Eta or Sigma-low, all dimen-
sions < previous dimension are locked */

If (a link in start_dimension is available AND link type is needed)
{ Reserve the link and update the remaining transitions needed
Send message request onward to node connected to this link }
else {
For (i = start_dimension to highest remaining transition’s dimen-
sion)
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If (a link in dimension i is available AND link type is needed

AND
(transition ¢ Sigma-high OR (i < highest_Sigma-high_di-
mension)))
{ Reserve the link and update the remaining transitions
needed

Send message request onward to node connected to this link } } }

The router can take a Sigma-high transition without any restriction, but
a Sigma-low or an Eta link is reserved only if all required lower-dimension
transitions have been completed or if a higher-dimension Sigma-high
transition is remaining. If a Sigma-low or an Eta transition is taken, it
locks all lower dimensions, and only a higher-dimension Sigma-high tran-
sition when taken can unlock these. The router finds the next required link
(>= lock dimension) that does not lock a needed dimension forever. If no
link can be reserved, the router waits for this request and moves on to
process the next request.

6.2 Application to Other Routing Schemes

While the focus of this article has been on the circuit-switched routing, the
algorithms developed here are applicable to other routing schemes as well.
For example, the Ex-UP Preference algorithm is directly applicable to
packet-switched routing. In packet-switched routing, the resources are the
packet buffers in each node, instead of the links. Thus, a deadlock-free
packet-switched routing requires that there be no cyclic dependencies in
reserving the buffers in each node. By replacing the link reservations in the
Ex-UP Preference algorithm with the buffer reservation in a node, the
algorithm will work for the packet-switched case.

The Ex-UP Preference algorithm has important implications in the case of
wormhole routing. Currently, the most effective technique in wormhole
routing is by Duato [1994] which uses two virtual channels per physical
link. One of the virtual channels uses fully adaptive (unrestricted mini-
mum-distance) routing while the other channel provides an escape route by
using the deadlock-free E-cube algorithm. Thus, it is possible to use our
new Ex-UP Preference algorithm in this article as the escape route, pro-
vided some additional constraints are specified for messages when they
switch between the escape and the nonescape channels. Since our new
algorithm is much more adaptive than the escape route originally used in
Duato’s scheme, it has the potential to further improve traffic throughput
for wormhole routing. Similarly, it can also be applied to improve pipelined
circuit-switched routing [Gaughan and Yalamanchili 1993]. Our future
work lies in exploring these ideas.

7. CONCLUSIONS

A new class of minimum-distance deadlock-free algorithms for the hyper-
cube network has been introduced in this article. A member of this new
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class, termed as the Ex-UP Preference algorithm, is shown to be optimal in
terms of the number of allowed s-d paths, with superior performance in
comparison to existing algorithms. An existing algorithm, known as the
Turn Model, also belongs to our new class of algorithms. However, it does
not perform as well as other members of the new class, because it creates
congestion in routing the traffic.

An analytical measure for judging the performance of adaptive mini-
mum-distance routing algorithms has also been developed in this study. It
takes into account the flexibility provided in routing as well as the balance
of traffic load through different nodes in the hypercube network. This
measure, when applied to the new algorithms developed in this article and
other existing algorithms, indicates the relatively high flexibility of the
new Ex-UP Preference algorithm. Further, the Ex-UP Preference algorithm
has low standard deviation of the INTC, indicating a good balance in
routing the traffic. Various types of traffic were simulated on a hypercube
network employing different routing algorithms. In all traffic simulations,
the Ex-UP Preference algorithm achieves the lowest s-d path setup time of
all existing algorithms, supporting the analytical comparisons.

The ideas developed in this article are applicable to developing improved
routing for other well-defined networks. An example of an improved rout-
ing scheme in the k-ary n-cube network has been presented. Recently, a
class of networks termed as product networks is drawing considerable
research interest. Usually one of the networks in a Cartesian product of
two networks is the hypercube network, due to its many useful properties,
e.g., the folded Peterson cube [Ohring and Das 1996], which is a product of
the Peterson graph and the binary hypercube. The routing in such a case
can be improved upon by employing the optimal hypercube routing algo-
rithms developed in this article.
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