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ABSTRACT 

Modem Software Engineering practice advocates 
the development of domain-specific specification 
languages to characterize formally the idioms of 
discourse and jargon of specific problem domains. 
With poorly-understood domains it is best to 
construct an abstract syntax to characterize the 
domain concepts and abstractions before developing 
a concrete syntax. Often, however, a good concrete 
syntax exists a priori: sometimes in sophisticated 
formal languages characterizing (often 
mathematical) domains but more often in miniature, 
legacy-code languages, sorely in need of reverse 
engineering. In such cases, it is necessary to derive 
an appropriate abstract syntax - or its first cousin, 
an object-oriented model - from the concrete 
syntax. This report describes a transformation 
process that produces a good abstract representation 
from a low-level concrete syntax specification. 
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ABSTRACT MODELS 

In recent years, programming language design and 
implementation technology have evolved into useful 
tools for software engineers. The development of 
Fourth Generation Languages and, more generally, 
domain-specific specification languages to 
characterize formally the idioms of discourse and 
jargon of specific problem domains has lead to 
productivity increases of as much as two orders of 
magnitude [1, 2, 5, 8]. Hence, language design 
and implementation techniques have a new-found 
relevance to software engineering practice. 

Many modern tools have been developed for 
language processing to aid the software engineer in 
analyzing, simulating, measuring and synthesizing 
programs. These in tum are implemented using 
attribute grammars, recursive descent techniques, 
abstract interpretation, partial evaluation, etc. These 
tools rely on an abstract syntax representation of the 
domain-specific language, a representation that just " 
captures the fundamental underlying concepts in the 
language, stripped of its "syntactic sugar." Such an 
abstract representation is the goal for producers of 
object-oriented models as well [3], and the two are 
invariably closely related [7]. 

Syntax-directed systems like the Cornell 
Synthesizer Generator [11], Mentor [6], and 
Gandalf [9] advocate designing the abstract syntax 
together with the concrete syntax; the Booch 
method also advocates finding the key abstractions 
of a domain early in the process. However, there are 
common situations where a language already exists 
in concrete form, but an abstract syntax has not yet 
been designed for it. In order to use modern 
language processing tools on such a language it is 
desirable to convert the existing concrete syntax 
into an appropriate abstract syntax. 



One situation where such conversion in necessary is 
when a problem domain already has a significant 
amount of formalism ingrained, and all that is 
desired is to characterize the existing intuitive 
concepts in an abstract way. Reverse engineering is 
another arena in which adapting existing concrete 
syntax is desirable. Many "dusty decks" have 
unfathomable Y ACC code characterizing 
corporation jargon and everyday practice. If these 
are to be adapted, for example, to modern object
oriented techniques, some way to convert the 
concrete syntax into an abstract syntax is needed, 
e.g., into a set of C++ class declarations. 

Present-day technologies in actual use in software 
engineering practice for developing concrete syntax 
and mapping it into an abstract syntax are rather 
primitive. Y ACC appears to be the tool of choice 
for specifying concrete syntax with an 
accompanying program to map it into abstract 
syntax. (Actually, there is little discipline here -
programmers can do all kinds of semantic 
manipulations during the parse, perhaps 
circumventing the invention of an abstract syntax 
altogether!) 

Hence, the technique presented in this report can be 
used as a step in the disciplined development of 
support tools for language manipulation. The 
process of converting from concrete to abstract 
actually is quite straightforward. One can argue 
that much of the technique presented below actually 
represents a way to improve existing abstract 
syntaxes. Hence, as a side-benefit, this paper can be 
used to examine existing abstract models for 
clumsiness of expression. 

The process is described in enough detail that 
software engineers can apply the process manually 
and produce good results. The process is indeed 
heuristic. However, with a little "advice" from the 
software engineer, a fully automatic version of the 
process can be implemented to convert concrete 
syntax into a tasteful abstract syntax design. 
Indications of how this was done in the author's 
language processing system, Popart, are presented 
below. Examples from the concrete syntax for 
CORBA's IDL [10] are used to illustrate the 
process. 
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RELATIONSHIPS BETWEEN ABSTRACT 

AND CONCRETE SYNTAX 

In order to discuss the relationships between 
concrete and abstract syntax, languages for 
expressing each of them are necessary. YACC's 
sublanguage for expressing concrete syntax is 
characterized by production definitions, comprised 
of a production name, followed by the colon 
symbol, followed by a set of alternatives separated 
by "l"s.1 Each alternative is a sequence of 
nonterminals (other production names) or lexical 
class denotations. For example, 

type_property _list: 
LRP AR opt_extent_spec 
opt_key_spec RRP AR 

interface_header: 
INTERFACE i~ntifier 
opt_inheritance_spec 

opt_type_property_list 

opt_inheritance_spec: 
/* no inheritance specifier */ 
COLON inheritance_spec 

inheritance_spec: 
scoped_name I scoped_name 

COMMA inheritance_spec 

interface: interface_dcl I forward_dcl 

describe the nonterminals, type_property_list, 
interface_header, opt_inheritance_spec, 
inheritance_spec and interface. The 
interface_header is defined to be the word 
"interface'' (from the lexeme class with the same 
name) followed by an identifer followed by an 
opt_inheritance_spec followed by an 
opt_type_property_list. The opt_inheritance_spec 
is either the empty string or a colon (from the 
lexeme class, COLON) followed by an 
inheritance_spec, i.e. it is optionally this latter 
alternative. (The names "_opt" and "_list" are not 
formal parts of the grammar description language, 
but rather helpful mnemonics provided in the 
names. One cannot, of course, count on this having 

t Interspersed with code executed during the parse, which we 
ignore here. 



been adhered to in the description of arbitrary 
concrete syntaxes.) And an interface is simply an 
interface_dcl or aforward_dcl. 

The goal of an abstract syntax is to describe the 
structural essence of a language [6]. Syntax trees 
are operators- describing the important concepts in 
a language -- applied to typed operands -
describing the important components associated 
with the concept. Each operand is named with the 
role it plays in the concept. Trees are classified in a 
tree of types known as phyla - describing 
inheritance relationships between concepts. 
Abstract syntax trees terminate in a prespecified set 
of primitive types, such as identifier and integer. 
Here we add the ability to reference list of phylum 
and optional phylum as well. For example, 

operator type_property_list: 
(esloptional extent_spec , 
ksloptional key_spec) 

operator interface_header : 
(idlidentifier , 
inheritance I optional list of 

scoped_name, 
plloptional type_property _list) 

phylum interface := 
interface_ del union forward_ del 

describes the type_property_list operator and the 
interface_header operator. The latter bas operands 
named id, inheritance, and pl, whose types are 
identifier, list of scoped_name, and 
type_property_list, respectively. Notice that 
inheritance identifies the role of the scoped_names 
not otherwise inferable from the specification. An 
interface is a phylum with subphyla interface_dcl 
and forward_dcl. These latter may either be 
operators or phyla themselves. Any particular 
abstract syntax representation will need to 
implement these concepts in an appropriate 
representation (e.g. lists in C++ might use a List 
template). 

The relationship between this abstract syntax tree 
example and the concrete syntax above illustrates 
several of the concerns when mapping between the 
two. First, many of the mappings will be 
straightforward. The interface nonterminal became 
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a phylum in the abstract syntax. However, there are 
cases where extra lexical elements make this less 
obvious, as will be illustrated below. The 
interface_header operator is nearly the obvious 
mapping, wherein nonterminals referenced on the 
right hand side of the production become operands 
of the operator named by the non terminal on the left 
hand side of the production. The only deviation 
here is that what was an opt_inheritance_spec has 
been expanded in the definition of 
interface_header. 

Such substitution or "unfolding" is used frequently 
in converting from the concrete to the abstract. 
Several instances of it occur in this example. 
Notice that all references to non terminals beginning 
with opt_ have been removed. Also recursive 
structures like inheritance_spec have turned into 
lists. Probably the only arbitrary relationship 
between the two regards the naming of the operand 
slots. 

Abstract Syntax Induced by the Concrete Syntax 

For nearly 20 years I have been developing a 
syntax-based system, called Popart, to be used in 
prototyping languages and their semantics rapidly 
[12]. A distinguishing feature of the system is that 
the language for describing the concrete syntax - an 
extension of BNF called "WBNF' - induces the 
abstract syntax entirely automatically. There are 
two reasons that this abstract syntax is suitable. 
First, concrete syntactic structures support the 
higher level abstract syntax notions mentioned 
above, such as optionality and lists. Second, a 
simple annotation can be placed on a production to 
influence the abstract syntax that is derived. 

This is quite unlike the existing syntax
manipulating systems mentioned above, which are 
based on the abstract syntax, with explicit mapping 
between abstract and concrete required. One of the 
implications of including high level constructs in 
WBNF is that there are many ways to represent the 
same concrete syntax in the language. Hence, the 
language designer is trading simplicity of 
expression for additional structure in the abstract 
syntax tree. Fortunately, there is a set of 
transformations that preserves the concrete syntax 
but varies the induced abstract syntax. These 
enable the transformation of a concrete syntax in 



Y ACC into a "tasteful" abstract syntax definition 
for the same language in C++. 

The conventions used in WBNF grammars are: 

• concatenation: 
block := declarations statements; 

• alternation: 
declaration := function I procedure; 

• constant lexical items: 
plusop := '+ 1'-; 

• optionality: 
int := 'integer identifier { 'in range }; 

• "Kleene plus": 
statements := statement+ ; 

• lists with separators: 
funcall :=identifier'( expr A ', '); 

• precedence: 
expr := < ('+ 1'-), ('* 1'/), 'A> primitive; 

• nesting: 
'declare ('integer I 'real) variable; 

• variable lexical items: 
LEXEME <I alphanumeric; 

Each production composed from these constructs 
can be converted automatically to abstract syntax 
declarations. Generally, conversion is a recursive 
process (denoted n over the pattern elements on the 
production's right hand side, generating operands 
with appropriate roles and types for the operator 
named by the nonterminal on the left hand side of 
the production. However, sometimes the 
translation needs to be modified to produce 
subphyla where operands would naturally be 
produced by T. This is indicated by the grammar 
designer with the symbol "II" at the end of the 
WBNF production. 

That is, 

is 
T [<production-name>:= <pattern>;] 

operator <production-name> : 
(T [<pattern>]) 

However, alternation ofnonterminals 

<production-name> := 
<nonterminal-1> 1 ... 1 <nonterminal-n>; 

is almost always represented compactly, viz. 
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<production-name> := 
<nonterminal-1>1 ... 1<nonterminal-n> II 

T of this will produce the abstract syntax 
declaration: 

phylum <production-name> := 

<nonterminal-1> union 
••• union <nonterminal-n> 

The following covers most cases: 

T [<pattern-1> 1 ... kpattern-n>]-+ 
T [<pattern-1>], ... ,T [<pattern-n>] 

T [<pattern-1> ... <pattern-n>]-+ 
T [<pattern-1>], ... ,T [<pattern-n>] 

T [<nonterminal> +]-+ 
<role name> !list of <non terminal> 

T [<nonterminal> A <constant>]-+ 
<role -name> I list of <non terminal> 

T [ {<pattern>}] -+ optional * T [<pattern>] 

T [<nonterminal>] -+ 
<role- name> I <non terminal> 

T [<constant>]-+ 

(Here, "*" indicates application of optional to all 
phyla resulting from application of T to the 
pattern.) 

Hence, T translates 

interface_header :='INTERFACE identifier 
{ ' : scoped_name A ' , } 
{ type_property_list}; 

into: 

operator interface_header : 
(identifier I Identifier, 
scoped_name !optional list of 

Scoped_name, 
type_property _listloptional 

Type_property _list) 

Actually, in WBNF one can annotate occurrences of 
non terminals to specify role names: 

unary_expr := { unary_operator#op} 
primary_expr#ex; 

generates: 



operator unary_expr : 
(op I unary_operator, ex I primary_expr) 

Generally, constant lexical items are ignored by T, 
except when the entire right hand side of a 
production consists of constants. Then an abstract 
syntax representation for the enumerated type is 
generated: 

plusop := '+ I '-; 
generates2

: 

operator plusop : (lexemei{PLUS,MINUS}) 

To summarize, the translation takes each 
nonterminal that has been indicated as "compact" 
and turns that into a phylum declaration with the 
right hand side types as subtypes. Each 
nonterminal that is not compact becomes an 
operator with operands having the types of the 
nonterminals on the right hand side. Role names 
should be generated that describe the relationship of 
the operand to the operator. If the nonterminal is 
embedded in an optional clause, a corresponding 
construct should be introduced on the right hand 
side; similarly for lists. 

However, there are a few more special cases where 
the translation is not so straightforward. For 
example, with 

unary_expr := { unary_operator#op} 
primary_expr#ex; 

most unary_exprs will not involve a 
unary_operator. Whether one wants the extra 
indirection in the abstract syntax is a matter of 
taste. Often, instead, this will be represented as a 
phylum with name unary_expr with two subtypes: 
primary_expr and rep_unary_expr, where the latter 
operator is defined: 

operator rep_unary_expr : (op I unary_ operator, 

ex I 
primary_expr) 

phylum unary_expr: primary_expr union 
rep_unary_expr 

Again, WBNF uses the "II" to force this 
interpretation in the induced abstract syntax, viz. 

2 An enumerated phylum is induced. 

476 

unary_expr := { unary_operator#op} 
primary_expr#ex II ; 

A HEURISTIC CONVERSION PROCESS 

The heuristic process involved in transforming from 
the YACC syntax to C++ is: 

• Convert YACC to WBNF; 
• Distribute concatenation across alternation 

and remove excessive nesting; 
• Reduce special left-recursive patterns; 

• Introduce iteration; 
• Introduce binary operators (precedence); 
• Rewrite as simple alternatives; 

• Unfold certain iterative and optional 
definitions arrived at above, from bottom to 
top; 

• Cull out productions that can represent 
phyla; 

• Distinguish duplicate labels in remaining 
productions; 

• Determine which constants should be folded 
into new productions; 

• Replace constants with references to 
productions containing them; 

• Remove unused productions 
• Convert to C++ class declarations. 

The process will be illustrated by examples. First 
consider an example portion of a Y ACC grammar: 

model: specification 

specification: definition 
I definition specification 

definition: 
type_dcl SEMI I 
const_dcl SEMI I 
except_dcl SEMI I 
interface SEMI I 
module SEMI 

The first stage of the algorithm is to convert this to 
the following WBNF specification: 

-.• ~-- ~-,.......- -· ·--;-::·: 
t ~ ' ' • J # 



model := specification ; 

specification := definition 
I definition specification ; 

definition := 
type_dcl'; I const_dcl'; I except_dcl'; I 

interface '; I module '; ; 

This is arrived at by simply substituting all the 
lexical constants with the appropriate constant. 
(This is unnecessary as long as we keep track of the 
fact that a reference is to a constant lexical class 
rather than to another nonterminal, but the 
examples are easier to read this way.) Replace ":" 
by ":=" and add a semicolon to the right of each 
production. Trivial. 

It is important to emphasize that the process of 
transforming the resulting WBNF productions 
maintains the concrete syntax as invariant while 
improving the abstract syntax. 

Because the process both removes existing 
nonterminals and introduces new ones (eventually 
phyla and operators), important nonterminals must 
be protected from removal. So the usage of 
non terminal names in the grammar is analyzed next 
to determine which productions cannot be reached 
by productions other than themselves. In Y ACC, 
this will only be the distinguished start symbol but 
other grammars may allow multiple entry points. It 
is important not to discard these in the conversion 
process. Other important nonterminals may be 
"evident" to a software engineer as well. 
Throughout the conversion process, these should 
not be discarded, even if the algorithm suggests 
doing so. 

The next step of the process is motivated by the fact 
that a phylum should not have multiple operands 
representing the same abstract entity. For example, 
the definition in specification above plays the same 
role semantically in either alternative. The 
distribution transformation takes alternatives and 
variously groups them or turns them into options. 
For example, 

specification := definition 
I definition specification ; 

will be turned into 

specification := definition { specification } ; 

Similarly, 
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definition := type_dcl'; I const_dcl'; I 
except_dcl'; I interface'; I 
module';; 

will be turned into3 

definition := 
( type_dcll const_dcll except_dcl 
I interface I module) '; ; 

The next phase is to introduce WBNF's iterative 
constructs into the grammar. For example, 

key_list := key I key ', key_list; 

will turn into 

key_list := key" ' , ; 

This is accomplished by looking for particular 
recursive patterns in the definitions. This 
introduction is warranted in terms of the abstract 
syntax that will be produced because the field (key 
in this case) will contain a list (or array) of 
elements. Precedence and the forms of recursion 
that WBNF permits are then introduced. 

Precedence introduction into the WBNF 
corresponds to recognizing certain constants from 
the grammar as infix operators. For example, the 
productions: 

add_expr := mult_expr 
I add_expr '+ mult_expr 
I add_expr '- mult_expr ; 

mult_expr := unary_expr 
I mult_expr '* unary_expr 
I mult_expr '/ unary_expr 
I mult_expr '% unary_expr ; 

use a stylized pattern of left recursion that would be 
expressed in WBNF: 

add_expr := < ('+I'-), ('*I '/I'%)> 
unary_expr II ; 

It is worth mentioning that this must be converted 
to abstract syntax in a fashion similar to the way the 
unary operator was above, viz. by introducing a 
rep_add_expr class: 

3 Actually, a phylum should be introduced here: the 
semicolon should have no effect on the induced abstract 
syntax. Hence, a "II" should be added to the end of the 
production. 



operator 

rep_add _expr : 
(operatori(PLUS,MINUS,ST AR, 

SLASH,PERCENT}, 
left I add_expr, 
right I add_expr) 

phylum add_expr : 
unary_expr union rep_add _expr 

In tastefully constructed abstract syntax we rarely 
have a type with only one field, which itself holds a 
list of elements. Similarly, whenever the entire right 
hand side of a production is optional, it is more 
common to put the optionality with the situation in 
which it is optional. Hence, 

interface_header := 
'INTERFACE identifier 

opt_inheritance_spec 
opt_type_property_list; 

opt_inheritance_spec := { ': inheritance_spec } ; 

inheritance_spec := scoped_name" ',; 

opt_type_property_list := { type_property_list} 

should be turned into: 

interface_header := 
'INTERFACE identifier 
{ ' : scoped_name" ' , } 
{ type_property_list}; 

So the algorithm first determines which productions 
have right hand sides that are simply options or 
iterations. The definitions are unfolded in a bottom
up fashion. For example, the inheritance_spec 
disappeared in the example above, for just this 
reason4

• 

Two more transformations arise directly from 
considerations on how WBNF induces an abstract 
syntax. First, although some fields in the original 
syntax that have the same name and occur on the 
right hand side of a production mean the same field, 
some do not- in particular, multiple occurrences in 
the same alternative. Such fields must be named 

4 Again, not all unfoldings performed in the process are 
necessarily desirable; some productions may have 
mnemonic value and should not be removed. 
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uniquely while still conveying the abstract type. In 
WBNF, such names are indicated by using a "#" 
sign followed by an identifier. Hence, the algorithm 
will turn: 

inverse_traversal_path :=identifier' :: identifier 

into: 

inverse_traversal_path := 
identifier#A' :: identifier#B ; 

Of course, a person can invent more mnemonic 
names, such as: 

inverse_traversal_path := 
identifier#source' :: identifier#target; 

Another detail concerning the relationship between 
concrete and abstract syntaxes is that alternations of 
constants in the concrete syntax often correspond to 
discriminators in the abstract syntax. Hence, our 
next concern is to find alternations of constants 
(and optional constants) occurring within the tree 
and to break them out explicitly into their own 
productions. Thus 

attr_dcl := 
{ 'READONL Y } 
' ATTRIBUTE domain_type identifier 

{ fixed_array_size} ; 

would occasion the introduction of 

attr_dcl := 
{ con_2} 
'ATTRIBUTE domain_type identifier 
{ fixed_array_size } ; 

con_2 := 'READONL Y ; 

Again, better names for introduced productions can 
be chosen by people cognizant of the context. 
Sometimes these constants need not be separated 
out; they really are "syntactic sugar," in which 
case the process should not introduce the new 
production. 

Finally, all that is left to do is to eliminate the 
productions that are not used any more, i.e., those 
no longer reachable from the original top level 
nonterminals, and convert the WBNF to an 
appropriate language for expressing abstract syntax. 

Implementation Details 

The abstract syntax produced by Popart is actually 
produced in Common Lisp. However, a simple 

""":-;-·-: .... 
' ' . '' ' ,~ ' 



translator from WBNF has been written that 
produces C++ in the following straightforward way. 
The phyla become virtual class declarations. The 
operators are normal class declarations. Both have 
their immediate superphyla as superclasses. The 
only issues involve the uses of lists and optional 
elements. The former is easily handled by using a 
List template. The latter is similarly solved by 
using a pointer in the slot, which, when null, 
indicates an empty slot. The only problematic issue 
is that virtual classes (actually any class hierarchy) 
must be typed by a pointer. Hence, an operand 
cannot be both required and, say, an expression. Of 
course, methods could be introduced to protect the 
syntax, but if tools such as parsers and transformers 
manipulate it, this may be unnecessary. 

This heuristic process has been implemented in the 
Popart system, running in Common Lisp. Further 
details are available in [13]. 

The automatic conversion of Corba' s IDL into 
abstract syntax was especially rewarding, since the 
grammar is sizable and previously, we had used ad 
/we methods for accomplishing the translation. The 
version produced by the tool differed in name 
selection and in that the automated version took 
advantage of some opportunities missed in the 
(arduous) hand translation process. 

RELATED WORK 

Abstract syntax has been around for decades; one 
can easily argue that Lisp was the first 
instantiation! In the late 1970s the Mentor group 
proselytized the concept [6]. About the same time 
recognition that languages are algebras (with 
abstract syntax signatures) was recognized by the 
ADJ-group [4]. All syntax-directed tool suites are 
founded on abstract syntax: Gandalf [9] and the 
Cornell Synthesizer Generator [11], for example. Its 
analog in object classes has been recognized by 
Lieberherr [7]. He also shows how conversion 
between LL1 languages and abstract syntax is 
possible. However, the most effort relating the two 
has been spent on printing abstract syntax trees in 
concrete syntax (one of many possible such 
syntaxes). I am not aware of anyone attempting to 
solve the problem addressed here. 
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CONCLUSIONS 

There are three possible uses for the algorithm 
proposed above: 
• Converting existing concrete syntax by hand to 

an abstract syntax; 
• Implementing an algorithm to do such a 

conversion; 
• Analyzing modem concrete syntax proposals 

for appropriateness in modem BNF variants. 
The use of Y ACC as the starting point for the 
conversion process is quite arbitrary: any syntax 
specification that is less rich than Popart' s will do. 

This last use has been especially fruitful as a 
teaching aid for the construction of appropriate 
concrete syntax designs for Popart. The clean-up 
portion of the algorithm is routinely run over new 
grammars to check for sloppy designs. 
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