
·------ ·--·-·-~--· --. --

Object-Oriented Technology

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253228.253388&domain=pdf&date_stamp=1997-05-01

Abstract Syntax from Concrete Syntax

David S. Wile

University of Southern California /lnfonnation Sciences Institute

4676 Admiralty Way

Marina del Rey, CA USA

wile@isi.edu

(310) 822-1511

ABSTRACT

Modem Software Engineering practice advocates
the development of domain-specific specification
languages to characterize formally the idioms of
discourse and jargon of specific problem domains.
With poorly-understood domains it is best to
construct an abstract syntax to characterize the
domain concepts and abstractions before developing
a concrete syntax. Often, however, a good concrete
syntax exists a priori: sometimes in sophisticated
formal languages characterizing (often
mathematical) domains but more often in miniature,
legacy-code languages, sorely in need of reverse
engineering. In such cases, it is necessary to derive
an appropriate abstract syntax - or its first cousin,
an object-oriented model - from the concrete
syntax. This report describes a transformation
process that produces a good abstract representation
from a low-level concrete syntax specification.

Keywords
Abstract syntax, concrete syntax, domain-specific
languages, program transformation, grammars,
object-oriented models, reverse engineering.

Sponsor
Defense Advanced Research Projects Agency under
contract number F30602-93-C-0240.

Pennission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy
right notice, the title of the publication and its date appear, and notice is
given that copyright is by pennission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
pennission and/or fee
JCSE 97 Boston MA USA
Copyright 1997 ACM 0-89791-914-9/97/05 .. $3.50

472

ABSTRACT MODELS

In recent years, programming language design and
implementation technology have evolved into useful
tools for software engineers. The development of
Fourth Generation Languages and, more generally,
domain-specific specification languages to
characterize formally the idioms of discourse and
jargon of specific problem domains has lead to
productivity increases of as much as two orders of
magnitude [1, 2, 5, 8]. Hence, language design
and implementation techniques have a new-found
relevance to software engineering practice.

Many modern tools have been developed for
language processing to aid the software engineer in
analyzing, simulating, measuring and synthesizing
programs. These in tum are implemented using
attribute grammars, recursive descent techniques,
abstract interpretation, partial evaluation, etc. These
tools rely on an abstract syntax representation of the
domain-specific language, a representation that just "
captures the fundamental underlying concepts in the
language, stripped of its "syntactic sugar." Such an
abstract representation is the goal for producers of
object-oriented models as well [3], and the two are
invariably closely related [7].

Syntax-directed systems like the Cornell
Synthesizer Generator [11], Mentor [6], and
Gandalf [9] advocate designing the abstract syntax
together with the concrete syntax; the Booch
method also advocates finding the key abstractions
of a domain early in the process. However, there are
common situations where a language already exists
in concrete form, but an abstract syntax has not yet
been designed for it. In order to use modern
language processing tools on such a language it is
desirable to convert the existing concrete syntax
into an appropriate abstract syntax.

One situation where such conversion in necessary is
when a problem domain already has a significant
amount of formalism ingrained, and all that is
desired is to characterize the existing intuitive
concepts in an abstract way. Reverse engineering is
another arena in which adapting existing concrete
syntax is desirable. Many "dusty decks" have
unfathomable Y ACC code characterizing
corporation jargon and everyday practice. If these
are to be adapted, for example, to modern object
oriented techniques, some way to convert the
concrete syntax into an abstract syntax is needed,
e.g., into a set of C++ class declarations.

Present-day technologies in actual use in software
engineering practice for developing concrete syntax
and mapping it into an abstract syntax are rather
primitive. Y ACC appears to be the tool of choice
for specifying concrete syntax with an
accompanying program to map it into abstract
syntax. (Actually, there is little discipline here -
programmers can do all kinds of semantic
manipulations during the parse, perhaps
circumventing the invention of an abstract syntax
altogether!)

Hence, the technique presented in this report can be
used as a step in the disciplined development of
support tools for language manipulation. The
process of converting from concrete to abstract
actually is quite straightforward. One can argue
that much of the technique presented below actually
represents a way to improve existing abstract
syntaxes. Hence, as a side-benefit, this paper can be
used to examine existing abstract models for
clumsiness of expression.

The process is described in enough detail that
software engineers can apply the process manually
and produce good results. The process is indeed
heuristic. However, with a little "advice" from the
software engineer, a fully automatic version of the
process can be implemented to convert concrete
syntax into a tasteful abstract syntax design.
Indications of how this was done in the author's
language processing system, Popart, are presented
below. Examples from the concrete syntax for
CORBA's IDL [10] are used to illustrate the
process.

473

RELATIONSHIPS BETWEEN ABSTRACT

AND CONCRETE SYNTAX

In order to discuss the relationships between
concrete and abstract syntax, languages for
expressing each of them are necessary. YACC's
sublanguage for expressing concrete syntax is
characterized by production definitions, comprised
of a production name, followed by the colon
symbol, followed by a set of alternatives separated
by "l"s.1 Each alternative is a sequence of
nonterminals (other production names) or lexical
class denotations. For example,

type_property _list:
LRP AR opt_extent_spec
opt_key_spec RRP AR

interface_header:
INTERFACE i~ntifier
opt_inheritance_spec

opt_type_property_list

opt_inheritance_spec:
/* no inheritance specifier */
COLON inheritance_spec

inheritance_spec:
scoped_name I scoped_name

COMMA inheritance_spec

interface: interface_dcl I forward_dcl

describe the nonterminals, type_property_list,
interface_header, opt_inheritance_spec,
inheritance_spec and interface. The
interface_header is defined to be the word
"interface'' (from the lexeme class with the same
name) followed by an identifer followed by an
opt_inheritance_spec followed by an
opt_type_property_list. The opt_inheritance_spec
is either the empty string or a colon (from the
lexeme class, COLON) followed by an
inheritance_spec, i.e. it is optionally this latter
alternative. (The names "_opt" and "_list" are not
formal parts of the grammar description language,
but rather helpful mnemonics provided in the
names. One cannot, of course, count on this having

t Interspersed with code executed during the parse, which we
ignore here.

been adhered to in the description of arbitrary
concrete syntaxes.) And an interface is simply an
interface_dcl or aforward_dcl.

The goal of an abstract syntax is to describe the
structural essence of a language [6]. Syntax trees
are operators- describing the important concepts in
a language -- applied to typed operands -
describing the important components associated
with the concept. Each operand is named with the
role it plays in the concept. Trees are classified in a
tree of types known as phyla - describing
inheritance relationships between concepts.
Abstract syntax trees terminate in a prespecified set
of primitive types, such as identifier and integer.
Here we add the ability to reference list of phylum
and optional phylum as well. For example,

operator type_property_list:
(esloptional extent_spec ,
ksloptional key_spec)

operator interface_header :
(idlidentifier ,
inheritance I optional list of

scoped_name,
plloptional type_property _list)

phylum interface :=
interface_ del union forward_ del

describes the type_property_list operator and the
interface_header operator. The latter bas operands
named id, inheritance, and pl, whose types are
identifier, list of scoped_name, and
type_property_list, respectively. Notice that
inheritance identifies the role of the scoped_names
not otherwise inferable from the specification. An
interface is a phylum with subphyla interface_dcl
and forward_dcl. These latter may either be
operators or phyla themselves. Any particular
abstract syntax representation will need to
implement these concepts in an appropriate
representation (e.g. lists in C++ might use a List
template).

The relationship between this abstract syntax tree
example and the concrete syntax above illustrates
several of the concerns when mapping between the
two. First, many of the mappings will be
straightforward. The interface nonterminal became

474

a phylum in the abstract syntax. However, there are
cases where extra lexical elements make this less
obvious, as will be illustrated below. The
interface_header operator is nearly the obvious
mapping, wherein nonterminals referenced on the
right hand side of the production become operands
of the operator named by the non terminal on the left
hand side of the production. The only deviation
here is that what was an opt_inheritance_spec has
been expanded in the definition of
interface_header.

Such substitution or "unfolding" is used frequently
in converting from the concrete to the abstract.
Several instances of it occur in this example.
Notice that all references to non terminals beginning
with opt_ have been removed. Also recursive
structures like inheritance_spec have turned into
lists. Probably the only arbitrary relationship
between the two regards the naming of the operand
slots.

Abstract Syntax Induced by the Concrete Syntax

For nearly 20 years I have been developing a
syntax-based system, called Popart, to be used in
prototyping languages and their semantics rapidly
[12]. A distinguishing feature of the system is that
the language for describing the concrete syntax - an
extension of BNF called "WBNF' - induces the
abstract syntax entirely automatically. There are
two reasons that this abstract syntax is suitable.
First, concrete syntactic structures support the
higher level abstract syntax notions mentioned
above, such as optionality and lists. Second, a
simple annotation can be placed on a production to
influence the abstract syntax that is derived.

This is quite unlike the existing syntax
manipulating systems mentioned above, which are
based on the abstract syntax, with explicit mapping
between abstract and concrete required. One of the
implications of including high level constructs in
WBNF is that there are many ways to represent the
same concrete syntax in the language. Hence, the
language designer is trading simplicity of
expression for additional structure in the abstract
syntax tree. Fortunately, there is a set of
transformations that preserves the concrete syntax
but varies the induced abstract syntax. These
enable the transformation of a concrete syntax in

Y ACC into a "tasteful" abstract syntax definition
for the same language in C++.

The conventions used in WBNF grammars are:

• concatenation:
block := declarations statements;

• alternation:
declaration := function I procedure;

• constant lexical items:
plusop := '+ 1'-;

• optionality:
int := 'integer identifier { 'in range };

• "Kleene plus":
statements := statement+ ;

• lists with separators:
funcall :=identifier'(expr A ', ');

• precedence:
expr := < ('+ 1'-), ('* 1'/), 'A> primitive;

• nesting:
'declare ('integer I 'real) variable;

• variable lexical items:
LEXEME <I alphanumeric;

Each production composed from these constructs
can be converted automatically to abstract syntax
declarations. Generally, conversion is a recursive
process (denoted n over the pattern elements on the
production's right hand side, generating operands
with appropriate roles and types for the operator
named by the nonterminal on the left hand side of
the production. However, sometimes the
translation needs to be modified to produce
subphyla where operands would naturally be
produced by T. This is indicated by the grammar
designer with the symbol "II" at the end of the
WBNF production.

That is,

is
T [<production-name>:= <pattern>;]

operator <production-name> :
(T [<pattern>])

However, alternation ofnonterminals

<production-name> :=
<nonterminal-1> 1 ... 1 <nonterminal-n>;

is almost always represented compactly, viz.

475

--~-----~---'"------

<production-name> :=
<nonterminal-1>1 ... 1<nonterminal-n> II

T of this will produce the abstract syntax
declaration:

phylum <production-name> :=

<nonterminal-1> union
••• union <nonterminal-n>

The following covers most cases:

T [<pattern-1> 1 ... kpattern-n>]-+
T [<pattern-1>], ... ,T [<pattern-n>]

T [<pattern-1> ... <pattern-n>]-+
T [<pattern-1>], ... ,T [<pattern-n>]

T [<nonterminal> +]-+
<role name> !list of <non terminal>

T [<nonterminal> A <constant>]-+
<role -name> I list of <non terminal>

T [{<pattern>}] -+ optional * T [<pattern>]

T [<nonterminal>] -+
<role- name> I <non terminal>

T [<constant>]-+

(Here, "*" indicates application of optional to all
phyla resulting from application of T to the
pattern.)

Hence, T translates

interface_header :='INTERFACE identifier
{ ' : scoped_name A ' , }
{ type_property_list};

into:

operator interface_header :
(identifier I Identifier,
scoped_name !optional list of

Scoped_name,
type_property _listloptional

Type_property _list)

Actually, in WBNF one can annotate occurrences of
non terminals to specify role names:

unary_expr := { unary_operator#op}
primary_expr#ex;

generates:

operator unary_expr :
(op I unary_operator, ex I primary_expr)

Generally, constant lexical items are ignored by T,
except when the entire right hand side of a
production consists of constants. Then an abstract
syntax representation for the enumerated type is
generated:

plusop := '+ I '-;
generates2

:

operator plusop : (lexemei{PLUS,MINUS})

To summarize, the translation takes each
nonterminal that has been indicated as "compact"
and turns that into a phylum declaration with the
right hand side types as subtypes. Each
nonterminal that is not compact becomes an
operator with operands having the types of the
nonterminals on the right hand side. Role names
should be generated that describe the relationship of
the operand to the operator. If the nonterminal is
embedded in an optional clause, a corresponding
construct should be introduced on the right hand
side; similarly for lists.

However, there are a few more special cases where
the translation is not so straightforward. For
example, with

unary_expr := { unary_operator#op}
primary_expr#ex;

most unary_exprs will not involve a
unary_operator. Whether one wants the extra
indirection in the abstract syntax is a matter of
taste. Often, instead, this will be represented as a
phylum with name unary_expr with two subtypes:
primary_expr and rep_unary_expr, where the latter
operator is defined:

operator rep_unary_expr : (op I unary_ operator,

ex I
primary_expr)

phylum unary_expr: primary_expr union
rep_unary_expr

Again, WBNF uses the "II" to force this
interpretation in the induced abstract syntax, viz.

2 An enumerated phylum is induced.

476

unary_expr := { unary_operator#op}
primary_expr#ex II ;

A HEURISTIC CONVERSION PROCESS

The heuristic process involved in transforming from
the YACC syntax to C++ is:

• Convert YACC to WBNF;
• Distribute concatenation across alternation

and remove excessive nesting;
• Reduce special left-recursive patterns;

• Introduce iteration;
• Introduce binary operators (precedence);
• Rewrite as simple alternatives;

• Unfold certain iterative and optional
definitions arrived at above, from bottom to
top;

• Cull out productions that can represent
phyla;

• Distinguish duplicate labels in remaining
productions;

• Determine which constants should be folded
into new productions;

• Replace constants with references to
productions containing them;

• Remove unused productions
• Convert to C++ class declarations.

The process will be illustrated by examples. First
consider an example portion of a Y ACC grammar:

model: specification

specification: definition
I definition specification

definition:
type_dcl SEMI I
const_dcl SEMI I
except_dcl SEMI I
interface SEMI I
module SEMI

The first stage of the algorithm is to convert this to
the following WBNF specification:

-.• ~-- ~-,.......- -· ·--;-::·:
t ~ ' ' • J #

model := specification ;

specification := definition
I definition specification ;

definition :=
type_dcl'; I const_dcl'; I except_dcl'; I

interface '; I module '; ;

This is arrived at by simply substituting all the
lexical constants with the appropriate constant.
(This is unnecessary as long as we keep track of the
fact that a reference is to a constant lexical class
rather than to another nonterminal, but the
examples are easier to read this way.) Replace ":"
by ":=" and add a semicolon to the right of each
production. Trivial.

It is important to emphasize that the process of
transforming the resulting WBNF productions
maintains the concrete syntax as invariant while
improving the abstract syntax.

Because the process both removes existing
nonterminals and introduces new ones (eventually
phyla and operators), important nonterminals must
be protected from removal. So the usage of
non terminal names in the grammar is analyzed next
to determine which productions cannot be reached
by productions other than themselves. In Y ACC,
this will only be the distinguished start symbol but
other grammars may allow multiple entry points. It
is important not to discard these in the conversion
process. Other important nonterminals may be
"evident" to a software engineer as well.
Throughout the conversion process, these should
not be discarded, even if the algorithm suggests
doing so.

The next step of the process is motivated by the fact
that a phylum should not have multiple operands
representing the same abstract entity. For example,
the definition in specification above plays the same
role semantically in either alternative. The
distribution transformation takes alternatives and
variously groups them or turns them into options.
For example,

specification := definition
I definition specification ;

will be turned into

specification := definition { specification } ;

Similarly,

477

-------~~··----·

definition := type_dcl'; I const_dcl'; I
except_dcl'; I interface'; I
module';;

will be turned into3

definition :=
(type_dcll const_dcll except_dcl
I interface I module) '; ;

The next phase is to introduce WBNF's iterative
constructs into the grammar. For example,

key_list := key I key ', key_list;

will turn into

key_list := key" ' , ;

This is accomplished by looking for particular
recursive patterns in the definitions. This
introduction is warranted in terms of the abstract
syntax that will be produced because the field (key
in this case) will contain a list (or array) of
elements. Precedence and the forms of recursion
that WBNF permits are then introduced.

Precedence introduction into the WBNF
corresponds to recognizing certain constants from
the grammar as infix operators. For example, the
productions:

add_expr := mult_expr
I add_expr '+ mult_expr
I add_expr '- mult_expr ;

mult_expr := unary_expr
I mult_expr '* unary_expr
I mult_expr '/ unary_expr
I mult_expr '% unary_expr ;

use a stylized pattern of left recursion that would be
expressed in WBNF:

add_expr := < ('+I'-), ('*I '/I'%)>
unary_expr II ;

It is worth mentioning that this must be converted
to abstract syntax in a fashion similar to the way the
unary operator was above, viz. by introducing a
rep_add_expr class:

3 Actually, a phylum should be introduced here: the
semicolon should have no effect on the induced abstract
syntax. Hence, a "II" should be added to the end of the
production.

operator

rep_add _expr :
(operatori(PLUS,MINUS,ST AR,

SLASH,PERCENT},
left I add_expr,
right I add_expr)

phylum add_expr :
unary_expr union rep_add _expr

In tastefully constructed abstract syntax we rarely
have a type with only one field, which itself holds a
list of elements. Similarly, whenever the entire right
hand side of a production is optional, it is more
common to put the optionality with the situation in
which it is optional. Hence,

interface_header :=
'INTERFACE identifier

opt_inheritance_spec
opt_type_property_list;

opt_inheritance_spec := { ': inheritance_spec } ;

inheritance_spec := scoped_name" ',;

opt_type_property_list := { type_property_list}

should be turned into:

interface_header :=
'INTERFACE identifier
{ ' : scoped_name" ' , }
{ type_property_list};

So the algorithm first determines which productions
have right hand sides that are simply options or
iterations. The definitions are unfolded in a bottom
up fashion. For example, the inheritance_spec
disappeared in the example above, for just this
reason4

•

Two more transformations arise directly from
considerations on how WBNF induces an abstract
syntax. First, although some fields in the original
syntax that have the same name and occur on the
right hand side of a production mean the same field,
some do not- in particular, multiple occurrences in
the same alternative. Such fields must be named

4 Again, not all unfoldings performed in the process are
necessarily desirable; some productions may have
mnemonic value and should not be removed.

478

uniquely while still conveying the abstract type. In
WBNF, such names are indicated by using a "#"
sign followed by an identifier. Hence, the algorithm
will turn:

inverse_traversal_path :=identifier' :: identifier

into:

inverse_traversal_path :=
identifier#A' :: identifier#B ;

Of course, a person can invent more mnemonic
names, such as:

inverse_traversal_path :=
identifier#source' :: identifier#target;

Another detail concerning the relationship between
concrete and abstract syntaxes is that alternations of
constants in the concrete syntax often correspond to
discriminators in the abstract syntax. Hence, our
next concern is to find alternations of constants
(and optional constants) occurring within the tree
and to break them out explicitly into their own
productions. Thus

attr_dcl :=
{ 'READONL Y }
' ATTRIBUTE domain_type identifier

{ fixed_array_size} ;

would occasion the introduction of

attr_dcl :=
{ con_2}
'ATTRIBUTE domain_type identifier
{ fixed_array_size } ;

con_2 := 'READONL Y ;

Again, better names for introduced productions can
be chosen by people cognizant of the context.
Sometimes these constants need not be separated
out; they really are "syntactic sugar," in which
case the process should not introduce the new
production.

Finally, all that is left to do is to eliminate the
productions that are not used any more, i.e., those
no longer reachable from the original top level
nonterminals, and convert the WBNF to an
appropriate language for expressing abstract syntax.

Implementation Details

The abstract syntax produced by Popart is actually
produced in Common Lisp. However, a simple

""":-;-·-:
' ' . '' ' ,~ '

translator from WBNF has been written that
produces C++ in the following straightforward way.
The phyla become virtual class declarations. The
operators are normal class declarations. Both have
their immediate superphyla as superclasses. The
only issues involve the uses of lists and optional
elements. The former is easily handled by using a
List template. The latter is similarly solved by
using a pointer in the slot, which, when null,
indicates an empty slot. The only problematic issue
is that virtual classes (actually any class hierarchy)
must be typed by a pointer. Hence, an operand
cannot be both required and, say, an expression. Of
course, methods could be introduced to protect the
syntax, but if tools such as parsers and transformers
manipulate it, this may be unnecessary.

This heuristic process has been implemented in the
Popart system, running in Common Lisp. Further
details are available in [13].

The automatic conversion of Corba' s IDL into
abstract syntax was especially rewarding, since the
grammar is sizable and previously, we had used ad
/we methods for accomplishing the translation. The
version produced by the tool differed in name
selection and in that the automated version took
advantage of some opportunities missed in the
(arduous) hand translation process.

RELATED WORK

Abstract syntax has been around for decades; one
can easily argue that Lisp was the first
instantiation! In the late 1970s the Mentor group
proselytized the concept [6]. About the same time
recognition that languages are algebras (with
abstract syntax signatures) was recognized by the
ADJ-group [4]. All syntax-directed tool suites are
founded on abstract syntax: Gandalf [9] and the
Cornell Synthesizer Generator [11], for example. Its
analog in object classes has been recognized by
Lieberherr [7]. He also shows how conversion
between LL1 languages and abstract syntax is
possible. However, the most effort relating the two
has been spent on printing abstract syntax trees in
concrete syntax (one of many possible such
syntaxes). I am not aware of anyone attempting to
solve the problem addressed here.

479

'------~-~--- --

CONCLUSIONS

There are three possible uses for the algorithm
proposed above:
• Converting existing concrete syntax by hand to

an abstract syntax;
• Implementing an algorithm to do such a

conversion;
• Analyzing modem concrete syntax proposals

for appropriateness in modem BNF variants.
The use of Y ACC as the starting point for the
conversion process is quite arbitrary: any syntax
specification that is less rich than Popart' s will do.

This last use has been especially fruitful as a
teaching aid for the construction of appropriate
concrete syntax designs for Popart. The clean-up
portion of the algorithm is routinely run over new
grammars to check for sloppy designs.

ACKNOWLEDGEMENTS

I would like to thank Neil Goldman at lSI for
stimulating me to design this process. His hand
conversion of IDL suggested new heuristics during
its development. I would also like to thank the two
ICSE referees for their substantive comments.

~ --~- -------,-...,----... ' ,-. _____ "' ---~---------------

REFERENCES

1. Balzer, R., Feather, M., Goldman, N., and Wile,
D. "Domain Specific Notations for Command
and Control Message Passing", Internal report:
USC/Information Sciences Institute, Marina del
Rey, CA (1994).

2. Batory, D. "Scalable Software Libraries,"
Proceedings of the First ACM SIGSOFI'
Symposium on the Foundations of Software
Engineering (1993), pp. 191-197.

3. Booch, G.Object-OrientedAnalysis and
Design.Benjamin!Cummings Publishing. (1994)

4. Goguen, J. A., Thatcher, J. W., Wagner, E. G.,
and Wright, J. B. "Initial Algebra Semantics
and Continuous Algebras," Journal of the ACM
24:1(1977), pp. 68-95.

5. Kieburtz, R., Bellegarde, F., Bell, J., Hook, J.,
Lewis, J., Oliva, D. Sheard, T., Walton, T, and
Zhou, T. "Calculating Software Generators from
Solution Specifications," Technical Report#
CS!E-94-032B of the Oregon Graduate Center
(1994).

6. Donzeau-Gouge, V., Kahn, G., Lang, B., and
Melese, B. "Document Structure and
Modularity in Mentor," Proceedings of the
ACM SIGSOFTISIGPLAN Software Symposium
on Practical Software Development
Environments (1984), pp. 141-148.

7. Lieberherr, K. Adaptive Object--Oriented
Software: The Demeter Method with
Propagation Patterns, PWS Publishing
Company, Boston (1996)

8. Levy, L. S. Taming the Tiger: Software
Engineering and Software Economics, Springer
Verlag: New York (1987).

9 . Notkin, D., Ellison, R. J., Staudt, B. J., Kaiser,
G. E., Kant, E., Habermann, A. N., Ambriola,
V., and Montangero, C. Special issue on the
GANDALFproject, Journal of Systems and
Software 5, 2(May 1985).

10. The Object Management Group, The Common
Object Request Broker: Architecture and
Specification, OMG Document# 91.12.1 Digital
Equipment, HP, Hyperdesk, NCR, Object
Design, Sunsoft (1992).

11. Reps, T. W., and Teitelbaum, T. The
Synthesizer Generator. Springer-Verlag, New
York (1988).

12. Wile, D. S. Popart: Producers of Parsers and
Related Tools, Reference Manual.
USC/Information Sciences Institute, Marina del
Rey, CA (1993).

13. Wile, D. S. "Toward a Calculus for Abstract
Syntax Trees," in Proceedings of a Workshop on
Algorithmic Languages and Calculi IFIP's TC2,
Strasbourg (Feb., 1997). (To appear.)

480

