
-’ c -

Defining Families: The Commonality Analysis

Mark A. Ardis David M. Weiss
Bell Laboratories Bell Laboratories

Lucent Technologies Lucent Technologies
1000 E. Warrenville Rd. 1000 E. Warrenville Rd.

Naperville, IL 60566 USA Naperville, IL 60566 USA
+1630 979 0042 +16309798392

maa@research.bell-labsxom weiss@research.bell-labs.com

ABSTRACT
A recent trend in both the software engineering research and
industrial communities has been to seek ways systematically
to engineer software domains. One approach is to develop
families of software and to invest in facilities for rapidly
producing family members. Success in such an endeavor
requires that the software engineers be able to identify the
desired family members. This tutorial describes the
commonality analysis process, a systematic approach to
analyzing families. Commonality analysis was developed at
Bell Labs and is being tried in Lucent Technologies as part
of a process for engineering domains that is known as
family-oriented abstraction, specification, and translation
(FAST). The result of the analysis forms the basis for
designing reusable assets that can be used to produce rapidly
family members. The tutorial teaches the participants the
principles underlying the approach and gives them a chance
to perform a practice commonality analysis guided by
experienced users of the process.

Keywords:
software engineering, domain analysis, domain engineering,
families, software process, application-oriented languages,
reuse, requirements engineering

INTRODUCTION
A recent trend in both the software engineering research and
industrial communities has been to seek ways systematically
to engineer software domains. This tutorial describes the
commonality analysis process, a systematic approach to
analyzing domains that was developed at Bell Labs and that
is in experimental use at Lucent Technologies. The tutorial
teaches the participants the principles underlying the
approach and gives them a chance to perform a practice
commonality analysis guided by experienced users of the
process.

The commonality analysis process views domains as
families, as described in [5], and is an analytical technique

Permkh 10 make digital/hard copies of all or part ofthis material for
WOnal Or cl.~rOOm Use is granted without fee provided aat the copis
we not made or distributed fir profit or commercial advmtige, the copy-
fight notice, the title of tbc publication and its d&e appm, ad notice is
Si\‘cn that coP>‘rk$t is by permission of the ACM, Inc. To COPY otbewisc,
to rrpublish, to post on SXV~~S or to redistribute to lists, requ& specific
pcrmission and/or fee
ICSE 97 Boston hiA lJSA
Copyright 1997 AChi O-89791-914-9/97/05 ..$3.50

for deciding what the members of a family should be. This
technique is in use at Lucent Technologies as part of a
domain engineering process known as family-oriented
abstraction, Specification, and translation (FAST). The goal
of the FAST process is to develop facilities for rapidly
generating members of a family; it is a variation on the
Synthesis process described in [l] and [2]. Performing a
commonality analysis is an early step in the FAST process,
and is described in detail in [9].

ENGINEERING FAMILIES
FAST is a software production strategy in which one plans
for a system to exist in a number of variations, attempts to
predict those variations, identifies what they have in
common, and reuses the common aspects in producing the
variations. Such a set of variations on a system may be
considered to be a family, a relatively old idea in software
engineering, suggested by Dijkstra and others in the software
engineering literature as early as 1972 [3]. Parnas and others
described approaches for building software families in the
mid-1970s [5], [6], [7], [S]. This work emphasized the
design and development of program families, but said little
about how to decide what the members of a family should
be. More recently, an area of study known as domain
engineering has developed whose intent is to define families
and assemble the assets needed to produce family members
rapidly [2], [4].

The success of family-oriented software development
processes depends on how well software engineers can
predict the family members that will be needed. This
problem is hard because the idea of a family is not well
formalized, there are no rules that enable engineers to
identify families easily, prediction of expected variations is
difficult, and there is usually no time allocated in the
development process for conducting an analysis of the
family. Nonetheless, the payoff for conducting such an
analysis can be quite high; it potentially reduces drastically
the time and effort needed for design and for production of
family members.

Commonality analysis is an early step in the FAST process,
but it repays its practitioners in a variety of ways that are
independent of FAST. It is performed as a moderated group
discussion among domain experts that is organized into
phases with specific objectives for each phase. As the

649

-_- -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253228.253772&domain=pdf&date_stamp=1997-05-01

discussion proceeds, the domain experts produce a
document, also known as a commonality analysis, that
captures the results of each phase.

The analysis engenders a deep understanding of their
domain among the experts, and helps them to develop
standard terminology for the domain, a set of assumptions
about what is common to all members of the domain, and
set of assumptions about how domain members can vary
from each other. This information is critical for use in
creating reusable assets for the domain, such as a
specification language from which domain members can be
generated, a design common to all members of the domain,
and reusable, adaptable components that can be used to
create members of the domain very rapidly.

TUTORIAL CONTENTS
The tutorial is designed to teach participants how to perform
a commonality analysis. It consists of a set of lectures and
small exercises that introduce participants to the motivations
underlying a commonality analysis, the structure of the
commonality analysis process, and the structure of the
commonality analysis document. The participants gain an
understanding of the following:

l when the process is useful,

l the benefits of performing a commonality analysis,

l how and where the results may be used,

l who should participate in a commonality analysis,

l the phases of the analysis and the motivation for each
phase, and

l the form of the commonality analysis document.

In addition, participants are organized into groups and
guided through an example commonality analysis. By the
end of the day they are prepared to participate fully in an
analysis in a domain of their own choosing.

The lectures are conducted in an informal style,
encouraging audience participation. We often ask
participants for personal examples of artifacts or processes
relavant to the discussion.

This tutorial is based on a course developed by Bell Labs
researchers for internal use at Lucent Technologies. A
proprietary version of it has been taught several times.

REFERENCES

Campbell, G.H. Jr., Faulk, S.R., Weiss, D.M.; Ijrfro-
duction To Synthesis,
INTRO~SYNTHESIS-PROCESS-90019-N, 1990,
Software Productivity Consortium, Hemdon, VA.

Campbell, G.,O’Connor, J., Mansour, C., Turner-Har-
r-is, J.; “Reuse in Command and Control Systems,”
IEEE Sofhyare, September, 1994.

Dijkstra, E. W., “Notes on Structured Programming,”
Structured Programming, O.J. Dahl, E.W. Dijkstra,
C.A.R. Hoare, eds., Academic Press, London, 1972.

Neighbors, J., “The Draco Approach to Constructing
Software from Reusable Components,” IEEE Trans-
actions on SofnYare Engineering, SE-IO, 1984.

Pamas, D.L., “On the Design and Development of
Program Families,” IEEE Transactions on Sofhvare
Engineering, SE-2:1-9, March 1976.

Parnas, D.L., “Designing Software For Ease Of
Extension and Contraction,” 3rd International Con-
ference on SofMtare Engineering, May 1978.

Parnas, D.L., Clements, PC.; “A Rational Design
Process: How and Why to Fake It,” IEEE Transac-
tions on Software Engineering, SE-12, No, 2, Fcbru-
ary 1986.

Pamas, D.L., Clements, PC., Weiss, D.M.; “The
Modular Structure Of Complex Systems,” IEEE
Transactions on Sofnvare Engineering, SE-1 l., pp
259-266, March 1985.

Weiss, David M., “Defining Families: The Common-
ality Analysis,” submitted to IEEE Transactions on
Sojiware Engineering.

