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ABSTRACT
Group-buying ads seeking a minimum number of customers
before the deal expiry are increasingly used by the daily-deal
providers. Unlike the traditional web ads, the advertiser’s
profits for group-buying ads depends on the time to expiry
and additional customers needed to satisfy the minimum
group size. Since both these quantities are time-dependent,
optimal bid amounts to maximize profits change with every
impression. Consequently, traditional static bidding strate-
gies are far from optimal. Instead, bid values need to be
optimized in real-time to maximize expected bidder prof-
its. This online optimization of deal profits is made possible
by the advent of ad exchanges offering real-time (spot) bid-
ding. To this end, we propose a real-time bidding strategy
for group-buying deals based on the online optimization of
bid values. We derive the expected bidder profit of deals as
a function of the bid amounts, and dynamically vary bids
to maximize profits. Further, to satisfy time constraints of
the online bidding, we present methods of minimizing com-
putation timings. Subsequently, we derive the real time ad
selection, admissibility, and real time bidding of the tra-
ditional ads as the special cases of the proposed method.
We evaluate the proposed bidding, selection and admission
strategies on a multi-million click stream of 935 ads. The
proposed real-time bidding, selection and admissibility show
significant profit increases over the existing strategies. Fur-
ther the experiments illustrate the robustness of the bidding
and acceptable computation timings.

1. INTRODUCTION
Web based deals offering deep discounts to a group of on-

line buyers on products and services is a fast growing mar-
ket. Group-buying deals attract new customers as well as
guarantee customer traffic within a stipulated expiry date
for local businesses like restaurants and tour operators [1].
Most of these group-buying deals are sold by intermediaries
like Gropon, Groupbuy and many other daily deal providers.
Though these intermediaries depended on email based mar-
keting models in the past, banner ads in social networking
and other sites are increasingly used to attract deal cus-
tomers.

Unlike the traditional ads, group-buying intermediaries
receive their payment only upon satisfying the minimum
number of conversions before the deal expiry (i.e. if the
deal tips). This implies that if the deal does not tip, adver-
tiser loses the amount used to buy impressions, and receives
no payment. If the advertiser fulfills or exceeds the guaran-
tee, he receives a payment equal to the product of number
of conversions and pay per conversions—similar to the tra-

ditional ads. This model is used by popular group-buying
advertisers like Groupon, and Groupbuy among many other
deal providers. Though most of these deals tips for sites
like Groupon in current email based marketing, tipping the
deals will get harder with increasing competition to attract
business owners and shift to the display-ad based market-
ing. The proposed strategy enables the deal advertisers to
offer more aggressive tipping points, hence more volume of
sales to merchants. Further, this model is easy scale to
other forms of group-buying campaigns—like penalties for
not meeting tipping similar to guaranteed display ads.

To maximize the profits while bidding for group-buy ads,
bidders have to minimize cost by bidding low, but still have
to win sufficient number of conversions to satisfy guarantees
before the deal expiry. Bidding high increases the probabil-
ity of winning impressions thereby improves the chance of
the deal tipping. On the contrary, higher bids increase the
payment to the exchange thereby reducing the profit. Hence
bids need to be optimized considering these two conflicting
pulls. This maximal profit bidding necessitates dynamic bid
optimization based on the time to expiry and the number
of received conversions. We address this problem of maxi-
mizing deal bidder profits, by real-time optimization of bids
to minimize the cost of impressions while satisfying the deal
tipping guarantees.

For group-buying deals, the traditional static bidding strate-
gies based on optimization of expected profits of a single
impression is far from optimal. A significant difference from
the traditional ads is that the optimal bid value depends on
the time to expiry and number of more conversions required
to satisfy the guarantees. For example, consider a deal re-
quiring just a few more conversions to fulfill the guarantee.
If the deal is about to expire the advertiser would have to
bid higher amounts to increase the probability of winning
more impressions. On the other hand, if the time to expiry
is long for the same deal, he would better off bidding smaller
amounts winning fewer fraction of impressions to minimize
the payment to the exchange (since there would be higher
number of user visits in larger time intervals). Evidently,
the optimum bid amount is a function of the time depen-
dent parameters like the time to expiry and the additional
number of conversions needed to satisfy guarantees. Due
to this time dependence of optimal bids, any static bidding
strategy will be sub-optimal, necessitating real-time bidding.
Fortunately, this dynamic bid optimization is made possible
by the advent of ad exchanges offering real-time auctions
(e.g. RealMedia, DoubleClick, AdECN).

Since the revenue is conditional upon tipping the deal,
the bidding strategies are significantly harder than the tra-
ditional non-guaranteed bidding. In addition to the dynamic
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quantities mentioned above, deal profit depends on a number
of static quantities: pay per event, number and bid distri-
butions of other bidders, conversion rates, and the auction
mechanism [12, 9]. Consequently, formulating and maximiz-
ing expected profits—which is a function of all these static
and dynamic quantities—is significantly harder. Adding to
the complexity, the optimization is online necessitating low
computation timings.

Our method of optimizing profit for guaranteed deals has
two steps: (i) Formulating the expected profit (ii) Maxi-
mizing the profit against the bid. For the first step, we
derive the expected profit as a function of the bid value,
time to expiry, fulfilled conversions, amount spent to buy
impressions, auction mechanism, click through rate and the
number and distribution of the other bidders. Since many
of these parameters are dynamic as described above, the
objective function value changes as the bidding progresses.
Among all these parameters, the only parameter the bidder
can change is his own bid amount. Hence we optimize the
expected profit against the bid amount in the second step.
When the profits are optimum, the deal bids are in a sym-
metric Bayesian Nash equilibrium similar to the traditional
ads [12, 9].

Considering the complexity of the optimization, a closed
form solution is unlikely. Though the optimization is against
a single variable (i.e. bid amount), our analysis shows that
the objective function is neither convex nor quasi-convex
(unimodal). Consequently, an optimization method guaran-
teed to converge to optimal bids on every instance is unlikely.
Further, the derivative of the objective function is harder to
solve than the objective itself. Considering these factors,
we resort to direct numerical optimization (without using
gradients) starting from multiple points.

Running Time Minimization: Since the optimization
is online, computation time needs to be minimized. There-
fore we explore running time optimization in multiple levels.
Firstly, we use a fast converging Brent’s optimizer. Sec-
ondly, we reformulate the objective for faster computation
for typical parameter values. Further, we approximate large
binomial cumulative probability expressions with a single
term normal approximation. Since the changes in the op-
timal bids for subsequent impressions are incremental, we
reuse optimal bid values of previous impressions whenever
changes are likely to be negligible.

Extensions: Interestingly, the solutions of many related
problems can be directly derived from the proposed objec-
tive function. We describe the four proposed extensions be-
low:

(i) Deal Selection Deal selection chooses the best deals to
bid to maximize the bidder profits. Combining optimal
bidding and selection, we derive the bidders’ private
value and the marginal profit increase for the impres-
sion for each deal. The deal with the highest marginal
profit increase is the greedy optimal selection.

(ii) Deal Admissibility Admissibility is the problem of
predicting whether bidding for a group-buying deal is
likely to be profitable based on its attributes. The in-
termediary or the advertiser may decide to accept or
reject a deal campaign based on admissibility criterion.
We show that a special case of our objective function
combined with the bid optimization provides effective
admission control.

(iii) Non-Bidding Selection For non-bidding scenarios like

the publisher directly selecting the deals to display,
the proposed formulation suggests optimal selection
among the inventory of deals.

(iv) Non-Guaranteed Ads We show that the real time
bid optimization of traditional non-guaranteed ads is a
special case of the proposed optimization. When there
are no guarantees, the proposed objective function re-
duces to expected profits of traditional ads, yielding
known optimal static bid formulations. Thus the method
serves as a unified real time bidding strategy for both
guaranteed and non-guaranteed ads.

Evaluations and Results: We evaluate the proposed meth-
ods and the extensions in a query log of size 9.3 million
impressions of 935 ads. In our first set of experiments,
we compare our profits of the proposed real time strategy
with the optimal static and base adaptive baselines. The
results show that the proposed strategy improves the profits
over the baselines significantly. Subsequently, experiments
showing improved profits in spite of violated assumptions of
the competitor bids demonstrate robustness of the strategy.
Further, our running time evaluations demonstrate accept-
able optimization timings. Finally, our evaluations of the ad
selection and admissibility demonstrate that the extensions
improve profits significantly over the baselines.

Rest of the paper is organized as follows. The next sec-
tion discusses related work, followed by section on notations
and the formal problem definition. Section 4 derives the ex-
pected profits and proposes the optimization method. Sub-
sequently, we discuss running time minimizations. Next sec-
tion presents extensions of the problem to deal selection, ad-
missibility, and bidding of traditional ads. Section 7 present
the experimental evaluations and results. Finally we present
our conclusions in Section 8.

2. RELATED WORK
Grabchak et al. [11] addressed the problem of optimal

selection of guaranteed (group buying) ads . Our work
is different, since we deal with optimal bidding, whereas
Grabchak et al. does not consider the bidding and consider
offline selection of deals. Further, even the non-bidding se-
lection sub-problem discussed in this paper is different since
we consider a minimum number of conversions like deals,
whereas Grabchak et al. consider an exact number of re-
quired conversions.

Different models of group-buying auctions and bidding
mechanisms has been studied [2, 6]. But our problem of
bidding to sell deals online—mostly made popular after the
emergence of dail-deal sites—has not been studied for any
of the group-buying auction models.

Considering related problems of allocation and bidding of
display ads, Ghosh et al. [10] considered allocating guar-
anteed display impressions matching a quality distribution
representative of the market. Vee et al. [15] analyzed the
problem of optimal online matching with access to random
future samples. Boutilier et al. [3] introduced an auction
mechanism for real time bidding of display ads.

There are a number of papers on optimal ranking of tex-
tual ads in presence of budget limits. Mehta et al. [13]
deal with the problem of optimal allocation of textual ads
considering budget limits of the advertisers. Buchbindar et
al. [4] provided a simpler primal-dual based analysis achiev-
ing the same competitive ratio. These papers consider rank-
ing/allocation of textual ads than deals. Further these prob-
lems have an upper limit on number of impressions, rather



than a lower limit as in our problem. Hence, unlike these
problems, ours is not a generalized online bipartite match-
ing.

With the increase of ad exchanges offering real-time bid-
ding, there are a few papers on related problems. Chen et
al. [7] formulated the problem of supply side allocation of
traditional ads with upper bounds on budgets as an online
constrained optimization matching problem. Chakraborty et
al. [5] considered the problem of ad exchanges calling out a
subset of ad-networks without exceeding capacity of indi-
vidual networks for real time bidding. To the best of our
knowledge, the optimal bidding problem of group-buy deals
and the extensions have not been addressed.

3. NOTATIONS AND PROBLEM DEFINITION
Every group-buy deal g has a required minimum clicks

m, an expiry time e, a cost per click (CPC) ρ, and a click
through rate (CTR) µ. Thus a deal may be represented as,

g = 〈m, e, ρ, µ〉

For the rest of the paper our discussions are based on
guaranteed number of clicks for the ease of description. The
discussions and results are equally applicable for guaranteed
conversions (refer to Section 6 for the details) (by substi-
tuting conversion rates (CVR) for click through rates and
click per action (CPA) for CPC) and guaranteed displays
(by setting click through rate to one and substituting Cost
Per Impression (CPI) for CTR).

Let ψt be a binary indicator variable, with ψt = 1 if the
advertiser’s bid is successful at time t—i.e. he wins the
bid for impressions and pays the content owner—and zero
otherwise. Let ct be the number of clicks at time t. For
our discussions, the time t denotes t user visits (impression
opportunities) rather than wall clock time. For a deal g the
profit Pt at time t is,

Pt =

{
ρct −

∑t
j=0 h(bj)ψj when ct ≥ m

−
∑t
j=0 h(bj)ψj when ct < m

(1)

where h(b) is a mapping from bids to the payment whose
closed form depends on the auction model, the number of
other bidders and the bid distributions. For the commonly
used first price auction for display ads h(bj) = bj . For other
auctions like second price auction, closed forms can be de-
rived based on order statistics [9]. After fulfilling guarantees
(i.e. ct ≥ m) the expected profit function for the guaranteed
deals are the same as that of the traditional non-guaranteed
ads. Hence, the period of interest for our analysis and ex-
periments is the time before guarantees are fulfilled.

To maximize the profit in Equation 1, the only parameter
decided by the bidder is the bid amount. Hence we may
state the profit maximization problem as,

Bidding Problem: Given a guaranteed ad g = 〈m, e, ρ, µ〉,
and number of received conversions ct, find the bid amount
bt such that the expected profit from ut user visits is max-
imal, where ut is the expected number of user visits before
the ad expiry time e.

To explain the nature of the problem, we start by finding
the optimal bid based on the expected values of parameters
at t = 0. This is the best possible estimate at that point
of time. As time progresses, we will get better estimates
of parameters based on the actual values of number of con-
versions, and user visits so far. Hence we keep updating
the optimal bid bt based on the current state and expected

numbers in the future. We assume that ut is known, as it
can be generally estimated from the traffic statistics [11].

4. MAXIMIZING PROFIT
We derive the expected profits of group-buy deal cam-

paigns based on the current state of the deal. Subsequently
we analyze the nature of the the profit-function, and present
a method to maximize the profits in real-time by bid adjust-
ments.

4.1 Expected Profits
The click probability of a deal is,

P (click) = P (click|impression)P (impression|bid)

The first factor P (click|impression) is equal to the CTR of
the deal—is a constant for static auctions considered here.
The second factor—probability of winning impression P (impression|bid)—
is an increasing function of the bid amount. This implies
that the probability of satisfying click guarantees, and con-
sequently the expected profit increase with the bid amount.
On the contrary, the amount paid by the bidder to the pub-
lisher (h(b)) is an increasing function of the bid amount.
Hence the profit tends to decrease with increasing bid amount.
The bids need to be optimized considering these two conflict-
ing effects on the profit.

For real-time bidding, different advertisers or intermedi-
aries place bids for a given ad impression. Generally the
highest bidder wins, and will display his ad1. In general
bid values of a bidder varies, either due to the bidder’s pri-
vate value distribution, or due to a deliberate randomization
done by the bidder to avoid giving advantage to the compe-
tition [10]. Hence, the event of winning is probabilistic, with
a binary outcome. Further, winning in consecutive bids can
be assumed to be independent of each other. Hence bidding
to win impressions are Bernoulli trials with success proba-
bility increasing with the bid amount.

The users click with probabilities equal to the estimated
CTR of the winning ad. This is again a Bernoulli trial
with success probability equal to the CTR. Hence these two
trials—bidding and getting conversions—may be combined
as a single Bernoulli trial of bidding to win clicks. The prob-
ability of success for this composite trial is equal to the prod-
uct of CTR and probability of winning an impression.

For composite Bernoulli trial described above, the number
of successes follows a binomial distribution. To facilitate
representing such a binomial distribution, we introduce the
following two functions,

Φ(rt, ut, bt, µ) =

ut∑
j=rt

(
ut
j

)
(µd(bt))

j(1− µd(bt))
ut−j (2)

Θ(rt, ut, bt, µ) =

ut∑
j=rt

j

(
ut
j

)
(µd(bt))

j(1− µd(bt))
ut−j

(3)
where µ is the CTR of the ad, and rt is the additional num-
ber of clicks required to satisfy the guarantees.

Function d(b) is a mapping from the bid value to the prob-
ability of winning the impression. For a sealed bid auction
in which the highest bid wins (e.g. first or second price auc-
tions), this probability is d(b) = CDF (b)n−1, where CDF is

1Alternatively, bidder with the highest value for bid times
CTR may win. This can be easily incorporated into the
winning probabilities.



the cumulative probability distribution of the bids of other
bidders, and n is the total number of bidders. To get a
closed form of d(b) we need to assume a distribution function
of bids. For example, if the bids are uniformly distributed

between l and u, d(b) =
(
(b− l)/(u− l)

)n−1
. Similar closed

forms can be derived for other distributions, and even for
cases where different competitors following different distri-
butions [9].

At optimal profits, the bids are the best responses to com-
petitors and hence are in a symmetric Bayesian-Nash equi-
librium [9, 12]. Consequently, we may limit our analysis to
truthful bidding without the loss of generality as stated by
the revelation principle [8]. Hence the assumptions on bid
distributions above are equivalent to the same assumptions
on private value distributions of bidders at the optimal profit
outcomes.

Now the net expected profits is given by the objective
function,

E(Pt) = ctρΦ(rt, ut, bt, µ) +

ρΘ(rt, ut, bt, µ)

(
t−1∑
j=1

ψjh(bj) + utd(bt)h(bt)

)
(4)

Please refer to Appendix A-1 for the derivation of the ex-
pected profits.

4.2 Optimizing Expected Profits
The expected profit in Equation 4 has to be optimized

with respect to the bid amount. An option is to differentiate
the function with respect to bt and solve the derivative for
zero. But this is hard since the derivative may have large
number of terms, and solving the derivative will be harder
than a direct approach. Hence a direct optimization of the
objective function—as we do below—is faster.

An example curve of variation of the objective function
with bids is shown in Figure 1. Two observations signifi-
cant to the numerical optimization are (i) the optimization is
non-convex. (ii) the function is not even quasi-convex (uni-
modal). This implies that a bisection or gradient descent
method may get trapped in a local optimum, and hence the
convergence to the global optima is not guaranteed. Con-
sequently, we need to start the optimization from multiple
points making the problem harder.

For the bidding process, the winning probability is one if
the bid is greater than the maximum bid of the competi-
tors bid distribution; and zero for bids less than the mini-
mum bids. Hence the optimal values will always be between
the maximum and minimum even without imposing exter-
nal constraints. This allows a simpler unconstrained opti-
mization. The optimizer restarts the search from multiple
random starting points to avoid local minima traps (the de-
tails of the restarts are discussed in the Section 5). Further
since the optimization is online, fast-convergence is highly
desirable. Considering these factors, we adapt Brent’s opti-
mization method. Brent’s optimization combines parabolic
interpolation with golden ratio search for faster convergence.
If the parabolic interpolation fails, the search falls back to
the golden ratio search.

5. RUNNING TIME MINIMIZATION
The optimization of the bids has to be performed online

between the impression opportunities. Evaluating objective
function in Equation 4 directly may involve computing hun-
dreds of thousands of terms. Since the time duration be-
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Figure 1: Variation of objective function against bid,
ct = 20, rt = 5, µ = 0.002,

∑
ψi = 0, and single com-

petitor with uniform random bid in [0, 0.1] (i) Exact
binomial for ut = 3000, ρ = 15. (ii) Normal approxi-
mation for ut = 2500, ρ = 13.

tween the impression opportunities can be very small, the
optimization time must be within acceptable limits. In ad-
dition to using fast converging Brent’s optimizer, we adopt
several approximations and computational methods for im-
proved running time.

Reducing Number of Terms: Typically for deals
the user visits needed to get the required number of clicks
are very large compared to the clicks needed for tipping the
deal. i.e. ut � rt; except for a last few user visits before deal
expiry. Exploiting this, we reduce the computation time by
rewriting the Equations 2 and 3 as,

Φ(rt, ut, bt, µ) = 1−
rt−1∑
j=0

(
ut
j

)
(µd(bt))

j(1− µd(bt))
ut−j

(5)

Θ(rt, ut, bt, µ) = utµd(bt)−
rt−1∑
j=0

j

(
ut
j

)
(µd(bt))

j(1− µd(bt))
ut−j (6)

This rewriting may reduce computations from hundreds of
thousands of terms to less than a few hundred terms.

Normal Approximation: In spite of replacing ut by rt,
computing binomial CDFs in Equation 5 and 6 may involve
summation of hundreds of combinatorial terms. The bino-
mial CDF may be approximated by a single term normal
CDF for large values of ut (central limit theorem). Exploit-
ing this, we compute Φ and Θ based on a normal CDF with
correction for continuity. i.e.

Φ(rt, ut, bt, µ) ≈ 1− 1√
2πutµd(bt)(1− µd(bt))

×

∫ rt−0.5−utµd(bt)
utµd(bt)(1−µd(bt))

0

e
− (x−utµd(bt))2

2utµd(bt)(1−µd(bt)) dx

There is no analytical solution for this integral, but can be
looked up from a normal CDF table or can be approximated
by finite analytical forms.

Similarly, approximating the standardized form of Θ as



Θ′,

Θ′(rt, ut, bt, µ) =
1√
2π

∫ ∞
rt−0.5−d(bt)ut√
utµd(bt)(1−µd(bt))

ze
−z2
2 dz

=
1√
2π
e
− (rt−0.5−utµd(bt))2

2utµd(bt)(1−µd(bt))

where z = (j−utµd(bt))√
utµd(bt)(1−µd(bt))

Θ(rt, ut, bt, µ) ≈
√
utµd(bt)(1− µd(bt))Θ

′(rt, ut, bt, µ) +

utµd(bt)

For small ut and rt, normal approximation may diverge more
from the original binomial function, and computation of the
binomial is less costly. Hence it is more accurate to use ac-
tual binomial distribution for smaller rt and ut. We depend
on the common rule of thumb for approximating binomial
CDF by normal CDF, i.e. if utµd(bt)(1 − µd(bt)) ≥ 10 we
use normal approximation.

Considering the optimization of the normal approxima-
tion, the sample graph of the objective function with the
approximations is shown in Figure 1. Like the original bino-
mial objective, the normal approximation is neither convex
nor quasi-convex. Consequently optimizing the approxima-
tion faces the same difficulties as the optimization of the
original objective.

Setting the Starting Points: The optimal bid values
generally change only nominally for subsequent impressions
of a deal. Exploiting this fact, the optimal bid for an im-
pression is used as the starting point for optimization for
the next impression. This reusing of optimal bids expedite
convergence.

Multiple Starting Points: The non-convexity of the
objective requires the optimal value search to start from
multiple points. As optimal bids change only incrementally
for successive impressions of a deal, we avoid restart from
multiple points for every impression. For this—instead of
starting from previous optimal values as described above—
we chose random starting points for optimization for the first
twenty impressions. The bid corresponding to the maximum
objective value among these searches is used as the optimal
value. This strategy is found to be converging to optimal
values for all the deals we tested.

Re-Computation Frequency: As the change in opti-
mal bids are nominal for subsequent impression opportuni-
ties, the previous bids can be reused. Hence we re-optimize
bids only after a number of impression opportunities (ev-
ery thirty two impression opportunities in our experiments).
Further, optimal value is always recomputed if there is a
click, since one more clicks may cause a non-trivial changes
in the optimal bid.

6. EXTENSIONS TO
RELATED PROBLEMS

The optimal bidding for group-by deals is a general prob-
lem, which on specific assumptions reduces to number of re-
lated use-cases. As a corollary, the proposed solution reduces
to solutions of these problems on the same assumptions. In
Figure 2 we enumerate these extensions and assumptions on
which the guaranteed bidding will reduce to these problems.

Considering three downward branches in Figure 2, the
guaranteed bidding easily transform to guaranteed clicks,
displays and conversions. For example by setting µ = CTR
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Figure 2: Group-buying deal bidding extends to
many related problems on specific assumptions. The
guarantees can be in terms of conversions, impres-
sions, or conversions depending on the event prob-
abilities used (i.e. CTR, 1 and CVR). Further the
objective reduces to deal selection, deal admissibil-
ity, selection of deals with no bidding, and to the
optimal bidding of traditional non-guaranteed ads
on various assumptions on parameters.

the deal definition in Equation 3 will define a guaranteed
conversion campaign. Consequently, on the same assump-
tion the profit formulation in Equation 4 gives guaranteed
click campaign profits. Similarly, by setting µ equal to 1 and
CVR, the problem and the solution will be applicable for
guaranteed impressions and conversions deals respectively.

Four upward branches in Figure 2 illustrate reductions to
related bidding and selection problems. We discuss them in
the sections below and the the deal related extensions are
evaluated separately in Sections 7.3 and 7.4.

6.1 Deal Selection
Deal selection is the problem of maximizing expected prof-

its by choosing the best deal to bid for every impression.
Considering the online nature of the problem, we perform a
greedy deal selection. The deal with the maximum marginal
profit by the impression is selected as the winner. Expected
marginal profit is calculated as the difference between the
expected profits of winning the impression and failing to win
the impression. Adding the bid amount to marginal profit
to derive the marginal revenue as,

E(vit) =E(Pi(t+1)|ψt = 1)− E(Pi(t+1)|ψt = 0) + bt (7)

=µρi

[
(ct + rt − 1)

(
ut − 1
rt − 1

)
(µd(bt))

rt−1

(1− µd(bt))
(ut−rt) + Φ(rt − 1, ut − 1, bt, µ)

]
(8)

Derivation of the equation is given in Appendix A-2. This
marginal revenue is the expected private value of the impres-
sion for the deal bidder, isomorphic to the private value of
the traditional ads. Similar to the traditional ads, E(vit)−bt
gives the expected profit by displaying deal i at time t.

To select a deal, the bid values of deals are optimized
against the expected profits as described in Section 4. These
optimal bids are substituted in Equation 8 to calculate the
private values. The deal with the highest increase in the



expected profit is selected for bidding. We evaluate the pro-
posed selection in Section 7.3. Selection considering deals
groups is a harder combinatorial optimization problem, and
we leave this for future research.

6.2 Deal Admissibility
Admissibility criterion decides if the profit from a deal is

likely to be positive. Admissibility can be directly derived
as a special case of optimal bidding. More specifically, if the
maximal expected profit from an deal is positive at t = 0
the ad is admissible. At t = 0 the Equation 4 reduces to,

E(Pt) = ctρΦ(rt, e, bt, µ) +ρΘ(rt, e, bt, µ)−ed(bt)h(bt) (9)

where e is the expected number of visits before the deal ex-
piry. To evaluate admissibility, bids are optimized for max-
imal profits and substituted in Equation 9. If the expected
profits are positive, we consider the deal as admissible2. The
profit increase from admissibility is evaluated in Section 7.4.

6.3 Non-Bidding Selection
If there are no competing bidders—i.e. number of bidders

is equal to one—the problem will reduce to that of selection
from competing deals. Alternatively, this scenario may be
thought of as the publisher selecting deals directly. In this
case d(bt) = 1 in selection Equation 8 for all values of bt.
Since this is a special case of the selection with bidding, we
do not include separate evaluations, as results are directly
implied. Alternatively, since there is no bidding involved, se-
lection may be modeled as an offline problem. In this case,
selection of deal sets for maximization profits of deal com-
binations may be of interest. We leave this optimal offline
selection of deal sets for future research.

6.4 Non-Guaranteed Ads
As shown in Figure 2, when the minimum click guarantee

is zero, the guaranteed deal bidding reduces to the bidding of
tradition non-guaranteed ads. Consequently, the expected
profits for non-guaranteed ads may obtained by substituting
rt = 0 in Equation 4 as,

E(Pt) = ctρ+ ρµutd(bt)−

(
t−1∑
j=1

ψjh(bj) + utd(bt)h(bt)

)

Considering the profit from a single impression (i.e. ut =
1), thereby ignoring the constants terms of past profits, the
expected profit becomes, E(Pt) = d(bt)(ρµ − h(bt)). This
expected profits can be maximized with respect to the bid
values. For example, for a first price auction with n bidders
and competitors having a bid distribution with cumulative
distribution function of F (v), d(bt) = F (bt)

n−1 and E(Pt) =
F (bt)

n−1(ρµ− bt).
Note that the expected profits, hence the optimal bids,

derived above is the same as the existing formulations of op-
timal static bid profits of traditional ads [9, 12]. This is a
manifestation of the broader fact that the existing bidding
formulations are optimal for static environments. Hence
the optimal real time bids will essentially be the same. In
other words, the real-time bidding provides no advantage
over static bidding for non-guaranteed ads in static envi-
ronments. On the other hand, the real-time bidding would
improve profits over existing bidding for dynamic environ-
ments [7]. Thus the proposed bidding provides a strategy to

2Instead of zero, a positive profit threshold may be used as
the admissibility criterion.

account for the dynamism in parameters of traditional ads—
like the changed estimates of click-through rate or competi-
tor bid distributions.

7. EVALUATIONS AND RESULTS
We compared the profits by the proposed bidding strategy

with baseline strategies of (i) optimal static bidding (ii) a ba-
sic real time bidding. We evaluated the profit increase, run-
ning time, deal selection and admissibility—including the
robustness of our method to violation of assumptions.

Data Set: From a click log of 330 million impressions,
we randomly selected 935 ads (with 9.3 million impressions)
having a minimum of 5 clicks and 1000 impressions. Click
log contains impressions and whether the impression re-
sulted in a click or not.

Baseline Bidders: First baseline bidder is an optimal
static bidder. The bidder derives optimal bids as a function
of number of competitors and their bid distributions [9], and
is optimal if there are no guarantees. The second baseline
bidder is a basic adaptive bidder, which bids as staticOptimal+
rt/ut − CTR. The strategy is intuitive, as it increases bid
over the static optimal bid if the required click rate is greater
than the CTR and decreases the bids otherwise. We also
used the profits by a placing a random bid as a baseline in
our initial experiments. Random bidding performed much
worse than all of the above baselines and is not plotted in
the results.

7.1 Bidding Profit Comparison
To compare the profits by bidders, the proposed real-time

(RT) and baseline bidders compete with random bidders for
every ad in the “replayed” click log. For example, the RT
bidder places its bid for the first impression of an ad, along
with the competing random bidders. If the RT bidders’ bid
is the highest, the bidder wins the impression. The deal wins
a click if the click log indicates a click for that impression.
Then the same process repeats for the second impression and
so on. Similarly, other baseline bidders are made to compete
with the same random bidders for the same set of ads, and
the realized profits are compared. This replaying reproduces
online experiment, since the user action in the consecutive
impressions are most likely from different users, and hence
independent. The experiments are repeated by changing
every significant parameter—one at a time—to analyze the
effects of different parameters.

Since the click logs are of traditional ads having no re-
quired clicks or expiry, we set the expiry timings as the num-
ber of impressions of the ad in the log. To compensate for
using the traditional ads instead of deals, the required clicks
are varied by a parameter sweep over the plausible range.
We do not vary expiry time, since the ratio of required clicks
to the expiry time determines the profit—rather than the ex-
piry time alone—and this ratio varies as we do a parameter
sweep on required clicks. Further, note that different ads in
the set of 935 ads have different expiry timings, effectively
functioning as a parameter sweep on expiry times. CTR of
every ad is estimated as the ratio of number of clicks to total
impressions3.

The competing bids are selected from different random
distributions (bids are not registered in the click log), since
the bidders generally randomize their bids to avoid the com-

3CTR estimation and prediction is a separate problem re-
searched extensively [14].
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Figure 3: Comparison of mean profits of RT bidder with optimal static bidder and the baseline adaptive
bidder. (a) Four bidders, competing bid distributions are uniform random in [0, 0.4], pay per click (ρ) is 10.
For group (20) ρ is doubled to 20, keeping other parameters the same. (b) Group (4) has four bidders, with
competing bids uniform in [0, 0.2], keeping the other parameters same as group (10) in Figure 3(a). Group (2)
has two bidders instead of four in group (10).

peting bidders guessing their bids [10]. Note that this ran-
domization in bids may be achieved by randomly choosing
different deals to bid for in different time slots even for the
proposed optimal bidding strategy. At the Bayesian-Nash
equilibrium—in which everyone follow the optimal strategies—
these assumptions on bid value distributions are equivalent
to the same assumptions on private values of the advertisers,
as mentioned in Section 4.1. Further, the maximum entropy
(i.e. minimum assumptions) uniform random competing bid
distribution is the hardest to predict and to optimize against
(hence we use this distribution for the experiments below).
Any other distributions, including a fixed optimized compet-
ing bid is easier to optimize against and the realized profits
will be higher.

Figures 3(a) and 3(b) show four sets of comparisons of
profits realized by different bidders against required mini-
mum clicks m. In the first set of Group (10) in Figure 3(a),
there are four bidders—the bidder evaluated and three other
random bidders. Random bidders bid in a uniform random
distribution in the interval of [0, 0.04]. Pay per click (ρ) is
set to $10 for this group. The remaining groups of experi-
ments in Figures 3(a) and 3(b) are designed to analyze the
effects of changes in parameters.

Analyzing common trends in all these groups, the profit
of the real time bidder exceeds that of the baseline bid-
ders for every m in all the experiments. As expected, the
profits reduces with m. The increase in profit is as large
as 70-150% (e.g. at m = 150 for Group (10) increase is
(13.74− 4.86)/4.86 = 1.45

)
. As an exception, the profits of

real time bidder is the same as the static optimal bidder at
m = 0. This is an implication of discussions in Section 6.4,
that the current static optimal bidding of non-guaranteed
ads are a special case of the proposed RT bidding. As m
increases from left to right, the absolute and percentage of
difference between static and RT profit increases. The base-
line adaptive bidder performs worse than static bidder for
most parameter combinations, since the bidding considers

only a subset of parameters. This is a manifestation of the
fact that a simpler intuitive adaptive strategy is not likely
to perform well, especially since optimal bid depends on a
large number of parameters. The baseline adaptive bidder,
at m = 0 perform very similar to (but not the same) as
the static optimal bidder for uniform competitor bids (for
normal distribution in Figure 4, they differs considerably at
m = 0) as typical CTR values are very small compared to
the optimal bids.

The next three sets of experiments analyze the effects of
each of the three parameters—ρ, bid distribution, and num-
ber of bidders. Parameters are changed one at a time with
respect to Group (10) in Figure 3(a) by a factor two. Fig-
ure 3(a) Group (20) (plotted against the second y-axis) in-
creases the profit due to increase in pay per click ρ. The
increase in profit is more than linear to ρ since the rev-
enue increases linear to ρ, but the cost of impression remains
the same, consequently the profit (revenue− cost) increases
many times. For the Group (4) in Figure 3(b), reduced bids
of the competing bidders result in lower optimal bids hence
increase in profits. In the second set of experiments in Fig-
ure 3(b) group (2), the reduced number of competing bidders
leads to lower optimal bids and hence increase in profits.

The next sets of experiment in Figure 4 further relax as-
sumptions on competing bidders. The group (G) has com-
peting bidders having Gaussian bid distributions instead
of the uniform random distribution in the previous experi-
ments; and group (R) evaluates the robustness of RT bid-
ding against violation of assumptions. Like the uniform
distribution, for the Gaussian experiments in group (G) as
well, the RT bidder outperforms the competitors. The prof-
its are higher than the uniform distributions in Figure 3(a)
group (10), since the lower entropy of Gaussian distribution
is easier to optimize against. For the robustness experiments
if group (R), the RT and static bidders assume uniform dis-
tribution in [0, 0.04] for the three competing bidders, but
two of the competing bidders bid in normal distribution.
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Figure 4: Group(G) : Normally distributed compet-
ing bid distributions with mean = 0.02 and σ = 0.01.
All other parameters are same as Group (10) in Fig-
ure 3(a). Group(R) : Robustness to deviation from
the assumed distributions. Two of the four competi-
tors’ bids are normally distributed with mean = 0.02
and σ = 0.01 instead of the assumed unform distri-
bution in [0, 0.04] by the RT and static bidders.

The RT bidder still dominates over the baseline by consid-
erable margins. A plausible explanation for similar profits
to Figure 3(a) Group (10) is that the effects of violation of
assumption and the easier Gaussian distribution cancel each
other.

7.2 Running Time Evaluation
These experiments are conducted on a shared 16GB RAM

machine with two dual core CPUs running at 2.54 GHz. The
running time optimizations described in the Section 5 are
applied (similar to other experiments). Analyzing the ob-
jective function in Equations 5 and 6, the parameter having
maximum effect on the running time is the require clicks m.
The number of terms in the objective increases with m, and
other parameters will have negligible effect on computation
time. Hence we evaluated mean time to optimize the bids
for an impression against plausible ranges of m. Figure 5
shows that the running time increases linearly with the re-
quired cliks as expected. The highest running time is less
than 0.2 milliseconds, which is quite acceptable.

7.3 Deal Selection
We evaluate the proposed real time deal selection de-

scribed in Section 6.1. Selection is compared with the opti-
mal static selection preferring higher private value ads com-
puted as CTR × CPC − bid. Among the 935 ads in click
log, we removed ads with CTR greater than 0.02 for these
experiments. These high CTR ads make the selection easy
by dominating over other ads, hence make it harder to dis-
tinguish the selection quality. Among 823 remaining ads, we
randomly created groups of four ads. Selection experiments
are performed for each group separately, and mean profits
among all groups are plotted. We set the bidding param-
eters as ρ = 20, total number of user visits as 15000, time
to expire for each ad as minimum of 15000 and the num-
ber of impressions of the ad, number of bidders as four, and
competing bidders’ bids are uniform random in [0, 0.04]. For
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Figure 5: Optimization time increases linearly with
the required clicks, but is in acceptable limits.

every deal, the require clicks is set uniform random between
zero and the maximum value shown in the x-axis to have
different required clicks values for different deals.

For selecting the best ad in the group for an impression,
first the bids are optimized using the real time bidder. These
optimal bids are used in Equation 8 for real time selection,
and to compute private value (i.e. CTR×CPC−bid) of the
static selection. To separate improvement in profit by selec-
tion from improvement by bidding, the proposed RT bidder
is used for bidding after both the static and RT selections.
The mean realized profits are shown in Figure 6(a). When
the required clicks is zero, the real time bidding gives the
same optimal profit as the static bidding (keep in mind that
the static selection is optimal when require clicks is zero).
For higher values of required clicks, the real time bidder gives
considerably higher profits, with percentage of increase in
profit increasing with required clicks. The profit swings at
larger values of required clicks is due to the random factors
in assignment of required clicks.

7.4 Deal Admissibility
The admission control proposed in Section 6.2 is evaluated

by comparing mean deal profits against the profits without
admission control. Similar to selection, bids are optimized
and substituted in Equation 9. The deals giving positive
expected profits are passed to the bidder, and mean prof-
its are plotted. Figure 6(b) shows that admission control
improves profits by more than six times for some values of
required clicks m. The profit increase for both static and RT
bidders, showing effectiveness of admission control indepen-
dent of the bidding method (like the previous experiments
RT bidder performs considerably better than static). At
m = 0 all the ads in the click log have positive expected
profits. The mean profit no longer decreases monotonically,
as the admission control eliminate more low profit ads with
increased m. Further the total profits of RT bidder with
and without admissibility is almost exactly the same. This
shows that there are no false negatives removed. The admis-
sion control does not increase the total profits, because for
the ads with negative expected profits, the real time bidder
will bid zero making the losses to zero. With admissibility,
the bidder incur the same profit from much lesser number
of ads and user visits, hence he can use the remaining user
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Figure 6: Evaluation of extensions: (a) Comparison of real time and static selection. (b) Admission control
increases mean deal profits significantly, for both static and RT bidder. The total profits (plotted against
the second y-axis) of RT bidder remains the with and without admissions control, indicating lack of false
negatives.

visits to sell other ads.

8. CONCLUSIONS
An emerging category of the online ads are the group-buy

deals requiring minimum number of purchases. For an ad-
vertiser or intermediary selling these deals, optimizing bids
is necessary for maximal profits. Existing bidding strategies
are sub-optimal for these deals, as they do not consider event
minimum group-size guarantees and expiry timings. To this
end, we propose a real time bidding strategy for guaranteed
deals. We derive the expected profits as a function of the
dynamic and static parameters of the deals. These expected
profits are shown to be non-convex, and numerically opti-
mized against the bid values. To satisfy the stringent time
constraints of online bidding, we use several approximations
and running time optimizations. Exploiting the generality
of the proposed formulation, we extend the solution to re-
lated problems of deal selection for bidding, admissibility,
selection for non-bidding scenarios and real time bidding of
non-guaranteed ads. Our empirical comparisons with base
adaptive and the existing static strategies on a multi-million
click log show significant profit improvements. Further our
evaluations show acceptable running time and robustness
against the violation of assumptions. Evaluations of exten-
sions show considerable profit improvement by the proposed
deal selection and admissibility.
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APPENDIX
A-1 Derivation of Equation 4

Let G denotes the event of satisfying the guaranteed num-
ber of clicks. Let R and C denote revenues and costs respec-
tively,

E(Pit) = P (G)(E(R|G)− E(C|G))− P (¬G)(E(C|¬G))
(A-1)

Cost: At time t an amount equal to
∑t−1
j=1 ψjbj is paid

for the impressions. The future expected cost is the expected
payment till ut. Let D denotes the total number of displays
till ut

4,

E(D) = E(D|G)P (G) + E(D|¬G)P (¬G)

These conditional expectations can be expanded as,

= P (G)

ut∑
j=1

jP (D = j|G) + P (¬G)

ut∑
j=0

jP (D = j|¬G)

=

ut∑
j=1

j [P (D = j|G)P (G) + P (¬G)P (D = j|¬G)]

=

ut∑
j=1

j

[
P ((D = j) ∧G)

P (G)
P (G)+

P (¬G)
P ((D = j) ∧ ¬G)

P (¬G)

]
=

ut∑
j=1

j [P ((D = j) ∧G) + P ((D = j) ∧ ¬G)]

=

ut∑
j=1

jP (D = j)

Since number of impressions follows a binomial distribution
with success probability equal to probability of display pd,
E(D) = pdut. Hence the expected cost is = btpdut

Revenue: Revenue is conditional on G, as revue in the
event of ¬G is zero. At time t, total expected revenue is the
sum of revenues of already realized clicks and the revenue
of the expected clcisk till ut. Let Rf denotes the future
expected revenue till ut,

E(R|G) = ctρi + E(Rf |G)

Let V denotes the number of clicks till ut,

E(Rf |G) = ρi

ut∑
j=rt

jP (V = j|G)

= ρi

ut∑
j=rt

j
P (V = j

∧
G)

P (G)

= ρi

ut∑
j=rt

j
P (V = j)

P (G)

Total expected revenue is E(R|G)P (G).

E(R|G)P (G) = P (G)ctρi + E(Rf |G)P (G)

= P (G)ctρi + ρi

ut∑
j=rt

jP (V = j)

4We compute the expected displays in the event of meeting
the guarantees and not meeting the guarantees separately
for clarity, since it may look like this evidence influences
expectation of displays.

As the experiments are Bernaulli trials with success (con-
version) probability of µpd,

E(R|G)P (G) = P (G)ctρi +

ρi

ut∑
j=rt

j

(
ut
j

)
(µpd)

j(1− µpd)ut−j

P (G) has a binomial PDF as well,

P (G) =

ut∑
j=rt

(
ut
j

)
(µpd)

j(1− µpd)ut−j

Substituting derived values of revenue and cost in Equa-
tion A-1,

E(Pit) = ctρi

ut∑
j=rt

(
ut
j

)
(µpd)

j(1− µpd)ut−j +

ρi

ut∑
j=rt

j

(
ut
j

)
(µpd)

j(1− µpd)ut−j −(
t−1∑
j=1

ψjbj + pdutbt

)
= ctρΦ(rt, ut, bt, µ) + ρΘ(rt, ut, bt, µ)−(

t−1∑
j=1

ψjh(bj) + utd(bt)h(bt)

)

A-2 Derivation of Equation 8
On displaying the ad, the ad may get conversioned with

a probability equal to µ, and will not be conversioned with
a probability equal to 1 − µ . Hence the expected change
in profit given a display is (we ignore the minute possible
change in optimal bid in a single display) E(Pi(t+1)|ψt = 1)
is,

µρi [(ct + 1)Φ(rt − 1, ut − 1, bt, µ)+

Θ(rt − 1, ut − 1, bt, µ)] + (1− µ)ρi [ctΦ(rt, ut − 1, bt, µ)+

Θ(rt, ut − 1, bt, µ)]−

(
t−1∑
j=1

ψjbj + bt + pd(ut − 1)bt

)
Similarly, expected profit given no display E(Pi(t+1)|ψt =

0) is,

= ctρiΦ(rt, ut − 1, bt, µ) + ρiΘ(rt, ut − 1, bt, µ)−(
t−1∑
j=1

ψjbj + pd(ut − 1)bt

)
Substituting these values in Equation 7 we get E(vit) as,

= µρi [(ct + 1)Φ(rt − 1, ut − 1, bt, µ)+

Θ(rt − 1, ut − 1, bt, µ)− ctΦ(rt, ut − 1, bt, µ)−
Θ(rt, ut − 1, bt, µ)]

= µρi

[
ct

(
ut − 1
rt − 1

)
(µpd)

rt−1(1− µpd)(ut−rt)+

Φ(rt − 1, ut − 1, bt, µ) +

(rt − 1)

(
ut − 1
rt − 1

)
(µpd)

rt−1(1− µpd)(ut−rt)
]

= µρi

[
(ct + rt − 1)

(
ut − 1
rt − 1

)
(µpd)

rt−1(1− µpd)(ut−rt)

+Φ(rt − 1, ut − 1, bt, µ)]
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