
Rigi: A Visualization Environment
for Reverse Engineering

Margaret-Anne D. Storey Kenny Wong
School of Computing Dept. of Computer Science

Simon Fraser University University of Victoria
Burnaby, BC, Canada Victoria, BC, Canada

(250) 721-6019 (250) 721-7294
mstorey@csr.uvic.ca kenw@csr.uvic.ca

Hausi A. Miiller
Dept. of Computer Science

University of Victoria
Victoria, BC, Canada

(250) 721-7630

hausi@csr . uvic . ca

ABSTRACT
The Rigi reverse engineering system provides tNo con-
trasting approaches for presenting software structures
in its graph editor. The first displays the struc-
tures through multiple, individual NindoNs. The sec-
ond (neNer) approach, Simple Hierarchical Multi-
Perspective (SHriMP) views, employs fisheye views of
nested graphs. We compare and contrast these tNo in-
terfaces for visualizing software graphs, and provide re-
sults from user experiments.

Keywords
Fisheye vients, graph editor, nested graphs, reverse en-
gineering, software visualization.

INTRODUCTION
Graphs are particularly suitable for visually presenting
software structure. Nevertheless, as the size of soft-
Ware system8 increase, so too do their representations as
graphs. Advanced graphics and abstraction technique8
are needed to manage the visual complexity of these
large graphs.

The R,igi reverse engineering system currently provides
two solutions for broNsing softNare subsystem hierar-
chies [I]. The first approach uses multiple, overlapping
windoNs, where each window displays a portion of a
subsystem hierarchy. A second (neNer) approach, the
Simple Hierarchical Multi-Perspective (SHriMP) visu-
alization technique, presents softNare structures using
fisheye viems of nested graphs.

THE RIG1 SYSTEM
In Rigi, parsing the subject softNare system results in
a flat resource-flow graph that can be manipulated us-
ing a graph editor. The next phase is semi-automatic
and involves pattern-recognition skills, Nhere the re-
verse engineer identifies subsystems in the flat graph

Permission to make digital/hard copies of all or part ofthis material for
personal or ckiroom use is granted without fee provided that the copies
ore not made or distributed for profit or commercial advantage, the copy-
right notice, the title oftbe publication and its date appear, and notice is
@on that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
ICSE 97 Boston MA USA
Copyright 1997 ACM O-89791-914-9/97/05 ..$3.50

that form meaningful abstractions. These subsystem8
are collapsed to build multiple, layered hierarchies of
abstractions (see Fig. 1).

Figure 1: Rigi graph model

MULTIPLE WINDOWS
In the original Rigi approach, a subsystem hierarchy is
presented using individual, overlapping windoNs that
each display a specific slice of the hierarchy. For exam-
ple, the user can open windows to display a particular
level in the hierarchy, a specific neighborhood around
a software artifact, a flattening of the hierarchy, or the
overall tree-like structure of the entire hierarchy (see
Fig. 2). HoNever, with many open windows, user8 fre-
quently become disoriented.

SHriMP VIEWS
The SHriMP visualization technique employ8 a nested-
graph formalism and a fisheye-viem algorithm for ma-
nipulating large graph8 that provide8 contextual cue8
and preserve8 constraints such as orthogonality and
proximity among individually resizable nodes. For Rigi
purposes, the containment or nesting of node8 convey8
the parent-child relationships in a 8UbSyBtem hierarchy
(see Fig. 3).

USER EXPERIMENTS
A small pilot study involving 12 user8 was conducted
at the University of Victoria and Simon Fraser Uni-
versity according to an experiment design described in
[2]. Three softNare browsing methods were evaluated
(in this order): command-line tools (vi and &rep), Rigi
with multiple windoNs, and Rigi with SHriMP views.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253228.253496&domain=pdf&date_stamp=1997-05-01

Figure 2: (a) This window presents a main function and two subsystems List and Element which represent abstract
data types. (b) The List node is opened to view its children, the list data type and access functions. (c) This overview
window presents the subsystem hierarchy and provides context for the other windows.

(b)

Figure 3: (a) This window presents a main function and two subsystems List and Element as before. (b) The List
and Element nodes have been opened to display their children and show an overview of the hierarchy. (c) Composite
arcs have been opened to display the constituent lower-level dependencies.

Each user explored three game programs of varying size
but similar complexity (m random order): Fish, Hang-
man, and Monopoly. Each user performed four high-
level tasks (e.g., what does subsystem z do?) and four
low-level tasks (e.g., find all artifacts that directly or in-
directly depend on artifact z) with each interface. After
the tasks, each user answered a usability questionnaire
and participated in an informal interview.

Some findings found one interface less effective than an-
other. For low-level tasks on the large Monopoly pro-
gram, the command-line tools were worse than mul-
tiple Rigi windows (P = 0.01) and ShriMP views
(P = 0.0005). For low-level tasks on the very small
Fish program, the command-line tools and multiple
Rigi windows were worse than SHriMP (by P = 0.05
and P = 0.005 respectively). Questionnaire results
suggested that the users were more satisfied with the
SHriMP interface than with multiple Rigi windows (at
least when exploring small programs). When asked to
hypothetically choose a user interface for their next soft-
ware project, 8 users chose SHriMP.

SUMMARY
Higi provides two interfaces for browsing software hier-
archies. These two interfaces have recently been evalu-
ated through some user experiments at the University of
Victoria and Simon Fraser University. Early results and
observations indicate that the two interfaces are effec-
tive for different types of program understanding tasks.
We are currently planning further experiments to test
this hypothesis.

REFERENCES
[l] M.-A. D. Storey, H. Miiller, and K. Wong. Ma-

nipulating and documenting software structures. In
P. Eades and K. Zhang, editors, Software Visual-
ization. World Scientific Publishing Co., November
1996.

[2] M.-A. D. Storey, K. Wong, P. Fong, D. Hooper,
K. Hopkins, and H. Miiller. On designing an ex-
periment to evaluate a reverse engineering tool. In
Proceedings of the 3rd Working Conference on Re-
verse Engineering, Monterey, California, Nov 8-10,
1996.

607

