
S-Tree: A Dynamic Balanced Signature Index f'or OfBce Retrieval

Uwe Deppisch.

Computer Science Department
Technical University Darmstadt

D-6100 Darmstadt, West-Germany

Abstract- The signature approach is an access method
for partial-match retrieval which meets many require
ments of an office environment. Signatures are hash
coded binary words derived from objects stored in the
data base. They serve as a filter for retrieval in order
to discard a large number of nonqualifying objects. In
an indexed signature method the signatures of objects
stored on a single page are used to form a signature for
that page. In this paper we describe a new technique of
indexed signatures which combines the dynamic balanc
ing of B-trees with the signature approach. The main
problem of appropriate splitting is solved in a heuristic
way. Operations are described and a simple performance
analysis is given. The analysis and some experimental
results indicate a considerable performance gain. More
over, the new S-tree approach supports a clustering on
a signature basis. Further remarks on adaptability com
plete this work.

1. Introduction
1.1 Background
In a modem office environment the retrieval of objects
by content is one main requirement the data base sys
tem layer of an office information system should support
!CHRI84, RABI85). Generally these objects have a vari
able length and a complex structure. Besides simple data
types like fixed length character strings, real and inte
ger, there appear types of variable length; e.g. formatted
data like multivalued attributes and especially unformat
ted data like text {SCHE81, SCHE82, GIBB83J. Figure

This research was supported by the Scientific Cen
ter Heidelberg of IBM Germany within the project
"Databases in Server-Workstation Environment•.

Permission to copy ~ithout fee all or
part of this material is granted pro
vided that the copyright notice of the
"Organization of the 1996-ACM Conference
on Research and Development in Informa
tion Retrieval" and the title of the
publication and its date appear.
~ 1986 Organization of the 1996-ACM

Conference on Research and
Development in Information
Retrieval

77

1 gives an example for these mixed type office objects.
Here, name and delivery are atomic valued attributes,
whereas the attribute order is of the set type and order
text is of type text.

Single-level signatures are applied to support the re
trieval of these office objects !CHRI84, FAL084J. Com
pared to alternative access methods (d. SALT83b,
RABI84, FAL085aJ, signatures offer the advantage to
process partial-match, subset match, substring match
and fuzzy match queries in an easy manner {cf. HARR71,
RNE76, SCHE77, SCHE78J. Because of their simple
maintenance [d. RABI84], signatures are well suited as
an access path in data base systems in the environment
of server-workstation networks.

Signatures are hash-coded binary words of fixed
length; they represent abstractions of objects. G-ener
ally all bits of the signature are cleared to null, then a
hash transformation is applied to the object's values to
determine which bits are set to one. Several proposals
have been made for the coding of signatures especially for
textual attributes (e.g. HARR71, ROBE79, FAL085b,
FAL085c), but their details are beyond the scope of this
paper. Here, more emphasis is laid on the physical orga
nisation of the signatures. In single-level signature meth·
ods the signatures are stored separately from the objects
and searched sequentially for retrieval purpose. There
fore, the same coding transformation is applied to the
query to get the query signature. A scan of the signa
ture file returns those object identifiers whose signatures
contain onu in the positions the query signature does.
Mter these match candidates are fetched from secondary
storage a comparison with the query specifications finally
eliminates false drops.

1.2 Organisation of Signatures
In single-levelsignature methods every signature must be
accessed and tested. This ia done faster than sequential
scan of the objects themselves, because the signatures
are much smaller. Obviously the retrieval performance
of the first step is linearly related with the number of
objects. The more objects exist the more time is spent
on scanning the signature file !cf. RABI84).

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253168.253189&domain=pdf&date_stamp=1986-09-01

signature flle data base
name delivery order order text

ono description

•• 0110101110 Ot Magnum Hawaii lOS CRT This order is applied
lOT PC-AT /370 within our leasing contract
209 Graphic Board with Hawaii Leasing Corp.

,, 1001101010 o, Kojak New York 106 PC-Portable The FBI is to be
007 ~Finger-Mouse charged for this order

•s 1010010111 os Derrick Munich 202 6._KB Board This material shall
10SCRT be bought on credit

'Q 0010000110 Q = {de1cription ='CRT', order tezt ~{'leafing'}}

Rq = {ot}
s is a false drop

&g. 1: single-level signature method

To support a faster access, multi-level signature
methods are suggested [PFAL80, SACK83). In the in
dexed aignature approach [PFAL80J a signature in the
i-th level is created by superimposing (OR-ing) the sig
natures contained in one page of the (i-1)-th level. On
the first level (leaves) we have one signature associated
with one object or the object itself. Retrieval is processed
by recursively searching the index tree with the query
signature as a filter to cut off paths that cannot satisfy
the query. In static environments this method provides
a good retrieval performance if the file creation is done
well [see PFAL80J.

However, the office environment is dynamic [CHRI-
84]. Therefore we need a method, which provides fast
retrieval and which can also be balanced in the pres
ence of insertions, deletions and updates. That is, no
periodic reorgani.Jsation should be required. In this pa
per we want to show how dynamic restructuring as in
B-trees [BAYE72) can be adopted to the signature ap
proach. Therefore a. new appropriate splitting technique
is developed.

In the sequel we give a new approach of indexed sig
natures, called S-tree. The S-tree provides a considerable
performance gain and achieves a clustering on a. signature
basis. In section 2 we show the motivation for the new ap
proach, section 3 gives a definition of the 8-tree. Section
4 presents the operations retrieve, insert, delete together
with the maintenance procedures. The performance of
retrieval is analysed in the following section 5. Section 6
gives some experimental results. In section 7 we outline
the clustering feature; section 8 gives some remarks on
adaptability. Finally, section 9 summarises the results.

2. Basic Concept of S-Tree

In the dynamic office environment retrieval and inser
tions are frequent operations. Applying the indexed sig
nature approach here, means to store the signatures in
the order the associated objects are inserted. That is,

78

new signatures are entered into the last partially filled
node, and ORed to the covering signatures above [cf.
PFAL80J. Alt\nugh [PFAL80j suggests to support the
expectation of many insert operations by partially filling
the nodes at creation time, performance may decrease be
cause the signature tree is designed as a static structure.
Moreover, a frequent processing of a time consuming pe
riodic reorgani.Jsation should be avoided in the dynamic
office environment. Often new inserted signatures would
not be inserted into the appropriate leaf (see fig. 2).
Here, " appropriate" means the leaf where similar signa
tures are stored. "Similar signatures" are signatures with
many set onea in same positions.

The superimposing of dissimilar signatures causes an
increase of set onea. For example, consider the four sig
natures of node B2 in fig. 2, each with three set onea. By
superimposing these signatures results the first signature
in root B1 with seven set onu. Consequently, the nodes
near the root become less selective and ·more paths of the
tree must be searched for retrieval. Consider the query
signature s(Q) =< 10100010 > applied on the tree given
in figure 2; all nodes must be accessed:

To avoid such a degeneration we should insert new
signatures into leaves where similar signatures were al
ready stored. H the appropriate leaf is already full, we
will partition the signatures into two groups according to
their similarity and put them into two·nodes. This will
p~vent, that the superimposing of a single node's sig
natures to obtain the signature of the next level, causes
a quick increase in set onu. Figure 3 shows such an S
tree, applied on the same object base as fig. 2. Consider
the leaf N7; four similar signatures are ORed to form
the first signature in node N3, which obtains four onu,
just a single one more. H we apply the same query with
s(Q) =< 10100010 >we must search just one short path
(Nl, N3} to recogni.Jse that no match exists in the ob
ject base. A successful search is processed faster too, e.g.

81

l 0 1 1 l 1 l l

l l l 1 0 l 1 0

I
1 l l. 0 1 0 1 l

l 1 1 l 0 l l l

82 83 I 84 85

r-- 0 0 1 0 1 1 0 0

~
0 0 0 1 0 ~ 0 0 1 0 1 0 1 0 r- 0 0 1 0 0 1 l 0

r-- l 0 l 0 0 0 0 l l 0 l 0 0 ,..... 0 l 0 0 0 0 1 l 0 0 0 1 0 l 1 0

0 0 1 1 0 0 l 0 1 0 l 1 0 0 l 1 0 0 0 0 1 1 l 0 0 0 0 0 1

II· 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0

lr
1 0 0 0 0 0 1 1

I ---, 6 I ~· -,
0 0 0 0 0 0 0 0 0 0 0 0 0

9 7 5 13 4 8 12 2 15 10 14 3 6 11

ftg. 2: static indexed signature approach

N1

0 0 1 1 1 1 l ol I l 1 l 0 0 0 1 1

N2 N3

0 0 1 0 1 1 1 0 - 1 1 1 0 0 0 0 i
r-- 0 0 1 1 l 1 0 0 1 1 0 0 0 0 1 1

0 0 1 1 0 l 1 0 ~

N4 N5 N6 N7 N8

~::
r- 0 0 l 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 :lw: l 0 0 0 0 1 1 1 0 0 0 0 1 0

0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1

1r
0 0 1 0 0 1 1 0

~
1 0 1 1 0 1 l 1 0 0 0 0 0 ~o·o 1 1

l l 0 0 0 0 0 l

::::::;- ., ---, ::;----,

ftg. 3: S-tree (4,2,3)

8(Q) =< 11000010 >. Moreover, due to the dynamic re
structuring, the S.tree needs no periodic reorganiaation
to keep the performance.

3. Strueture of 8-Tree
3.1 Deflnltlon
Similar to a B+ -tree, an S-tree is a height balanced mul
tiway tree, whose index part is managed like a 8-tree
!cf. BAYE72). Each node corresponds to a page. The
leaf nodes contain either the objects or object identifiers

79

(aida). The former case we call an immediate S-tree, the
latter a mediate S-tree. The leaves of a mediate S.tree
contain entries of the form < a, oid > where the object
is accessed by the old. The signature a is generated by
applying an appropriate hash transformation on the ob
ject's attribute values, which maps them into a bit string
a = b1lb:~l·· .lbL of fixed length L with b; E {0,1}. A
signature in a non-leaf node is defined by superimposing
the signatures contained in it's son node (via the signa
ture operator cr). Therefore, entries E in non-leaf nodes
have the form < a, p > with the property

{E.•IE e N(p)}

"(= 5 5
good split bad split

tlg. 4: Splitting (K=4,k=2)

II] $ = a(N(p)) := u({E ... IE e N(p)}) := V E.a of the two new nodes are low. That is, their signatures
BeN(p) should have u few set one• u pOeaible. Figure 4 illus

where N(p) refers to the Node p and E.a denotes the
signature component of an entry E. Now we can define
a mediateS-tree of the type (K, k, h), K, k, he N0 , with
the following properties: ·
(1) Each path from the root to any leaf haa the same

length h (height).
(2) The root hu at least 2 and at moat K sons unless

it is a leaf.
(3) Every node except the root has at least k and at

moat K sons.
(4) The signatures contained in each non-leaf node are

minimal w.r.t. II).
The height h of an S-tree for n objects is at moat
flog, n 1 - 1. The minimum number of nodes in an S-tree

is #min(N} = 1 + 2E!',:-0
2 k' = 1 +2 (a.•,.-~1 1) 1 the max-

. b · # (N) ~,-1 x• K•-1 Th unum num er 111 mas = .£Ji=O = 1'l'=r. e
minimum apace utilisation for all nodes is -}. Contrary
to a B-tree, there exists no order of entries within a node.
Moreover, due to hat~h-coding it is p011ible that the same
signature appean multiple times in an S-tree (see fig. 3:
the signatures of object Oe and Oa).

1.2 Problem of SpUttlng
According to the original B-tree we could choose the min
imal branching factor k = f. However, the entries in
the S-tree have not only a guidance function. Since the
signatures are abstractions of seta, they contain already
some more information about the objects. Due to su
perimposing, the signatures near the root contain more
set one. than signatures near the leaves (see fig.3). In
the retrieval process, it is not unlikely that nodes with
many set one. are accessed, without leading to a hit (cf.
the &rat example in section 2). Therefore a more tlexible
splitting technique is required which allows 1 S k S f
(d. analog problem for spatial searching IGUTT84}. To
achieve a good split we must pay attention to partition
the K + 1 signatures belonging to one node t.o split., such
that. the signature weights

L

7<•> == E,,
i=l

80

trates an example for a good and a bad split. Here, the
bad split produces not only heavier signatures, but also
the same signature pattern. Consequently, retrieval pro
ceeds either on both nodes or o~ none, i.e. the split d~es
not increue selectivity. Let a(N,) and a(N,.) be the signa
ture of the left and the right brother node after splitting,
we have to solve the following problem:

with the constraint

/c S #(N,), #(Nr) S K.

However, since up to now no efficient algorithm for that
problem is known (to the author), we solve this problem
heuristically, and hence p011ibly suboptimal. ·

4. Operations of the 8-"J.\oee
4.1 Retrieval

Similar to the B-tree the search algorithm descends
within the S-tree from the root down to the leaves. How
ever, more than one subtree may be visited recursively
[cf. PFAL80). To demonstrate the retrieval, consider the
following query signature a(Q) =< 00110000 > applied
on the S-tree of fig. 3. The fint signature of the root
leads us to his son (N2}, because it contains a one at
the third and the fourth position. Processing proceeds
here at the second and third signature. In the leaf NS
we find two match candidates (0., 0&), in the leaf N6 we
have one (07)• However, it is p011ible to gather all ob
ject identifien first, sort them according to page numbers
and fetch and check the match candidates in one pass,
i.e. without visiting a single page twice.

4.2 Insertion
After inserting a leaf entry in a suitable leaf, the signature
of that leaf must be updated. If the leaf signature has
changed, thu change must be propagated upwards within
the S-tree. If the leaf node becomes overfull, it has to be
split. Splits propagate upwards too. To find the appro
priate leaf node, the CHOOSE function descends in the

Initialize NODE:= ROOT.NODE; START:= ROOT.DEPTH; DEPTH:= START; s := s(Q);
Procedure RETRIEVE (START, DEPTH, NODE, s)
Fetch (NODE);
for eaeh entry E in NOD~ do

if' 1\ E.• = •
then if DEPTH < HElGHT

then RETRIEVE (START, DEPTH + 1, E.p, s)
else Check (E.oid) (*check object and return *)

end; (*good drops to response set *)
if PAGE.NEXT(NODE) :!- oil A DEPTH = START (* for NEXT option *)
then RETRIEVE (START, DEPTH, PAGE.NEXT(NODE), s); (* see section 8 *)
end; (*end RETRIEVE*)

lnitialir.e STOP-DEPTH = HEIGHT;

Procedure INSERT (IE, STOP-DEPTH) (* IE = entry to be inserted *)
DEPTH := ROOT.DEPTH;
if DEPTH = 1 then NODE := CHOOSE (ROOT, DEPTH, STOP-DEPTH, IE.s)

else NODE := CHOOSE-NEXT (ROOT, DEPTH, STOP-DEPTH, IE.s);
if NODE is full then SPLIT {NODE, DEPTH, IE)

else begin
Add IE to NODE;
ADJUST (NODE, DEPTH, IE.s);
end;

end; (* end INSERT *)

Function CHOOSE (NODE, DEPTH, STOP-DEPTH, s) returns NODE variles DEPTH
Fetch (NODE);
if DEPTH = STOP-DEPTH then CHOOSE := NODE

else begin
Find entry E with minimal t(I,E.•);
CHOOSE := CHOOSE (E.p, DEPTH + 1, STOP-DEPTH, s);
end;

end;(* end CHOOSE*)

Procedure ADJUST (NODE, DEPTH, s)
Feteh (Pareot(NODE));
Find entry E with E.p = NODE;
s := E.s v s;
if E.s ~ s then begin

E.s ::: s;
if DEPTH > ROOT.DEPTH then ADJUST (Pareot(NODE), DEPTH - 1, sh
end;

end;(* end ADJUST*)

S-tree on one single path. This path ia aelected step by
step by applying a similarity measure to the aignat1ll'el
in a node (a} and the signature to be inserted (a'}. We
may use the Hamming distance mdnc:

6(a, a'} := 'l(a V a')- 'l(• A a').

81

However, to achieve a high aelectivity in each node we
need a low weight 'J(a(N)). Therefore it ia better to
chooae that node to proceed which obtains the lowest
weight increaae. So we de&ne the 111eigAt increue tlutance

"'f(a v a') = "'f(a) + E(a, a')

E(11 1
1

) := 'J(.t V .t1)- 7(1) = 7(-.1 A 11
).

Procedure SPLIT (NODE, DEPTH, IE)
Add IE to NODE; (*virtually *)
a:= {(Find Entru E with mozimal "Y(E.•))};
{J :={(Find Entru E with mazimal t(•(a),E.•))};
for each remaining Entry E do

(* ftnd heaviest entry *)
(* ftnd entry with maximal weight increase *)

if #a+ #(remaining enlrie•) = k then Assign all remaining entries to a (*stop *);
if #/J +#(remaining enlrie.1) = k then Assign all remaining entries to {J (*stop*);
if t(1(a"),E.1) < t(•(/J),E.•) then Assign E to &

else Assign E to {J;
end;
Get a fresh page NEWNODE;
Set PAGE.NODE(NEWNODE) to {J;
IE:=< V~E .• ,NEWNODE >;
Set PAGE.NODE(NODE) to a;
if NODE#: ROOT.NODE then begin

Fetch (Parent(NODE));
Find entry E with E.p = NODE;
E.s := VoE·•i
NODE:= Parent(NODE);
if NODE is full then SPLIT (NODE, DEPTH, IE)

else begin

end;
else if CUT = false then begin

Get a fresh page ROOT;

Add IE to NODE;
ADJUST {NODE, DEPTH, IE.s);
end;

Add< Vo E.1,NODE >to ROOT;
Add IE to ROOT;
HEIGHT := HEIGHT +1
end;

else begin
PAGE.NEXT(NEWNODE) := PAGE.NEXT(NODE);
PAGE.l\'EXT(NODE) := NEWNODE;
end;

end; (* end SPLIT *)

Notice, the weight increase distance is not commutative
and therefore no metric. By applying the weight increase
distance, the adjustment propagation is better bound.
For refinement we may use the Hamming distance as a
secondary strategy.

4..1 Splitting
If a node into which an entry should be inserted is already
full, it will be split. That is, the K + 1 entries should be
partitioned into two nodes in such a way that the weight
of the two new signatures is low and the Hamming dis
tance between them is high. This reduces the probability
that a query requires both nodes to be accessed. Instead
of an exhaustive enumeration of all possible partitions,
we give a simple heuristic, which needs only linear time.

In the first step the algorithm picks that entry that
has the heaviest signature weight. Since this entry would
be the heaviest in one of the two partitions too, and since

82

it must be assigned to one of them, we choose this entry
as aeed a. As a second aeed {J we select that entry, which
has the maximum number of set ones in positions where
a has nulla, i.e. the entry providing the maximal weight
increase to a .. This is reasonable since superimposing the
signatures to achieve the node's signature never reduces
the weight. Thereafter the remaining signatures are as
signed to that seed where they achieve the lowest weight
increase, in equality to {J because of it's lower weight.
Further refinements are pOssible but not very promising
because of the minimal node load lr:.

4.4 Deletion
Together with pure deletions we take updates into con
sideration that change the objects' signatures. Updates
are managed via delete and insert. Deleting entries from
an 8-tree causes some maintenance to keep the desired
tree properties. The original B-tree presents the catena-

Procedure DELETE (s, oid)
SEARCHSTOP := false;
SEARCIIDEL (ROOT.NODE, ROOT.DEPTH, s, oid, SEARCHSTOP);
for DEPTH = ROOT.DEPTH until HEIGHT do

if U(DEPTH) :F 0 then INSERT (U(DEPTH), DEPTH);
end;
end; (*end DELETE *)

Procedure SEARCHDEL (NODE, DEPTH, s, oid, SEARCHSTOP)
Feteh (NODE);
repeat for each entry E in NODE

if •A E.• = •
then if DEPTH< HEIGHT

then SEARCHDEL (E.p, DEPTH + 1, s, oid, SEARCHSTOP);
else if E.oid = oid then begin

Delete entry E;
SEARCHSTOP := true;
end;

until SEARCHSTOP;
if SEARCHSTOP = true and NODE has fewer than k entries and NODE :F ROOT

then begin
F := Parent(NODE);
Fetch (F);
Delete entry E with E.p = NODE in F;
U(DEPTH) := NODE;
end;

end; (* end SEARCHDEL *)

tion and underflow algorithm for that purpose [BA YE72].
In the approach of [GUTT84] underfull nodes are elim
inated. This is propagated upwards, and then the en
tries with possible subtrees are reinserted at the correct
level. Here we adopt the reinsertion strategy because
updates and deletions are less frequent than retrieval
or insertions, especially in the office. environment·. The
reinsertion incrementally refines the S-tree structure ac
cording to adjacency of signatures. Furthermore the ef
ficiency of reinsertion should be comparable the corre
sponding B-tree algorithms because pages requested are
already fetched into primary memory due to the proceed
h.g search [GUTT84].

6. Analysla
To estimate the performance we assume that a partial
match query with t set onea should be processed. We give
asimple analysis in terms ofnode fetches (I/0). We make
the following assumptions concerning the generation of
the signatures:

(al) each signature has the same signature weight 1 < f•
(a2} hash-coding provides an equal distribution of set

on ea.

Notice that assumption (al) does not fix the coding
method. From assumption (a2) follows, that the(~) pos
sible distinct signatures are equally probable. For a sig-

83

nature which is derived by superimposing l signatures
with weight "(, the probability that t prespecified posi
tions contain one.s is [ROBE79, SACK83]:

For the sake of simplicity Roberts derived in {ROBE79)
the following approximation:

We can explain the approximation as follows: f is the
probability that one prespeci&ed bit position contains a
one. Hence 1 - t is the probability for a null. Raising
to power with ~ results the probability to keep the null
by superimposing ~ signatures. The correct probability
that one prespecified position contains a one is 1 minus
that term. By raising to power with t the approximation
for t prespecified positions is achieved.

In the S-tree one signature in an i-th level node is
generated by superimposing the signatures in the corre
sponding son. Therefore each signature in a node is the
result from superimposing a subset of several objectsc
signatures. At the root this subset has the cardinality

A(1) = m-r• where n ia the number of all objects and
P(1) describes the expected utilisation of the root. We
obtain for depth ci

n

A(tl) = llt=l P(i).

We keep the auumption that all L poaitiona are
set with equal probability for an estimation purpose, al
though the combining of similar signatures in deeper lev
els produces lower weights. For each depth ci we obtain
the following formula

[('Y)A(d)]i
p(t, tl) ~ 1- 1- r .

Now the number of matches at depth d ia

..
II (P{i) . p{t, i)),
•=•

and each match cauaea a node access of level d+ 1. Conse
quently the number of node accesses in the whole S-tree
can be estimated by

la-1 (d) t; n (P(i) . p(t. i)) + 1.

6. Experimental Reaulta

We have implemented the S-tree (SEMS86] to compare ita
performance against the single-level signature method.
In thia section we present preliminary results of three
experiments. Each experiment ~nvolves two steps, first
building an S-tree of pseudo-random object signatures
and second running a set of pseudo-random query signa
tures against it.

The generation of pseudo-random query signatures
ill designed independent of the object signatures. Each
S-tree ia tested with several query signature weights. For
each single weight 60 retrieval operatiou with different
signatures are executed and the average number of I/Os
ia presented. Each set of query signatures contains suc
ceuful and uuucceaaful searches. A special teat set con
taining only succeaaful query signatures requires up to
four 1/0s more than the presented results for the mixed
set.

The following experiment parameters are set. For
each experiment the page siae ia 2 K bytes, the siae of a
pointer ill • bytes. Experiment 1 conceru signatures with
length 256 bits and weight 40. The minimal node load lc
ill 20, the maximal node load K ill 56. Experiment 2 and
3 concern signatures with length 512 and weight 80 reap.
120, k = 10, K = 30. The lower part of the presented
tables shows the average number of 1/0a for the S-tree
corresponding to the query weight. For comparison pur
pose we have computed the number of 1/0-operatiou for

scanning the one-level signature file, where the same sig
natures. were stored sequentially and dense, i.e. without
gaps. The results here are independent of the weight of
the query signature.

In comparison with the single-level signature
method the S-tree of experiment 1 achieves a better per
formance (see table 1). Moreover, performance ia im
proved through the longer signatures. For example, the
S-tree baaed on 256/40 signatures (table 1) needs 152
I/Os for a query with a 10 set one• (a quarter weight),
while the S-tree with the 512/80 signatures (table 2) re
quires only 75 I/Os for a corresponding query with 20 set
onu._

Compared to the single-level method the S-tree with
a. signature length of 512 bits improves the performance

number of objects 1000 2000 5000 10000
single-level method i8 36 90 179
S-tree
query weight

10 18 32 75 152
20 12 19 45 87
30 8 12 28 51
40 6 8 18 32

table 1: 1/0a of experiment 1 {256/40,20,56)

number of objects 1000 2000 5000 10000
single-level method 34 67 167 334
S-tree
query weight

5 34 65 160 315
10 19 36 90 177
20 9 15 38 75
30 6 10 24 46
40 5 8 19 36
50 4 7 17 32
60 4 7 17 31
70 4 1 16 31
80 4 1 16 30

table 2: I/Os of experiment 2 {512/80,10,30)

number of objects 1000 2000 5000 10000
single-level method 34 67 167 334
S-tree
query weigh\

10 39 14 192 391
20 28 51 130 240
30 20 36 91 172
.(() 15 26 68 126
50 12 20 52 94
60 10 16 41 14
70 8 13 34 61
80 7 11 28 52
90 6 10 25 41

100 5 9 22 41
110 5 8 21 38
120 5 8 19 36

\able 3: 1/0a of experiment 3 (512/120,10,30)

even if the signature weight is increased (see table 3).
The tables 2 and 3 show that the S-tree perfonns better
for a query weight of 10% of object signature weight or
more. The more bits are set to oae in the query signature
the leas nodes are accessed. The height of the S-treea in
experiment 2 and 3 is three, they increase the storage
overhead of single-level signatures by factor 1.4 up to
1.9.

'1. Clustering and B.eflnecl Retrieval

The immediate S-tree contains the objects in it's leaves.
Their signatures may be stored with them, but they can
also be computed by demand. To achieve nearly the
same branching factor we may de&ne a larger page sin
for the leaves, because the objects are larger than signa.
turea. This approach groups objects together with sim
ilar signatures. Therefore the immediate S-tree realises
a dwtenag according to the hash-coding (cf. S,ALT78,
RIJS79). Perfonnance is increased because it is probable
that more objects of one leaf are match candidates. Due
to the split operation, the S-tree keeps the clustering in a
highly dynamic environment. There is no extra reorgani
aation and no extra cluster generation neceaaary. But the
qu'lility of clustering depends on the hash-coding. Here a
hash-coding is required which preserves the similarity of
the objects.

A second advantage of the S-tree is that it allows
a refined retrieval. In the oflice environment a browsing
capability is needed (TSIC85b]. This iterative browsing
function can be supported by applying relevance feed
back methods (cf. RIJS79, SALT83b) or nearest neighbor
search on signature basis. One p01111ibility may be that
the user pinpoints those objects in the initial response
set which seem to be relevant for him. Thereafter the
signatures associated with these selected objects may be
ANDed to discover their joint properties. The resulting
signature may be applied on the object base for the next
search iteration.

Nearest neighbor search on signature basis can be
supported by extending the signature tat with the Ham
ming distance or a distance e which allows a certain
number of set oae poaitiona to be aull. The latter case
can be done easily within the S-tree retrieval procedure.
We just replace the teat condition with 7(a(Q) A_E.a) ~
7(a(Q)) - e. Another re&nement is the opportunity
to embed a more sophisticated filter (e.g. similar to
SALT83a) instead of one single query signature.

8. AdaptabWty
· · 8.1 Light Queries

A partial-match query is defined as a light querr if it'•
signature weight is lower than a given weight g

'J(a(Q)) <g.

In the case of a light query the probability is high, that
in a big and high S-tree a great part of the tree has to

85

be searched recursively. The eignature of a light query
has only a few set otae• and therefore it is a leas selec
tive filter. Hence it is suitable here to search directly the
leaves of a mediate S-tree or one level above in the case
of the immediate S-tree. To support this, we chain the
leaves containing &rat-level signatures (see &g. 5). This
ia similar to the one-level signature scan. As anchor we
use the new parameter LEAF. To proceas a light query
we call the RETRIEVE procedure with the parame
ters (LEAF.DEPTH, LEAF.DEPT H, LEAF.NODE,
a(Q)). That is, the START parameter is equal to the
depth of the leaves. Then the second part of the RE
TRIEVE procedure is processed which aearcha sequen
tially the leaves.

8.~ Cutting the Top of the 8-Tree
For very large object bases we cannot exclude that the
root and nodes near to it have a heavy signature weight
or even 7(•) = L. In such a case nearly all bite are set to
one and the selectivity of these nodes is decreased. The
reason for this is given in euperimpoeing, heuriatical split
ting and the minimum node utllilation k. Here it is rea.
aonable to cut off the top of the S.tree. Descending from
t.he root those nodes are discarded, which contain mostly
signatures heavier than a given threaholci. By chaining
the new roots we obtain a forest of S-ti'\U (see fig. 6),
which is more suitable for very large data bases. The
consequences resulting from that approach are already
taken into account in the given algorithms above via the
use of the NEXT-pointer. Since we initialiae the START
parameter with the new depth of the root, the second
part of the RETRIEVE procedure provides a search of .
the forest of S-treea. For inaertion, the CHOOSE-NEXT •
function visits &ratly every root and then descends the
moat suitable S-tree. Finally, in the split proceas the
chaining of roots is cont.roUed by the CUT variable.

g, Summary and Coneluaion

Recently, several related approaches have been made. To
build a tree of signatures, we could interprete the signa.
tures as binary numbere and apply an ordinary B+ -tree
(similar to the akd-B-tree in (OREN84)). But this would
not perfectly utilile the feature that a signature due to
hash-coding always describes a set of objects (DADA83}.
The approach of IPRAB83) applies a eignature for each
node of an ordinary B-tree a.a an additional filter. In con
trast to these approaches, we keep signatures as guides
on the path and use the descriptive power of signatures
to describe seta.

In this paper we have presented a new approach of
dynamic indexed signatures for the retrieval of objects
in an office information ayatem. Due to heuriatical split
ting the S-tree is balanced and keeps adjacent signatures
together. This increases retrieval perfonnance in moat
cases. An important and desired feature is that the an
swer to a more specified query usually is found quicker
than the answer to a leas speci&ed one. The S-tree im-

10010011

&g. 5: S-tree with light query

&g. 6: cutting the top of an S-tree (2,l,h)

proves this feature. Moreover, the S-tree supports clus
tering on a signature basis, since similar signatures are
grouped together. This could be the basic idea for ap
plying more refined retrieval methods. Bec:aue of the
S-tree's adaptability it seems usable in many office envi
ronments. Therefore, we have started an implementation
to prove it's quality in some experiments (SEMS86), and
plan an integration into a data base system for advanced
applications {DASDBS (DEPP85) or AIM (DADA86J).

Acknowledgements
Prof. H.-J. Schek provided many interesting suggestions
and thoughtful comments. His help is gratefully acknowl
edged. Moreover the author wishes to thank F. Geb
hard (GMD), P. Pistor (IBM HDSC), V. Obermeit, H.-B.
Paul, M.B. Scholl, W. Waterfeld, G. Weikum, T. Sem
sroth and A. WoJf, who have contributed to clarifying
discuaaions of the material. Thanks also to Lis Klinger
who helped to preparate the figtlftll.

86

References
BAYE72 Bayer, R., McCreight, E.M.: Organisation

and Maintenance of Large Ordered Indexes,
Acta Informatica. 1972, pp. 173- 189.

CBRI84 Christodoulakis, S. et al.: Development of a
Multimedia Information System for an Office
Environment, Proc. VLDB 1984, pp. 261 -
271.

DADA83 Dadam, P., Piator, P., Sebek, H.-J.: A Predi
c;ate oriented Locking Approach for Integrated
Information Systems, in: Mason, R.E.A.
(ed.): Information Processing 83, Proc. IFIP
1983, pp. 763 - 768.

DADA86 P. Dadam, K. Kuespert, F. Andersen, H.
Blanken, R. Erbe, J. Guenauer, V. Lum, P.
Pistor, G. Walch: A DBMS Prototype to Sup
port Extended NF2 Relations: An Integrated
View on Flat Tables and Hierarchies, accepted
for SIGMOD 1986.

DEPP85 Deppisch, U., Obermeit, V., Paul, H.-B.,
Sebek, H.-J., Scholl, M.H., Weikum, G.: The
Storage Subsystem of a Data Base Kernel
System (in German), Proc. GI Conf. on
Database Systems for Office Automation, En
gineering and Scientific Applicatioi}S 1985, pp.
421 ·· 440; English version ·available as Tech
nical Report DVSI-1985-T1, TU Darmstadt,
1985. .

FAL084 Faloutsos, C., Christodoulakis, S.: Signa
ture Files: An Access Method for Documents
and its Analytical Performance Evaluation,
TOOlS 1984, pp. 267- 288.

FAL085a Faloutsos, C.: Access Methods for Text, Com
puting Surveys 1985, pp. 49- 74.

FAL086b Faloutsos, C.: Signature files: Design and per
formance comparison of some signature ex
traction methods, Proc. SIGMOD 1985, pp.
63- 82.

FAL085c Faloutsos, C., Christodoulakis, S.: Design of
a Signature File Method that Accounts for
Non-Uniform Occurence and Query Frequen
cies, Proc. VLDB 1985, pp. 165- 170.

GIBB83 Gibbs, S., Tsichritzis, D.: A Data Mod
elling Approach for Office Information Sys
tems, TOOlS 1983, pp. 299 - 319.

GUTT84 Guttman, A.: R-Trees: A dynamic index
structure for spatial searching, Proc. SIC
MOD 1984, pp. 47 - 57.

HARR71 Harrison, M.C.: Implementation of the Sub
string Test by Hashing, CACM 1971, pp. 777
-779.

OREN84 Orenstein, J.A., Merrett, T.H.: A Class of
Data Structures for Associative Searching,
Proc. PODS 1984, pp. 181 - 190.

PFALBO Pfalt1, J.L., Berman, W.J., Cagley, E.M.:
Partial-Match Retrieval using Index~ De
scriptor Files, CACM 1980, pp. 522 - 528.

PRAB83 Prabhakar, T.V., Sahasrabuddhe, H.V.: Sig
nature Trees - A Data Structure for Index Or
ganisation, Proc. IEEE Conf. on Systems,
Man and Cybernetics 1983, pp. 1145- 1147.

RABI84 Rabitti, F., Ziska, J.: Eval~ation of Acces
Methods to Text Documents in Office Sys
tems, in: Rijsbergen, van, C.J. (ed.): Proc.
Research and Development in Information Re
trieval 1984, pp. 21 - 40.

RABI85 Rabitti, F.: A Model for Multimedia Docu
ments, in: TSIC85a, pp. 227 - 250.

RIVE76 Rivest, R.L.: Partial-Match Retrieval Algo
rithms, SIAM Journal of Computing 1976, pp.
19- 50.

RIJS79 Rijsbergen, van, C.J.: Information Retrieval,
2nd ed., London: Butherworth 1979.

ROBE79 Roberts, C.S.: Partial-Match Retrieval via
the Method of Superimposed Codes, Proc.
IEEE 1979, pp. 1624 - 1642.

87

SACK83 Sacks-Davis, R., Ramamohanarao, K.: A two
level superimposed coding scheme for Partial
Match Retrieval, Information Systems 1983,
pp. 273 - 280.

SALT18 Salton, G., Wong, A.: Generation and Search
of Clustered Files, TODS 1978, pp. 321 - 346.

SALT83a Salton, G. Fox, E.A., Wu, H.: Extended
Boolean Information Retrieval, CACM 1983,
pp. 1022 - 1036.

SALT83b Salton, G., McGill, M.J.: Introduction to
Modem Information Retrieval, New York:
McGraw-Hill 1983.

SCHE77 Sebek, H.-J.: Tolerating Fussiness in Key
words by Similarity Searches, Kybemetes
1977, pp. 175- 184.

SCHE78 Sebek, H.-J.: The Reference String Access
Method and Partial Match Retrieval, IBM
Scientific Center Report TR 77.12.008; partly
contained in: The Reference String Indexing
Method, in: Bracchi, G., Lockemann, P.C.
(eds.): Proc. Information System Methodol
ogy 1978, Springer LNCS 65, pp. 432 - 459.

SCHE81 Sebek, H.-J.: Methods for the Administra
tion of Textual Data in Data Base Systems,
in: Oddy, R.N. et al._ (eds.): Information Re
trieval Research, London: Butherworth 1981,
pp. 218- 235.

SCHE82 Sebek, H.-J., Pistor, P.: Data Structures for
an Integrated Data Base Management and
Information Retrieval System, Proc. VLDB
1982, pp. 197 - 207.

SENS86 Semsroth, T.: Experimental Studies on S
Trees, Master Thesis, TU Darmstadt, 1986,
forthcoming.

TSIC85a Tsichritzis, D. (ed.): Office Automation,
Berlin, Heidelberg: Springer 1985.

TSIC85b Tsichritzis, D., Christodoulakis,- S., Lee, A.,
Vandenbroek, J.: A Multimedia Filing Sys
tem, in: TSIC85a., pp. 43 - 65.

