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Abstract- The signature approach is an access method 
for partial-match retrieval which meets many require
ments of an office environment. Signatures are hash 
coded binary words derived from objects stored in the 
data base. They serve as a filter for retrieval in order 
to discard a large number of nonqualifying objects. In 
an indexed signature method the signatures of objects 
stored on a single page are used to form a signature for 
that page. In this paper we describe a new technique of 
indexed signatures which combines the dynamic balanc
ing of B-trees with the signature approach. The main 
problem of appropriate splitting is solved in a heuristic 
way. Operations are described and a simple performance 
analysis is given. The analysis and some experimental 
results indicate a considerable performance gain. More
over, the new S-tree approach supports a clustering on 
a signature basis. Further remarks on adaptability com
plete this work. 

1. Introduction 
1.1 Background 
In a modem office environment the retrieval of objects 
by content is one main requirement the data base sys
tem layer of an office information system should support 
!CHRI84, RABI85). Generally these objects have a vari
able length and a complex structure. Besides simple data 
types like fixed length character strings, real and inte
ger, there appear types of variable length; e.g. formatted 
data like multivalued attributes and especially unformat
ted data like text {SCHE81, SCHE82, GIBB83J. Figure 
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1 gives an example for these mixed type office objects. 
Here, name and delivery are atomic valued attributes, 
whereas the attribute order is of the set type and order 
text is of type text. 

Single-level signatures are applied to support the re
trieval of these office objects !CHRI84, FAL084J. Com
pared to alternative access methods (d. SALT83b, 
RABI84, FAL085aJ, signatures offer the advantage to 
process partial-match, subset match, substring match 
and fuzzy match queries in an easy manner {cf. HARR71, 
RNE76, SCHE77, SCHE78J. Because of their simple 
maintenance [d. RABI84], signatures are well suited as 
an access path in data base systems in the environment 
of server-workstation networks. 

Signatures are hash-coded binary words of fixed 
length; they represent abstractions of objects. G-ener
ally all bits of the signature are cleared to null, then a 
hash transformation is applied to the object's values to 
determine which bits are set to one. Several proposals 
have been made for the coding of signatures especially for 
textual attributes (e.g. HARR71, ROBE79, FAL085b, 
FAL085c), but their details are beyond the scope of this 
paper. Here, more emphasis is laid on the physical orga
nisation of the signatures. In single-level signature meth· 
ods the signatures are stored separately from the objects 
and searched sequentially for retrieval purpose. There
fore, the same coding transformation is applied to the 
query to get the query signature. A scan of the signa
ture file returns those object identifiers whose signatures 
contain onu in the positions the query signature does. 
Mter these match candidates are fetched from secondary 
storage a comparison with the query specifications finally 
eliminates false drops. 

1.2 Organisation of Signatures 
In single-levelsignature methods every signature must be 
accessed and tested. This ia done faster than sequential 
scan of the objects themselves, because the signatures 
are much smaller. Obviously the retrieval performance 
of the first step is linearly related with the number of 
objects. The more objects exist the more time is spent 
on scanning the signature file !cf. RABI84). 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253168.253189&domain=pdf&date_stamp=1986-09-01


signature flle data base 
name delivery order order text 

ono description 

•• 0110101110 Ot Magnum Hawaii lOS CRT This order is applied 
lOT PC-AT /370 within our leasing contract 
209 Graphic Board with Hawaii Leasing Corp. 

,, 1001101010 o, Kojak New York 106 PC-Portable The FBI is to be 
007 ~Finger-Mouse charged for this order 

•s 1010010111 os Derrick Munich 202 6._KB Board This material shall 
10SCRT be bought on credit 

'Q 0010000110 Q = {de1cription ='CRT', order tezt ~{'leafing'}} 

Rq = {ot} 
s is a false drop 

&g. 1: single-level signature method 

To support a faster access, multi-level signature 
methods are suggested [PFAL80, SACK83). In the in
dexed aignature approach [PFAL80J a signature in the 
i-th level is created by superimposing (OR-ing) the sig
natures contained in one page of the (i-1)-th level. On 
the first level (leaves) we have one signature associated 
with one object or the object itself. Retrieval is processed 
by recursively searching the index tree with the query 
signature as a filter to cut off paths that cannot satisfy 
the query. In static environments this method provides 
a good retrieval performance if the file creation is done 
well [see PFAL80J. 

However, the office environment is dynamic [CHRI-
84]. Therefore we need a method, which provides fast 
retrieval and which can also be balanced in the pres
ence of insertions, deletions and updates. That is, no 
periodic reorgani.Jsation should be required. In this pa
per we want to show how dynamic restructuring as in 
B-trees [BAYE72) can be adopted to the signature ap
proach. Therefore a. new appropriate splitting technique 
is developed. 

In the sequel we give a new approach of indexed sig
natures, called S-tree. The S-tree provides a considerable 
performance gain and achieves a clustering on a. signature 
basis. In section 2 we show the motivation for the new ap
proach, section 3 gives a definition of the 8-tree. Section 
4 presents the operations retrieve, insert, delete together 
with the maintenance procedures. The performance of 
retrieval is analysed in the following section 5. Section 6 
gives some experimental results. In section 7 we outline 
the clustering feature; section 8 gives some remarks on 
adaptability. Finally, section 9 summarises the results. 

2. Basic Concept of S-Tree 

In the dynamic office environment retrieval and inser
tions are frequent operations. Applying the indexed sig
nature approach here, means to store the signatures in 
the order the associated objects are inserted. That is, 
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new signatures are entered into the last partially filled 
node, and ORed to the covering signatures above [cf. 
PFAL80J. Alt\nugh [PFAL80j suggests to support the 
expectation of many insert operations by partially filling 
the nodes at creation time, performance may decrease be
cause the signature tree is designed as a static structure. 
Moreover, a frequent processing of a time consuming pe
riodic reorgani.Jsation should be avoided in the dynamic 
office environment. Often new inserted signatures would 
not be inserted into the appropriate leaf (see fig. 2). 
Here, " appropriate" means the leaf where similar signa
tures are stored. "Similar signatures" are signatures with 
many set onea in same positions. 

The superimposing of dissimilar signatures causes an 
increase of set onea. For example, consider the four sig
natures of node B2 in fig. 2, each with three set onea. By 
superimposing these signatures results the first signature 
in root B1 with seven set onu. Consequently, the nodes 
near the root become less selective and ·more paths of the 
tree must be searched for retrieval. Consider the query 
signature s(Q) =< 10100010 > applied on the tree given 
in figure 2; all nodes must be accessed: 

To avoid such a degeneration we should insert new 
signatures into leaves where similar signatures were al
ready stored. H the appropriate leaf is already full, we 
will partition the signatures into two groups according to 
their similarity and put them into two·nodes. This will 
p~vent, that the superimposing of a single node's sig
natures to obtain the signature of the next level, causes 
a quick increase in set onu. Figure 3 shows such an S
tree, applied on the same object base as fig. 2. Consider 
the leaf N7; four similar signatures are ORed to form 
the first signature in node N3, which obtains four onu, 
just a single one more. H we apply the same query with 
s(Q) =< 10100010 >we must search just one short path 
(Nl, N3} to recogni.Jse that no match exists in the ob
ject base. A successful search is processed faster too, e.g. 
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ftg. 2: static indexed signature approach 
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ftg. 3: S-tree ( 4,2,3) 

8(Q) =< 11000010 >. Moreover, due to the dynamic re
structuring, the S.tree needs no periodic reorganiaation 
to keep the performance. 

3. Strueture of 8-Tree 
3.1 Deflnltlon 
Similar to a B+ -tree, an S-tree is a height balanced mul
tiway tree, whose index part is managed like a 8-tree 
!cf. BAYE72). Each node corresponds to a page. The 
leaf nodes contain either the objects or object identifiers 
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(aida). The former case we call an immediate S-tree, the 
latter a mediate S-tree. The leaves of a mediate S.tree 
contain entries of the form < a, oid > where the object 
is accessed by the old. The signature a is generated by 
applying an appropriate hash transformation on the ob
ject's attribute values, which maps them into a bit string 
a = b1lb:~l·· .lbL of fixed length L with b; E {0,1}. A 
signature in a non-leaf node is defined by superimposing 
the signatures contained in it's son node (via the signa
ture operator cr). Therefore, entries E in non-leaf nodes 
have the form < a, p > with the property 



{E.•IE e N(p)} 

"(= 5 5 
good split bad split 

tlg. 4: Splitting (K=4,k=2) 

II] $ = a(N(p)) := u({E ... IE e N(p)}) := V E.a of the two new nodes are low. That is, their signatures 
BeN(p) should have u few set one• u pOeaible. Figure 4 illus

where N(p) refers to the Node p and E.a denotes the 
signature component of an entry E. Now we can define 
a mediateS-tree of the type (K, k, h), K, k, he N0 , with 
the following properties: · 
(1) Each path from the root to any leaf haa the same 

length h (height). 
(2) The root hu at least 2 and at moat K sons unless 

it is a leaf. 
(3) Every node except the root has at least k and at 

moat K sons. 
(4) The signatures contained in each non-leaf node are 

minimal w.r.t. II). 
The height h of an S-tree for n objects is at moat 
flog, n 1 - 1. The minimum number of nodes in an S-tree 

is #min(N} = 1 + 2E!',:-0
2 k' = 1 +2 ( a.•,.-~1 1 ) 1 the max-

. b · # (N) ~,-1 x• K•-1 Th unum num er 111 mas = .£Ji=O = 1'l'=r. e 
minimum apace utilisation for all nodes is -}. Contrary 
to a B-tree, there exists no order of entries within a node. 
Moreover, due to hat~h-coding it is p011ible that the same 
signature appean multiple times in an S-tree (see fig. 3: 
the signatures of object Oe and Oa). 

1.2 Problem of SpUttlng 
According to the original B-tree we could choose the min
imal branching factor k = f. However, the entries in 
the S-tree have not only a guidance function. Since the 
signatures are abstractions of seta, they contain already 
some more information about the objects. Due to su
perimposing, the signatures near the root contain more 
set one. than signatures near the leaves (see fig.3). In 
the retrieval process, it is not unlikely that nodes with 
many set one. are accessed, without leading to a hit (cf. 
the &rat example in section 2). Therefore a more tlexible 
splitting technique is required which allows 1 S k S f 
(d. analog problem for spatial searching IGUTT84}. To 
achieve a good split we must pay attention to partition 
the K + 1 signatures belonging to one node t.o split., such 
that. the signature weights 

L 

7<•> == E,, 
i=l 
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trates an example for a good and a bad split. Here, the 
bad split produces not only heavier signatures, but also 
the same signature pattern. Consequently, retrieval pro
ceeds either on both nodes or o~ none, i.e. the split d~es 
not increue selectivity. Let a(N,) and a(N,.) be the signa
ture of the left and the right brother node after splitting, 
we have to solve the following problem: 

with the constraint 

/c S #(N,), #(Nr) S K. 

However, since up to now no efficient algorithm for that 
problem is known (to the author), we solve this problem 
heuristically, and hence p011ibly suboptimal. · 

4. Operations of the 8-"J.\oee 
4.1 Retrieval 

Similar to the B-tree the search algorithm descends 
within the S-tree from the root down to the leaves. How
ever, more than one subtree may be visited recursively 
[cf. PFAL80). To demonstrate the retrieval, consider the 
following query signature a(Q) =< 00110000 > applied 
on the S-tree of fig. 3. The fint signature of the root 
leads us to his son (N2}, because it contains a one at 
the third and the fourth position. Processing proceeds 
here at the second and third signature. In the leaf NS 
we find two match candidates (0., 0&), in the leaf N6 we 
have one (07)• However, it is p011ible to gather all ob
ject identifien first, sort them according to page numbers 
and fetch and check the match candidates in one pass, 
i.e. without visiting a single page twice. 

4.2 Insertion 
After inserting a leaf entry in a suitable leaf, the signature 
of that leaf must be updated. If the leaf signature has 
changed, thu change must be propagated upwards within 
the S-tree. If the leaf node becomes overfull, it has to be 
split. Splits propagate upwards too. To find the appro
priate leaf node, the CHOOSE function descends in the 



Initialize NODE:= ROOT.NODE; START:= ROOT.DEPTH; DEPTH:= START; s := s(Q); 
Procedure RETRIEVE (START, DEPTH, NODE, s) 
Fetch (NODE); 
for eaeh entry E in NOD~ do 

if' 1\ E.• = • 
then if DEPTH < HElGHT 

then RETRIEVE (START, DEPTH + 1, E.p, s) 
else Check (E.oid) (*check object and return *) 

end; (*good drops to response set *) 
if PAGE.NEXT(NODE) :!- oil A DEPTH = START (* for NEXT option *) 
then RETRIEVE (START, DEPTH, PAGE.NEXT(NODE), s); (* see section 8 *) 
end; (*end RETRIEVE*) 

lnitialir.e STOP-DEPTH = HEIGHT; 

Procedure INSERT (IE, STOP-DEPTH) (* IE = entry to be inserted *) 
DEPTH := ROOT.DEPTH; 
if DEPTH = 1 then NODE := CHOOSE (ROOT, DEPTH, STOP-DEPTH, IE.s) 

else NODE := CHOOSE-NEXT (ROOT, DEPTH, STOP-DEPTH, IE.s); 
if NODE is full then SPLIT {NODE, DEPTH, IE) 

else begin 
Add IE to NODE; 
ADJUST (NODE, DEPTH, IE.s); 
end; 

end; (* end INSERT *) 

Function CHOOSE (NODE, DEPTH, STOP-DEPTH, s) returns NODE variles DEPTH 
Fetch (NODE); 
if DEPTH = STOP-DEPTH then CHOOSE := NODE 

else begin 
Find entry E with minimal t(I,E.•); 
CHOOSE := CHOOSE (E.p, DEPTH + 1, STOP-DEPTH, s); 
end; 

end;(* end CHOOSE*) 

Procedure ADJUST (NODE, DEPTH, s) 
Feteh (Pareot(NODE)); 
Find entry E with E.p = NODE; 
s := E.s v s; 
if E.s ~ s then begin 

E.s ::: s; 
if DEPTH > ROOT.DEPTH then ADJUST (Pareot(NODE), DEPTH - 1, sh 
end; 

end;(* end ADJUST*) 

S-tree on one single path. This path ia aelected step by 
step by applying a similarity measure to the aignat1ll'el 
in a node (a} and the signature to be inserted (a'}. We 
may use the Hamming distance mdnc: 

6(a, a'} := 'l(a V a')- 'l(• A a'). 
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However, to achieve a high aelectivity in each node we 
need a low weight 'J(a(N)). Therefore it ia better to 
chooae that node to proceed which obtains the lowest 
weight increaae. So we de&ne the 111eigAt increue tlutance 

"'f(a v a') = "'f(a) + E(a, a') 

E(11 1
1

) := 'J(.t V .t1)- 7(1) = 7(-.1 A 11
). 



Procedure SPLIT (NODE, DEPTH, IE) 
Add IE to NODE; (*virtually *) 
a:= {(Find Entru E with mozimal "Y(E.•))}; 
{J :={(Find Entru E with mazimal t(•(a),E.•))}; 
for each remaining Entry E do 

(* ftnd heaviest entry *) 
(* ftnd entry with maximal weight increase *) 

if #a+ #(remaining enlrie•) = k then Assign all remaining entries to a (*stop *); 
if #/J +#(remaining enlrie.1) = k then Assign all remaining entries to {J (*stop*); 
if t(1(a"),E.1) < t(•(/J),E.•) then Assign E to & 

else Assign E to {J; 
end; 
Get a fresh page NEWNODE; 
Set PAGE.NODE(NEWNODE) to {J; 
IE:=< V~E .• ,NEWNODE >; 
Set PAGE.NODE(NODE) to a; 
if NODE#: ROOT.NODE then begin 

Fetch (Parent(NODE)); 
Find entry E with E.p = NODE; 
E.s := VoE·•i 
NODE:= Parent(NODE); 
if NODE is full then SPLIT (NODE, DEPTH, IE) 

else begin 

end; 
else if CUT = false then begin 

Get a fresh page ROOT; 

Add IE to NODE; 
ADJUST {NODE, DEPTH, IE.s); 
end; 

Add< Vo E.1,NODE >to ROOT; 
Add IE to ROOT; 
HEIGHT := HEIGHT +1 
end; 

else begin 
PAGE.NEXT(NEWNODE) := PAGE.NEXT(NODE); 
PAGE.l\'EXT(NODE) := NEWNODE; 
end; 

end; (* end SPLIT *) 

Notice, the weight increase distance is not commutative 
and therefore no metric. By applying the weight increase 
distance, the adjustment propagation is better bound. 
For refinement we may use the Hamming distance as a 
secondary strategy. 

4..1 Splitting 
If a node into which an entry should be inserted is already 
full, it will be split. That is, the K + 1 entries should be 
partitioned into two nodes in such a way that the weight 
of the two new signatures is low and the Hamming dis
tance between them is high. This reduces the probability 
that a query requires both nodes to be accessed. Instead 
of an exhaustive enumeration of all possible partitions, 
we give a simple heuristic, which needs only linear time. 

In the first step the algorithm picks that entry that 
has the heaviest signature weight. Since this entry would 
be the heaviest in one of the two partitions too, and since 
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it must be assigned to one of them, we choose this entry 
as aeed a. As a second aeed {J we select that entry, which 
has the maximum number of set ones in positions where 
a has nulla, i.e. the entry providing the maximal weight 
increase to a .. This is reasonable since superimposing the 
signatures to achieve the node's signature never reduces 
the weight. Thereafter the remaining signatures are as
signed to that seed where they achieve the lowest weight 
increase, in equality to {J because of it's lower weight. 
Further refinements are pOssible but not very promising 
because of the minimal node load lr:. 

4.4 Deletion 
Together with pure deletions we take updates into con
sideration that change the objects' signatures. Updates 
are managed via delete and insert. Deleting entries from 
an 8-tree causes some maintenance to keep the desired 
tree properties. The original B-tree presents the catena-



Procedure DELETE (s, oid) 
SEARCHSTOP := false; 
SEARCIIDEL (ROOT.NODE, ROOT.DEPTH, s, oid, SEARCHSTOP); 
for DEPTH = ROOT.DEPTH until HEIGHT do 

if U(DEPTH) :F 0 then INSERT (U(DEPTH), DEPTH); 
end; 
end; (*end DELETE *) 

Procedure SEARCHDEL (NODE, DEPTH, s, oid, SEARCHSTOP) 
Feteh (NODE); 
repeat for each entry E in NODE 

if •A E.• = • 
then if DEPTH< HEIGHT 

then SEARCHDEL (E.p, DEPTH + 1, s, oid, SEARCHSTOP); 
else if E.oid = oid then begin 

Delete entry E; 
SEARCHSTOP := true; 
end; 

until SEARCHSTOP; 
if SEARCHSTOP = true and NODE has fewer than k entries and NODE :F ROOT 

then begin 
F := Parent(NODE); 
Fetch (F); 
Delete entry E with E.p = NODE in F; 
U(DEPTH) := NODE; 
end; 

end; (* end SEARCHDEL *) 

tion and underflow algorithm for that purpose [BA YE72]. 
In the approach of [GUTT84] underfull nodes are elim
inated. This is propagated upwards, and then the en
tries with possible subtrees are reinserted at the correct 
level. Here we adopt the reinsertion strategy because 
updates and deletions are less frequent than retrieval 
or insertions, especially in the office. environment·. The 
reinsertion incrementally refines the S-tree structure ac
cording to adjacency of signatures. Furthermore the ef
ficiency of reinsertion should be comparable the corre
sponding B-tree algorithms because pages requested are 
already fetched into primary memory due to the proceed
h.g search [GUTT84]. 

6. Analysla 
To estimate the performance we assume that a partial
match query with t set onea should be processed. We give 
asimple analysis in terms ofnode fetches (I/0). We make 
the following assumptions concerning the generation of 
the signatures: 

(al) each signature has the same signature weight 1 < f• 
(a2} hash-coding provides an equal distribution of set 

on ea. 

Notice that assumption (al) does not fix the coding 
method. From assumption (a2) follows, that the(~) pos
sible distinct signatures are equally probable. For a sig-
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nature which is derived by superimposing l signatures 
with weight "(, the probability that t prespecified posi
tions contain one.s is [ROBE79, SACK83]: 

For the sake of simplicity Roberts derived in {ROBE79) 
the following approximation: 

We can explain the approximation as follows: f is the 
probability that one prespeci&ed bit position contains a 
one. Hence 1 - t is the probability for a null. Raising 
to power with ~ results the probability to keep the null 
by superimposing ~ signatures. The correct probability 
that one prespecified position contains a one is 1 minus 
that term. By raising to power with t the approximation 
for t prespecified positions is achieved. 

In the S-tree one signature in an i-th level node is 
generated by superimposing the signatures in the corre
sponding son. Therefore each signature in a node is the 
result from superimposing a subset of several objectsc 
signatures. At the root this subset has the cardinality 



A(1) = m-r• where n ia the number of all objects and 
P(1) describes the expected utilisation of the root. We 
obtain for depth ci 

n 

A(tl) = llt=l P(i). 

We keep the auumption that all L poaitiona are 
set with equal probability for an estimation purpose, al
though the combining of similar signatures in deeper lev
els produces lower weights. For each depth ci we obtain 
the following formula 

[ ( 'Y)A(d)]i 
p(t, tl) ~ 1- 1- r . 

Now the number of matches at depth d ia 

.. 
II (P{i) . p{t, i)), 
•=• 

and each match cauaea a node access of level d+ 1. Conse
quently the number of node accesses in the whole S-tree 
can be estimated by 

la-1 ( d ) t; n (P(i) . p(t. i)) + 1. 

6. Experimental Reaulta 

We have implemented the S-tree (SEMS86] to compare ita 
performance against the single-level signature method. 
In thia section we present preliminary results of three 
experiments. Each experiment ~nvolves two steps, first 
building an S-tree of pseudo-random object signatures 
and second running a set of pseudo-random query signa
tures against it. 

The generation of pseudo-random query signatures 
ill designed independent of the object signatures. Each 
S-tree ia tested with several query signature weights. For 
each single weight 60 retrieval operatiou with different 
signatures are executed and the average number of I/Os 
ia presented. Each set of query signatures contains suc
ceuful and uuucceaaful searches. A special teat set con
taining only succeaaful query signatures requires up to 
four 1/0s more than the presented results for the mixed 
set. 

The following experiment parameters are set. For 
each experiment the page siae ia 2 K bytes, the siae of a 
pointer ill • bytes. Experiment 1 conceru signatures with 
length 256 bits and weight 40. The minimal node load lc 
ill 20, the maximal node load K ill 56. Experiment 2 and 
3 concern signatures with length 512 and weight 80 reap. 
120, k = 10, K = 30. The lower part of the presented 
tables shows the average number of 1/0a for the S-tree 
corresponding to the query weight. For comparison pur
pose we have computed the number of 1/0-operatiou for 

scanning the one-level signature file, where the same sig
natures. were stored sequentially and dense, i.e. without 
gaps. The results here are independent of the weight of 
the query signature. 

In comparison with the single-level signature 
method the S-tree of experiment 1 achieves a better per
formance (see table 1). Moreover, performance ia im
proved through the longer signatures. For example, the 
S-tree baaed on 256/40 signatures (table 1) needs 152 
I/Os for a query with a 10 set one• (a quarter weight), 
while the S-tree with the 512/80 signatures (table 2) re
quires only 75 I/Os for a corresponding query with 20 set 
onu._ 

Compared to the single-level method the S-tree with 
a. signature length of 512 bits improves the performance 

number of objects 1000 2000 5000 10000 
single-level method i8 36 90 179 
S-tree 
query weight 

10 18 32 75 152 
20 12 19 45 87 
30 8 12 28 51 
40 6 8 18 32 

table 1: 1/0a of experiment 1 {256/40,20,56) 

number of objects 1000 2000 5000 10000 
single-level method 34 67 167 334 
S-tree 
query weight 

5 34 65 160 315 
10 19 36 90 177 
20 9 15 38 75 
30 6 10 24 46 
40 5 8 19 36 
50 4 7 17 32 
60 4 7 17 31 
70 4 1 16 31 
80 4 1 16 30 

table 2: I/Os of experiment 2 {512/80,10,30) 

number of objects 1000 2000 5000 10000 
single-level method 34 67 167 334 
S-tree 
query weigh\ 

10 39 14 192 391 
20 28 51 130 240 
30 20 36 91 172 
.(() 15 26 68 126 
50 12 20 52 94 
60 10 16 41 14 
70 8 13 34 61 
80 7 11 28 52 
90 6 10 25 41 

100 5 9 22 41 
110 5 8 21 38 
120 5 8 19 36 

\able 3: 1/0a of experiment 3 (512/120,10,30) 



even if the signature weight is increased (see table 3). 
The tables 2 and 3 show that the S-tree perfonns better 
for a query weight of 10% of object signature weight or 
more. The more bits are set to oae in the query signature 
the leas nodes are accessed. The height of the S-treea in 
experiment 2 and 3 is three, they increase the storage 
overhead of single-level signatures by factor 1.4 up to 
1.9. 

'1. Clustering and B.eflnecl Retrieval 

The immediate S-tree contains the objects in it's leaves. 
Their signatures may be stored with them, but they can 
also be computed by demand. To achieve nearly the 
same branching factor we may de&ne a larger page sin 
for the leaves, because the objects are larger than signa.
turea. This approach groups objects together with sim
ilar signatures. Therefore the immediate S-tree realises 
a dwtenag according to the hash-coding (cf. S,ALT78, 
RIJS79). Perfonnance is increased because it is probable 
that more objects of one leaf are match candidates. Due 
to the split operation, the S-tree keeps the clustering in a 
highly dynamic environment. There is no extra reorgani
aation and no extra cluster generation neceaaary. But the 
qu'lility of clustering depends on the hash-coding. Here a 
hash-coding is required which preserves the similarity of 
the objects. 

A second advantage of the S-tree is that it allows 
a refined retrieval. In the oflice environment a browsing 
capability is needed (TSIC85b]. This iterative browsing 
function can be supported by applying relevance feed
back methods (cf. RIJS79, SALT83b) or nearest neighbor 
search on signature basis. One p01111ibility may be that 
the user pinpoints those objects in the initial response 
set which seem to be relevant for him. Thereafter the 
signatures associated with these selected objects may be 
ANDed to discover their joint properties. The resulting 
signature may be applied on the object base for the next 
search iteration. 

Nearest neighbor search on signature basis can be 
supported by extending the signature tat with the Ham
ming distance or a distance e which allows a certain 
number of set oae poaitiona to be aull. The latter case 
can be done easily within the S-tree retrieval procedure. 
We just replace the teat condition with 7(a(Q) A_E.a) ~ 
7(a(Q)) - e. Another re&nement is the opportunity 
to embed a more sophisticated filter (e.g. similar to 
SALT83a) instead of one single query signature. 

8. AdaptabWty 
· · 8.1 Light Queries 

A partial-match query is defined as a light querr if it'• 
signature weight is lower than a given weight g 

'J(a(Q)) <g. 

In the case of a light query the probability is high, that 
in a big and high S-tree a great part of the tree has to 
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be searched recursively. The eignature of a light query 
has only a few set otae• and therefore it is a leas selec
tive filter. Hence it is suitable here to search directly the 
leaves of a mediate S-tree or one level above in the case 
of the immediate S-tree. To support this, we chain the 
leaves containing &rat-level signatures (see &g. 5). This 
ia similar to the one-level signature scan. As anchor we 
use the new parameter LEAF. To proceas a light query 
we call the RETRIEVE procedure with the parame
ters (LEAF.DEPTH, LEAF.DEPT H, LEAF.NODE, 
a(Q)). That is, the START parameter is equal to the 
depth of the leaves. Then the second part of the RE
TRIEVE procedure is processed which aearcha sequen
tially the leaves. 

8.~ Cutting the Top of the 8-Tree 
For very large object bases we cannot exclude that the 
root and nodes near to it have a heavy signature weight 
or even 7(•) = L. In such a case nearly all bite are set to 
one and the selectivity of these nodes is decreased. The 
reason for this is given in euperimpoeing, heuriatical split
ting and the minimum node utllilation k. Here it is rea.
aonable to cut off the top of the S.tree. Descending from 
t.he root those nodes are discarded, which contain mostly 
signatures heavier than a given threaholci. By chaining 
the new roots we obtain a forest of S-ti'\U (see fig. 6), 
which is more suitable for very large data bases. The 
consequences resulting from that approach are already 
taken into account in the given algorithms above via the 
use of the NEXT-pointer. Since we initialiae the START 
parameter with the new depth of the root, the second 
part of the RETRIEVE procedure provides a search of . 
the forest of S-treea. For inaertion, the CHOOSE-NEXT • 
function visits &ratly every root and then descends the 
moat suitable S-tree. Finally, in the split proceas the 
chaining of roots is cont.roUed by the CUT variable. 

g, Summary and Coneluaion 

Recently, several related approaches have been made. To 
build a tree of signatures, we could interprete the signa.
tures as binary numbere and apply an ordinary B+ -tree 
(similar to the akd-B-tree in (OREN84)). But this would 
not perfectly utilile the feature that a signature due to 
hash-coding always describes a set of objects (DADA83}. 
The approach of IPRAB83) applies a eignature for each 
node of an ordinary B-tree a.a an additional filter. In con
trast to these approaches, we keep signatures as guides 
on the path and use the descriptive power of signatures 
to describe seta. 

In this paper we have presented a new approach of 
dynamic indexed signatures for the retrieval of objects 
in an office information ayatem. Due to heuriatical split
ting the S-tree is balanced and keeps adjacent signatures 
together. This increases retrieval perfonnance in moat 
cases. An important and desired feature is that the an
swer to a more specified query usually is found quicker 
than the answer to a leas speci&ed one. The S-tree im-
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&g. 5: S-tree with light query 

&g. 6: cutting the top of an S-tree (2,l,h) 

proves this feature. Moreover, the S-tree supports clus
tering on a signature basis, since similar signatures are 
grouped together. This could be the basic idea for ap
plying more refined retrieval methods. Bec:aue of the 
S-tree's adaptability it seems usable in many office envi
ronments. Therefore, we have started an implementation 
to prove it's quality in some experiments (SEMS86), and 
plan an integration into a data base system for advanced 
applications {DASDBS (DEPP85) or AIM (DADA86J). 

Acknowledgements 
Prof. H.-J. Schek provided many interesting suggestions 
and thoughtful comments. His help is gratefully acknowl
edged. Moreover the author wishes to thank F. Geb
hard (GMD), P. Pistor (IBM HDSC), V. Obermeit, H.-B. 
Paul, M.B. Scholl, W. Waterfeld, G. Weikum, T. Sem
sroth and A. WoJf, who have contributed to clarifying 
discuaaions of the material. Thanks also to Lis Klinger 
who helped to preparate the figtlftll. 

86 

References 
BAYE72 Bayer, R., McCreight, E.M.: Organisation 

and Maintenance of Large Ordered Indexes, 
Acta Informatica. 1972, pp. 173- 189. 

CBRI84 Christodoulakis, S. et al.: Development of a 
Multimedia Information System for an Office 
Environment, Proc. VLDB 1984, pp. 261 -
271. 

DADA83 Dadam, P., Piator, P., Sebek, H.-J.: A Predi
c;ate oriented Locking Approach for Integrated 
Information Systems, in: Mason, R.E.A. 
(ed.): Information Processing 83, Proc. IFIP 
1983, pp. 763 - 768. 

DADA86 P. Dadam, K. Kuespert, F. Andersen, H. 
Blanken, R. Erbe, J. Guenauer, V. Lum, P. 
Pistor, G. Walch: A DBMS Prototype to Sup
port Extended NF2 Relations: An Integrated 
View on Flat Tables and Hierarchies, accepted 
for SIGMOD 1986. 



DEPP85 Deppisch, U., Obermeit, V., Paul, H.-B., 
Sebek, H.-J., Scholl, M.H., Weikum, G.: The 
Storage Subsystem of a Data Base Kernel 
System (in German), Proc. GI Conf. on 
Database Systems for Office Automation, En
gineering and Scientific Applicatioi}S 1985, pp. 
421 ·· 440; English version ·available as Tech
nical Report DVSI-1985-T1, TU Darmstadt, 
1985. . 

FAL084 Faloutsos, C., Christodoulakis, S.: Signa
ture Files: An Access Method for Documents 
and its Analytical Performance Evaluation, 
TOOlS 1984, pp. 267- 288. 

FAL085a Faloutsos, C.: Access Methods for Text, Com
puting Surveys 1985, pp. 49- 74. 

FAL086b Faloutsos, C.: Signature files: Design and per
formance comparison of some signature ex
traction methods, Proc. SIGMOD 1985, pp. 
63- 82. 

FAL085c Faloutsos, C., Christodoulakis, S.: Design of 
a Signature File Method that Accounts for 
Non-Uniform Occurence and Query Frequen
cies, Proc. VLDB 1985, pp. 165- 170. 

GIBB83 Gibbs, S., Tsichritzis, D.: A Data Mod
elling Approach for Office Information Sys
tems, TOOlS 1983, pp. 299 - 319. 

GUTT84 Guttman, A.: R-Trees: A dynamic index 
structure for spatial searching, Proc. SIC
MOD 1984, pp. 47 - 57. 

HARR71 Harrison, M.C.: Implementation of the Sub
string Test by Hashing, CACM 1971, pp. 777 
-779. 

OREN84 Orenstein, J.A., Merrett, T.H.: A Class of 
Data Structures for Associative Searching, 
Proc. PODS 1984, pp. 181 - 190. 

PFALBO Pfalt1, J.L., Berman, W.J., Cagley, E.M.: 
Partial-Match Retrieval using Index~ De
scriptor Files, CACM 1980, pp. 522 - 528. 

PRAB83 Prabhakar, T.V., Sahasrabuddhe, H.V.: Sig
nature Trees - A Data Structure for Index Or
ganisation, Proc. IEEE Conf. on Systems, 
Man and Cybernetics 1983, pp. 1145- 1147. 

RABI84 Rabitti, F., Ziska, J.: Eval~ation of Acces 
Methods to Text Documents in Office Sys
tems, in: Rijsbergen, van, C.J. (ed.): Proc. 
Research and Development in Information Re
trieval 1984, pp. 21 - 40. 

RABI85 Rabitti, F.: A Model for Multimedia Docu
ments, in: TSIC85a, pp. 227 - 250. 

RIVE76 Rivest, R.L.: Partial-Match Retrieval Algo
rithms, SIAM Journal of Computing 1976, pp. 
19- 50. 

RIJS79 Rijsbergen, van, C.J.: Information Retrieval, 
2nd ed., London: Butherworth 1979. 

ROBE79 Roberts, C.S.: Partial-Match Retrieval via 
the Method of Superimposed Codes, Proc. 
IEEE 1979, pp. 1624 - 1642. 

87 

SACK83 Sacks-Davis, R., Ramamohanarao, K.: A two
level superimposed coding scheme for Partial 
Match Retrieval, Information Systems 1983, 
pp. 273 - 280. 

SALT18 Salton, G., Wong, A.: Generation and Search 
of Clustered Files, TODS 1978, pp. 321 - 346. 

SALT83a Salton, G. Fox, E.A., Wu, H.: Extended 
Boolean Information Retrieval, CACM 1983, 
pp. 1022 - 1036. 

SALT83b Salton, G., McGill, M.J.: Introduction to 
Modem Information Retrieval, New York: 
McGraw-Hill 1983. 

SCHE77 Sebek, H.-J.: Tolerating Fussiness in Key
words by Similarity Searches, Kybemetes 
1977, pp. 175- 184. 

SCHE78 Sebek, H.-J.: The Reference String Access 
Method and Partial Match Retrieval, IBM 
Scientific Center Report TR 77.12.008; partly 
contained in: The Reference String Indexing 
Method, in: Bracchi, G., Lockemann, P.C. 
( eds.): Proc. Information System Methodol
ogy 1978, Springer LNCS 65, pp. 432 - 459. 

SCHE81 Sebek, H.-J.: Methods for the Administra
tion of Textual Data in Data Base Systems, 
in: Oddy, R.N. et al._ (eds.): Information Re
trieval Research, London: Butherworth 1981, 
pp. 218- 235. 

SCHE82 Sebek, H.-J., Pistor, P.: Data Structures for 
an Integrated Data Base Management and 
Information Retrieval System, Proc. VLDB 
1982, pp. 197 - 207. 

SENS86 Semsroth, T.: Experimental Studies on S
Trees, Master Thesis, TU Darmstadt, 1986, 
forthcoming. 

TSIC85a Tsichritzis, D. (ed.): Office Automation, 
Berlin, Heidelberg: Springer 1985. 

TSIC85b Tsichritzis, D., Christodoulakis,- S., Lee, A., 
Vandenbroek, J.: A Multimedia Filing Sys
tem, in: TSIC85a., pp. 43 - 65. 


