
Scalable Parallel Data Mining for Association Rules *

Abstract

Eui-Hong (Sam) Han George Karypis Vipin Kumar

Department of Computer Science Department of Computer Science Department of Computer Science

University of Minnesota University of Minnesota University of Minnesota

Minneapolis, MN 55455 Minneapolis, MN 55455 Minneapolis, MN 55455

han@ce.umn.edu karypis@cs.umn.edu kumarfke.umn.edu

One of the important problems in data mining is dBcover-
ing association rules from databases of transactions where
each transaction consists of a set of iterns. The most time
consuming operation in this discovery process is the com-
putation of the frequency of the occurrences of interesting
subset of items (called candidates) in the database of trans-
actions. To prune the exponentially large space of candi-
dates, most existing algorithms, consider only those candi-
dates that have a user defined minimum support. Even with
the pruning, the task of finding all association rules requires
a lot of computation power and time. Parallel computers
offer a potentiaJ solution to the computation requirement
of this task, provided efficient and scalable parallel algo-
rithms can be designed. In this paper, we present two new
parallel algorithms for mining association rules. The Intel-
ltgent Data Distribution algorithm efficiently uses aggregate
memory of the parallel computer by employing intelligent
candidate psrtit ioning scheme and uses efficient communi-
cation mechanism to move data among the processors. The
Hybrid Distribution algorithm further improves upon the In-
teUigent Data Distribution algorithm by dynamically parti-
tioning the candidate set to maintain good load balance.
The experimental results on a Cray T3D parallel computer
show that the Hybrid Distribution algorithm scales linearly
and exploits the aggregate memory better and can generate
more association rules with a single scan of database per
pass.

1 Introduction

One of the important problems in data mining [SAD+ 93] is
discovering association Am from databases of transactions,

“This work was supported by NSF grant ASC-9634719, Army
Research Office contract DA/DAAH04-95-l-0538, Cray Research
lncFellowship, and IBM partnership award, the content of which
does not necessarily reflect the policy of the government, and no
official endorsement should be inferred. Access to computing fa-
cilities was provided by AHPCRC, Minnesota Supercomputer In-
stitute, Cray Research. I-nc., and NSF grant CDA-9414015. See
http: //www.cs.umn.edu/han/papers.html#DataMiningPapers for an
extended version of this paper and other related papers.

Permission to make digital/hard copy of part or all this work for
personal or claearoom uae ia granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and ita date
appear, and notice ia givan that copying ia by permission of ACM,
Inc. To copy otherwisa, to republish, to peat on servers, or to
redistribute to Iiats, requiree prior epacific parmiasion and/or a fee.
SIGMOD ’97 AZ,USA
@ 1997 ACM 0-89791-91 1-4197/0005 ...$3.50

277

where each transaction contaius a set of items. The most
time consuming operation in this discovery process is the
computation of-the frequencies of the occurrence of subsets
of items, also called candidates, in the database of transac-
tions. Since usually such transaction-based databases con-
tain extremely large amounts of data aud large number
of distinct items, the total number of candidates ia pro-
hibitively large. Hence, current association rule discovery
techniques [AS94, HS95, SON95, SA95] try to prune the
search space by requiring a minimum level of support for
candidates under consideration. Support is a measure baaed
on the number of occurrences of the candidates in database
transactions. Apriori [AS94] is a recent state-of-the-art al-
gorithm that aggressively prunes the set of potential can-
didates of size k by looking at the precise support for can-
didates of size k - 1. In the ktk iteration, this algorithm
computes the occurrences of potential candidates of size k
in each of the transactions. To do this task efficiently, the
algorithm maintains all potential candidates of size k in a
hash tree. This algorithm does not require the transactions
to stay in main memory, but requires the hash trees to stay
in main memory.

Even with the Klghly effective pruning method of Apri-
ori, the task of finding all association rules requires a lot of
computation power that is available only in parallel com-
puters. Furthermore, the size of the main memory in the
aerial computer puts an upper limit on the size of the candi-
date sets that can be considered in any iteration (aud thus
a lower bound on the minimum level of support imposed
on candidates under consideration). Parallel computers also
offer increased memory to solve this problem.

Two parallel algorithms, Count Distribution and Data
Distribution were proposed in [AS96]. The Count Distribu-
tion algorithm haa shown to scale linearly and have excellent
speedup and sizeup behavior with respect to the number of
transactions [AS96]. However, this algorithm works only
when the entire hash tree in each pass of the algorithm fits
into the main memory of single processor of the parallel com-
puters. Hence, the fJount Distribution algorithm, like its se-
quential counterpart Apriori, is unscalable with respect to
increasing candidate size. The Data Distribution algorithm
addresses the memory problem of the Count Distribution
algorithm by partitioning the candidate set and assigning
a partition to each processor in the system. However, this
algorithm results in high communication overhead due to
data movement and redundant computation [AS96].

In this paper, we present two parallel algorithms for min-
ing association rules. We iirst present Intelligent Data Dis-
tribution algorithm that improves upon the Data Distribu-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253262.253330&domain=pdf&date_stamp=1997-06-01

tzon algorithm such that the communication overhead and
redundant computation is minimized. The Hybn”d Distribu-

tion algorithm further improves upon the Intelligent Data

Distribution algorithm by dynamically grouping processors
and partitioning the candidate set accordingly to maintain
good load balance. The experimental results on a Cray
T3D parallel computer show that the Hybrid Distribution

algorithm scales linearly and exploits the aggregate memory
better and can generate more association rules with a single
scan of database per pass. An extended version of this paper
that also contains the analysis of the performance of these
schemes is available in [HKK97].

The rest of this paper is organized as follows. Section 2
provides an overview of the serial algorithm for mining as-
sociation rules. Section 3 describes existing and proposed
parallel algorithms. Experimental results are shown in Sec-
tion 4. Section 5 contains conclusions.

2 Basic Concepts

Let T be the set of transactions where each transaction is
a subset of the item-set I. Let C be a subset of 1, then we
define the support count of C with respect to T to be:

u(c) = I{t[t E Z’, c g t}!.

An association rule is an expression of the form X ~ Y,
where X ~ 1 and Y ~ I. The supports of the rule X ~ Y
is defined as u (X U Y)/lTl, and the confidence a is defined
as a(X U Y)/a(X). For example, consider a rule {1 2} +
{3}, i.e. items 1 and 2 implies 3. The support of this rule is
the frequency of the item-set {1 2 3} in the transactions. For
example, a support of 0.05 means that 570 of the transac-
tions contain {1 2 3}. The confidence of this rule is defined
as the ratio of the frequencies of {1 2 3} and {1 2}. For
example, if 107o of the transactions contain {1 2}, then the
confidence of the rule is 0.05/0.10 = 0.5. A rule that has a
very high confidence (i.e., that is close to 1.0) is often very
important, because it provides an accurate prediction on the
association of the items in the rule. The support of a rule
is also important, since it indicates how frequent the rule is
in the transactions. Rules that have very small support are
often uninteresting, since they do not describe significantly
large populations. This is one of the reasons why most algo-
rithms disregard any rules that do not satisfy the minimum
support condition specified by the user. This filtering due
to the minimum required support is also critical in reduc-
ing the number of derived association rules to a manageable
size.

The task of discovering an association rule is to find all
rules X ~ Y, where s is at least a given minimum sup-
port threshold and a is at least a given minimum confidence
threshold. The association rule discovery is composed of
two steps. The first step is to discover all the frequent
item-sets (candidate sets that has more support than the
minimum support threshold specified) and the second step
is to generate association rules that have higher confidence
than the minimum confidence threshold from these frequent
item-sets.

A number of algorithms have been developed for discov-
ering association rules [AIS93, AS94, HS95]. Our parallel
algorithms are based on the Apriori algorithm [AS94] that
has smaller computational complexity compared to other al-
gorithms. In the rest of this section, we briefly describe the
Apriori algorithm. The reader should refer to [AS94] for
further details.

1. F’1 = { frequent l-item-sets} ;
2. for (k = 2; ~h_l # ~; k++) do begin
3. ck = apriori-gen(~k_~)
4. for all transactions t E T
5. subset (C~, t)
6. Fh = {c C ck I C.count ~ minsup}
7. end
8. Answer = U Fk

Figure 1: Apriori Algorithm

The Apriori algorithm consists of a number of passes.
During pa& k, the-algorithm finds the set of frequen~ item-
sets Fh of length k that satisfy the minimum support re-
quirement. The algorithm terminates when Fh is empty.
The high level structures of the Aptioti algorithm are given
in Figure 1. Initially FI contains all the items (i.e., item set
of size one) that satisfy the minimum support requirement.
Then for k = 2,3,4,..., the algorithm generates ck of can-
didates item-sets of length k using ~k-1. This is done in
the function apriori.gen, which generates ck by performing
a join operation on the item-sets of &1. Once the crm-
didate item-sets are found, their frequencies me computed
by counting how many transactions contain these candidate
item-sets. Finally, Fk is generated by pruning ck to elim-
inate item-sets with frequencies smaller than the minimum
support. The union of the frequent item-sets, U Fk, is the
frequent item-sets from which we generate association rules.

Computing the counts of the candidate item-sets is the
most computationally expensive step of the algorithm. One
naive way to compute these counts is to scan each trans-
action and see if it contains. any of the caddate item-sets
as its subset by performing a string-matching against each
candidate item-set. A faster way of performing this opera-
tion is to use a candidate hash tree in which the candidate
item-sets are hashed [AS94]. Figure 2 shows one example
of the candidate hash tree with candidates of length 3. The
internal nodes of the haah tree have hash tables that contain
links to child nodes. The leaf nodes contain the candidate
item-sets. When each candidate item-set is generated, the
items in the set are stored in sorted order. Each candidate
item-set is inserted into the hash tree by h~hing each item
at the internal nodes in sequence and following the links in
the hash table. Once the leaf is reached, the candidate item-
set is inserted at the leaf if the total number of candidate
item-sets are less than the maximum allowed. If the total
number of candidate item-sets at the leaf exceeds the maxi-
mum allowed and there are more items to be hashed in the
candidate item-set, the leaf node is converted into an inter-
nal node and child nodes are created for the new internal
node. The candidate item-sets are distributed to the child
nodes according to the haah values of the items. For exam-
ple, the candkiate item set {1 2 4} is inserted by hashing
item 1 at the root to reach the left child node of the root,
hashing item 2 at that node to reach the middle child node,
hashing item 3 to reach the left child node which is a leaf
node.

The subset function traverses the hash tree from the root
with every item in a transaction as a possible starting item
of a candidate. In the next level of the tree, all the items
of the transaction following the starting item are hashed.

278

Hash FU,,CLIOII

‘+-u-----..-
Transaction 2+=
w ,“’’””” ,... -”

---- ,
/’-. ,-. .,/ ,, ‘“a~. / ,,‘./’ . / .’

Candidate Hash Tree I

689

Figure 2: Subset operation on the root of a candidate hash
tree.

/ ‘\ / ,“

This is done recursively until a leaf is reached. At this time,
all the candidates at the leaf are checked against the trans-
action and their counts are updated accordingly. Figure 2
shows the subset operation at the first level of the tree with
transaction {1 2 3 5 6}. The item 1 is h~hed to the left
child node of the root and the following transaction {2 35
6} is applied recursively to the left child node. The item 2
is hashed to the middle child node of the root and the whole
transaction is checked against two candidate item-sets in the
middle child node. Then item 3 is hashed to the right child
node of the root and the following transaction {5 6} is ap-
plied recursively to the right child node. Figure 3 shows the
subset operation on the left child node of the root. Here
the items 2 and 5 are hashed to the middle child node and
the following transactions {3 5 6} and {6} respectively are
applied recursively to the middle child node. The item 3 is
hashed to the right child node and the remaining transaction
{5 6} is applied recursively to the right child node.

The bulk of the computation is spent in finding the fre-
quent item-sets and the amount of time required to find the
rules horn these frequent item-sets is relatively small. For
this reason, parallel association algorithms focus on how to
parallelize the first step. The parallel implementation of the
second step is straightforward and is discussed in [AS96].

3 Parallel Algorithms

In this section, we will focus on the parallelization of the
first task that finds all frequent item-sets. We first dkcuss
two parallel algorithms proposed in [AS96] to help motivate
our parallel formulations. In all our discussions, we assume
that the transactions are evenly distributed among the pro-
cessors.

3.1 Count Distribution Algorithm

In the Count Distribution (CD) algorithm proposed in [AS96],
each processor computes how many times all the candidates
appear in the locally stored transactions. This is done by
building the entire hash tree that corresponds to all the can-
didates and then performing a single pass over the locally
stored transact ions to collect the counts. The global counts
of the candidates are computed by summing these individ-
ual counts using a global reduction operation ~GGK94].
This algorithm is illustrated in Figure 4. Note that since
each mocessor needs to build a hash tree for all the candl-

C“’’’’:H”’T791$K!
dates; these hash trees are identical at each processor. Thus,

12+ m-------

excluding the global reduction, each processor in the CDal-
gorithm executes the serial Aprioti algorithm on the locally
stored transactions.

13+

15+

~-

B-----‘#&
EH2124 125

457 458

Figure 3: Subset operation on
root of a candidate hash tree.

c1159

the left most subtree of the

Thw algorithm has been shown to scale linearly with the
number of transactions [AS96]. This is because each pro-
cessor can compute the counts independently of the other
processors and needs to communicate with the other pro-
cessors only once at the end of the computation step. How-
ever, this algorithm works well only when the hash trees cau
fit into the main memory of each processor. If the number
of candidates is large, then the hash tree does not fit into
the main memory. In this case, this algorithm has to par-
tition the haah tree and compute the counts by scanning
the database multiple times, once for each partition of the
hash tree. Note that the number of candidates increases if
either the number of distinct items in the database increases
or if the minimum support level of the association rules de
creases. Thus the CD algorithm is effective for small number
of distinct items and a high minimum support level.

279

Proc o ProcI Proc 2 Proc 3

(

Data

(,Candidate HashTree

IA.B) I 2 I

I ,—,—, I
yk.

(

Data

NIP

f

mt D

‘. “..
‘. -------

‘..

I (CamiidateHashTree

\ s[A,B} I

[A,C] 2

[A,D} 3

M (B,C] I

[B,E} 2

(C,D) 2

(D,E] 5

.-7 %
-

-- ---

(

/ ~ CandidateHashTme

~

((A,B] 3

(A,C) 3

(A,D) 4

M (B,C} 2

(B,E] 4

(C,D] 3

(D,E} 1

,7 Y.
. -.. ...”

--- - -----

Data

NJP

(nt’ D

CandidateHashTret

\

~

(A,B] 2

(A,C] I

(A,D] 3

M (B,C] 5

[B,E] 2

(C,D] 3

(D,E) 2

,= +

/“ /

.’
..”

. . . GlobslReduction /-’
. ..- ~-

--------- ----------- ---------------- -----
N: number of dataitems

M: sire of candidateset

P: numberof processors

Figure 4: Count Distribution (CD) Algorithm

3.2 Data Distribution Algorithm

The Data Distribution (LID) algorithm [AS96] addresses the
memory problem of the CD algorithm by partitioning the
candidate item-sets among the processors. This partition-
ing is done in a round robin fashion. Each processor is
responsible for computing the counts of its locally stored
subset of the candidate item-sets for all the transactions in
the database. In order to do that, each processor needs to
scan the portions of the transactions assigned to the other
processors as well as its locally stored portion of the trans-
actions. In the DD algorithm, this is done by having each
processor receive the portions of the transactions stored in
the other processors according to the following fashion. Each
processor allocates P buffers (each one page long and one

for each processor). At processor Pi, the ith buffer is used
to store transactions from the locally stored database and
the remaining buffers are used to store transactions from
the other processors, such that buffer j storea transactions
from processor Pj. Now each processor Pi checks the P
buffers to see which one contains data. Let k be this buffer
(ties are broken in favor of buffers of other processors and
ties among buffers of other processors are broken arbitrar-
ily). The processor processes the transactions in this buffer
and updates the counts of its own candidate subset. If this
buffer corresponds to the buffer that stores local transactions
(i.e., k = i), then it is sent to all the other processors asyn-
chronously and a new page is read from the local database.
If this buffer corresponds to a buffer that stores transactions
from another processor (i.e., k # i), then it is cleared and
an asynchronous receive request is issued to processor pk.
This continues until every processor has processed all the
transactions. Having computed the counts of its candidate

item-sets, each processor finds the frequent item-sets from
its candidate item-set and these frequent item-sets are sent
to every other processor using an all-to-all broadcast opera-
tion [KGGK94]. Figure 5 shows the high level operations of
the algorithm. Note that each processor has a different set
of candidates in the candidate hash tree.

This algorithm exploits the total available memory bet-
ter than CD, as it partitions the candidate set among pro-
cessors. As the number of processors increases, the number
of candidates that the algorithm can handle also increases
However, as reported in [AS96], the performance of this al-
gorithm is significantly worse than the CD algorithm. The
run time of this algorithm is 10 to 20 times more than that
of the CD algorithm on 16 processors [AS96]. The problem
lies with the communication pattern of the algorithm and
the redundant work that is performed in processing all the
transactions.

The communication pattern of this algorithm causes two
problems. First, during each pass of the algorithm each
processor sends to all the other processors the portion of
the database that resides locally. In particular, each pro-
cessor reads the locally stored portion of the database one
page at a time and sends it to all the other processors by
issuing P — 1 send operations. Similarly, each processor is-
sues a receive operation from each other processor in order
to receive these pages. If the interconnection network of the
underlying parallel computer is fully connected (i.e., there is
a direct link between all pairs of processors) and each pro-
cessor can receive data on all incoming links simultaneously,
then this communication pattern will lead to a very good
performance. In particular, if (l(N/P) is the size of the
database assigned locally to each processor, the amount of
time spent in the communication will be O(IV), However, on

280

Data
<---
Broadc

ProcO

LccalData RemoIeData
,----,
II

1,
t,
1,
{,
1,
1,
II
II,-----

()
Count Col

CandidateHashTtte

H

{LB) 2
M@ {B,C] 3

(C,E) 3

Data--- >
Oadce

Pm 2 Proc3

LccalData

D

w

(

count

RemoteData
~_---l
{,
II
II
1,
1,
II
1,
1,
II

)

Cnu (’count

RemoteData
~.---,
1!
1,
1,
18
II
1,
1,
II
II
,-----

)

Cou

LccrdData

w

[

RetnoreData
~----1
1,
II
1,
1,
1,
1,
1,
II
II
,-----

r)
count cm

CandidateHsshTree

❑
[A,E] 1

M? [C,D] 1
{u] 1

k,: ,/ k ,f k
\ / ‘. .,. ‘.,

/.,’. ‘. ..’,. ~.’ ‘. .’/’‘---------------- ‘.
‘.

------- -’/’,,-. /
‘.. All-to-allBrosdcsst .0’

N mrmta ofdataitems . . ------- ---
---~ ---

M sireofrarrdidaleset
-------------- --------------

P:numberof pwcssors

Figure 5: Data Distribution (DD) Algorithm

sIi realistic parallel computers, the processors are connected
via a sparser networks (such as 2D, 3D or hypercube) and a
processor can receive data from (or send data to) only one
other processor at a time. On such machines, this communi-
cation pattern will take significantly more than O(PJ) time
because of contention.

Second, if we look at the size of the candidate sets as a
function of the number of passes of the algorithm, we see
that in the first few passes, the size of the candidate sets
increases and after that it decreases. In particulru, during
the last several passes of the algorithm, there are only a
small number of items in the candidate sets. However, each
processor in the DD algorithm still sends the locally stored
portions of the database to all the other processors. Thus,
even tbough the computation decreases, the amount of com-
munication remains the same.

The redundant work is introduced due to the fact that
every processor has to process every single transaction in
the database. Although, the number of candidates stored at
each processor has been reduced by a factor of P, the amount
of computation performed for each transaction has not been
proportionally reduced. In CD (see Figure 4), only ZV/P
transactions go through each hash tree of M candidates,
whereas in DD (see Figure 5), IV transactions have to go
through each haah tree of M/P candidates. If the amount of
work required for each transaction to be checked against the
hash tree of M/P candidates is l/P of that of the hash tree
of M candidates, then there is no extra work. However, for
this to be true in the DD algorithm, the average depth of the
haah tree has to be reduced by P and the average number
of candidates in the leaf nodes has to be alao reduced by
P. This does not happen in the hash tree scheme discussed
in Section 2. To see this, consider a hash tree with single

Data
--
Brndwt

t

candidate at the leaf node and with branching factor of B.
By reducing the number of candidates by P, the depth of
the hash tree will decrease by only logB P. With B > P
(which would be the most likely), the logB P <1. On the
other hand, when the hash tree is completely expanded to
the depth k and the number of candidates at the leaf is
greater than P, the number of candidates at the leaf goes
down by P, but the depth of the tree does not change. In
most of real cases, the hash tree will be in between these two
extreme cases. However, in general, the amount of work per
transaction will not go down by P of the original hash tree
with M candldatea.

3.3 Intelligent Data Distribution Algorithm

We developed the Intelligent Data Dwtribution (IDD) al-
gorithm that solves the problems of the DD algorithm dis-
cussed in Section 3.2.

The locally stored portions of the datab- can be sent
to all the other processors by using the ring-based all-to-
all broadcast described in ~GGK94]. This operation does
not suffer from the contention problems and it takes O(N)
time on any parallel architecture that cart be embedded in
a ring. Figure 6 shows the pseudo code for this data move-
ment operation. In our algorithm, the processors form a
logical ring and each processor determines its right and left
neighboring procmsors. Each processor has one send btier
(SBuf) and one receive butYer (RBuf). Initially, the SBuf
is filled with one block of local data. Then each processor
initiates an synchronous send operation to the right neigh-
boring processor with SBuf and au asynchronous receive op-
eration to the left neighboring processor with RBuf. While
these asynchronous operations are proceeding, each proces-

281

while (!done) {
FillBuffer(fd, SBuf);
for (k = O; k < P-1; ++k) {

J* send/receive data in non-blocking pipeline ‘/
MPIJrecv(RBuf, left);
MPIJsend(SBuf, right);

/* process transactions in SBuf and update hash tree “/
Subset(HTree, SBuf);

MPI-Waitallo;

/“ swap two buffers “/
tmp = SBuf;
SBuf = RBuC
RBuf = tmp;

}
/“ process transactions in SBuf and update hash tree “/
Subset(HTree, SBuf);

}

Figure 6: Pseudo Code for Data Movements

sor processes the transactions in SBuf and collects the counts
of the candidates assigned to the processor. After this op-
eration, each processor waits until these asynchronous op-
erations complete. Then the roles of SBuf and RBuf are
switched and the above operations continue for P – 1 times.
Compared to DD, where all the processors send data to all
other processors, we perform only a point-to-point commu-
nication between neighbora, thus eliminating any communi-
cation contention.

Recall that in the DD algorithm, the communication
overhead of data movements dominates the computation
work in the later passes of the process. In IDD, we solve
this problem by switching to the CD algorithm when the to-
tal number of candidates falls below a threshold. Note that
swittilng to the CD algorithm does not cause any commu-
nication or computation overhead since each processor can
independently determine when to switch provided that the
threshold parameter is globafly known. A good choice of
the parameter is the maximum number of candidates that
single processor can have in the main memory.

In order to eliminate the redundant work due to the par-
titioning of the candidate item-sets, we must find a fast way
to check whether a given transaction can potentially con-
tain any of the candidates stored at each processor. This
cannot be done by partitioning ck in a round-robin fashion.
However, if we partition Ck among processors in such a way
that each processor gets item-sets that begin only with a
subset of all possible items, then we can check the items of
a transaction against this subset to determine if the hash
tree contains candidates starting with these items. We tra-
verse the haah tree with only the items in the transaction
that belong to this subset. Thus, we solve the redundant
work problem of DD by the intelligent partitioning of ck.

Figure 7 shows the high level picture of the afgorithm.
In this example, Processor O has all the candidates start-
ing with items A and C, Processor 1 has all the candidates
starting with B and E, and so on. Each processor keeps
the first items of the candidates it has in a bit-map. In the
Apriori algorithm, at the root level of hash tree, every item
in a transaction is h~hed and checked against the hash tree.
However, in our algorithm, at the root level, each processor
filters every item of the transaction by checking against the
bit-map to see if the processor contains candidates start-

ing with that item of the transaction. If the processor does
not contain the candidates starting with that item, the pro-
cessing steps involved with that item as the first item in
the candidate can be skipped. This reduces the amount of
transaction data that has to go through the hash tree; thus,
reducing the computation. For example, let {A B C D E
F G H} be a transaction that processor O is processing in
the subset function discussed in Section 2. At the top level
of the function, processor O will only proceed with items A
and C(i.e., A+ BCDEFG Hand C+ DE FG H).
When the page containing this transaction is shifted to pro-
cessor 1, this processor will only process items starting with
Band E(i.e., B+ CD EFG Hand E+ FGH). For
each transaction in the database, our approach reduces the
amount of work performed by each processor by a factor of
P; thus, eliminates any redundant work. Note that both the
judicious partitioning of the hash tree (indirectly caused by
the partitioning of candidate item-set) and the filtering step
are required to eliminate this redundant work.

The intelligent partitioning of the candidate set used in
IDD requires our algorithm to have a good load bafancing.
One of the criteria of a good partitioning involved here is
to have an equal number of candidates in all the proces-
sors. This gives about the same size hash tree in all the
processors and thus provides good load balancing among
processors. Note that in the DD algorithm, this was accom-
plished by distributing candidates in a round robin fashion.
Another criteria is to have each processor have a mixed bag
of the candidates. This will help to prevent load imbalance
due to the skew in data. For instance, consider a database
with 100 distinct items numbered from 1 to 100 and that
the database transactions have more data items numbered
with 1 to 50. If we partition the candidates between two
processors and assign all the candidates starting with iterns
1 to 50 to processor PO and candidates starting with items
51 to 100 to processor PI, then there would be more work
for processor Po.

To achieve a load-balanced distribution of the candidate
item-sets, we use a partitioning algorithm that is baaed on
bin-packing [PS82]. For each item in the database, we com-
pute the number of candidate item-sets starting with this
particular item. We then use a bin-packing algorithm to
partition these items in P buckets such that the numbers
of the candidate item-sets starting with these items in each
bucket are equal. To remove any data skew, our bin-packing
algorithm randomly selects the item to be assigned next in
a bin. Figure 7 shows the partitioned candidate hash tree
and its corresponding bitmaps in each processor. We were
able to achieve less than 570 of load imbalance with the bin
packing method described here.

3.4 Hybrid Algorithm

The IDD afgorithm exploits the total system memory while
minimizing the communication overhead involved. The av-
erage number of candidates assigned to ed processor is
M/P, where M is the number of total candidates. As more
processors are used, the number of candidates assigned to
each processor decreaws. This has two implications. First,
with fewer number of candidates per processor, it is much
more difficult to balance the work. Second, the smaller num-
ber of candidates gives a smaller hash tree and less compu-
tation work per data in SBuf of Figure 6. Eventually the
amount of computation may be less than the communica-
tion involved, and this reduces overall efficiency. This will
be au even more serious problem in a system that cannot

282

Dala----
Shifl

Pro-cO

LocalData RemoteData

NIP

[

~.---,
1,
!,
1,
1,
1,
1,
Id
1,
1,
,----4

‘fOun

m
GafiJ(A,B] 2

M/T’ {A,C] 3

(C,E] 3

Data---+
shift

Prw I

LocalData Remo[eDali
~-.-.l

1,
1,
II
1,
1,
1,1,
1,
1!
,-----

P

(--+
BitMap

B,E

lab--+

;hifl r-W

Dun/

~----1
1,
II
1,
1, Data
l,- ---!
1, ShitiII
1,
II

~oun

QI
BitMap

D

P::T9

Can&lateHashTree

❑
[D,E] 2

M/P {B:D] 5 MiP [D,F) 3

{E,F} 1 [D,G] 4

~ ~ .-..- -..
-.. ~. -. -------------‘.. --------

Prrc 3

Lwal Da!a Renw Data
,----,
1,
1,

1,
1,
1,
1 I
1,
!,
f,
,-----

Y“w
\ m(F,G) 3 J

M/P (G,f] 4

(G,J] 2

--- ,.’---
,,’. .

‘.. ..”

All-to-allBroadcast ------ ---
N numkxofdataitems

--- --
------- -----

------ -----------------

M sizeofcandidateset

P:nmrdxrof processm

Figure 7: Intelligent Data Distribution (IDD) Algorithm

perform asynchronous communication.
The H@rid DzstributiorL (HD) algorithm addresses the

above problem by combining the CD and the IDD algo-
rithms in the following way. Consider a P-processor system
in which the processors are split into G equal size groups,
each containing P/G processors. In the HD algorithm, we
execute the CD algorithm as if there were only P/G proces-
sors. That is, we partition the transactions of the database
into P/G parts each of size N/(P/G), and assign the task
of computing the counts of the candidate set C~ for each
subset of the transactions to each one of these groups of
processors. Within each group, these counts are computed
using the lDD algorithm. That is, the transactions and the
candidate set ck are partitioned among the processors of
each group, so that each processor gets roughly [C~l/G can-
didate item-sets ad N/F’ transactions. Now, each group
of processors computes the counts using the IDD algorithm,
and the overall counts are computing by performing a re-
duction operation among the P/G groups of processors.

The HD algorithm can be better visualized if we think of
the processors as being arranged in a two dimensional grid
of G rows and P/G columns. The transactions are parti-
tioned equally among the P processors, and the candidate
set ck is partitioned among the processors of each column
of this grid. This partitioning of Ck is the same for each
column of processors, that is, the processors along each row
of the grid get the same subset of Ck. Now, the IDD algo-
rithm is executed independently afong each column of the
grid, and the total counts of each subset of C,$ is obtained
by performing a reduction operation along the rows of this
processor grid. Figure 8 illustrates the HD algorithm for a
3 x 4 grid of processors.

The HD algorithm determines the configuration of the

Data--- +
shift

processor grid dynamically. In particular, the HD algorithm
partitions the candidate set into a big enough section and
assign a group of processors to each partition. The same
parameter that was used to determine whether to switch to
CD algorithm can be used to decide the size of the parti-
tion in this algorithm. For example, let this parameter be
C. If the total number of candidates M is less than C, it
switches to CD algorithm. Otherwise find out the number
of processor groups G = [M/Cl and form a logical G x P/G
processor mesh configuration. In the example of Figure 8,
the HD afgorithm executes the CD algorithm as if there were
only 4 processors, where the 4 processors correspond to the
4 processor columns. That is, the database transactions are
partitioned in 4 parts, and each one of these 4 hypothet-
ical processors computes the local counts of all the candi-
date item-sets. Then the global counts can be computed by
performing the global reduction operation discussed in Sec-
tion 3.1. However, since each one of these hypothetical pro-
cessors is made up of 3 processors, the computation of local
counts of the candidate item-sets in a hypothetical processor
corresponds to the computation of the counts of the candi-
date item-sets on the database transactions sitting on the
3 processors. This operation is performed by executing the
IDD algorithm in each of 4 hypothetical processors. This is
shown in the step 1 of Figure 8. Note that processors in the
same row have exactly the same candidates and candidate
sets along the each column partition the total csdidate set.
At the end of this operation, each processor has complete
counts of local candidates for all the data of the processors
of the same column (or of a hypothetical processor). The
global reduction operation is broken into two parts corre-
spondbg to the step 2 and 3 of the Figure 8. In the step 2,
perform reduction operation [KGGK94] along the row such

283

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns
...-. ----- ,---~

m-; m m-h

----- -/

El “i
‘.

Candidate HashTree II
A,B 3

D,E 2

G.F 1

* Data Shift

El

Candidate Hash Tree

C,D 3

F,G 1

F,H 2

? Data Shlfi :

~1 j
CandicfafcHashTree /

C,D 1
F,G 2
F,H 2

,’‘. -. ---.”

t Data Shlfi
,,

ml
CandidateHash Tree

C,D 2

F,G 1

F,H 2

~. -- _---”

ml
Candidate Hash Tree

C,D 1

F,G 1

F.H 2

,,
8

,’
/’

,
/’‘. ------,

‘\
------- .

Step 2: Reduction Operation Along the Rows

v
----------------------- ~---- --------. -- ----- ~------ ------- ---- .-----,,.

ElCundidale Hash Tree

A.B 1

D,E 2

G,F 2

Cumfidiuc Hush Tree

❑
A.B 3

DE 2

GF 1

Candidate Hush Tree Cmtlidae Hush Tree

❑
A,B 7

❑
A.B 2

D,E 7 D,E 1

G,F 5 G,F 1
1 , ,

-----------------------. ~----- ------------------ ~----- ------------------

ml ml ~, ~,
-----------------------. ~---_-------------------~-----------------------

Evil
Candidate Hash Tree

C,D 7

F,G 5

F.H B

..

mlcandidate Hash Tree

C,D 2

F,G I

F,H 2

CandIdatc Hxh Tree

❑
C,D 1

F,G 2

F,H 2 mC,D 1
F,G 1

F.fi 2

Step 3: All-to-all Broadcast Operation Along the First Column
Follwed by One-to-all Broadcast Operation Along the Rows

, ---------------------- * ----------------------- ~ ------------------ ,----- ,
t -t

Frequent Item Set

m ;,

F,H 8

H,l 8 .’\. ,
‘\,.

Frequmt Item.%

m

F,H 8

H,I 8

Frequent Item Sd

m

F.H 8

H.I 8

Frequmt Item Su

m

F,H 8

H,I 8

L I I
; ‘1, --------- ,--- = --------- ---------- ------------- ------------------------ ,

L-1
,t

Frequent km Se!) ~

m

/’
F,H 8 ‘ A1l-1,>-nll:

H,l 8 , Brmukasi !
.
.1
,,
,,

Frequent Item Set

m

F,H 8

H,l 8

Frequent Item set

m

F,H lf

H.f 8

Frquem Item Sc4

m

F,H 8

H,l 8

L I
------ ___________. -------- J---/---

,,
------ ------ r ----------------------- ,

t t
I I I I

T
;,/

Frequent Item set ,,’,,’

m

./
F,H 8 /’

H,I 8

Freq.ax Item Set Frequenthem S.d Frequent ftem S@

m

F,H 8

m

F,H 8

H.I 8 H,l SmF.H 8

H.I 8

I 1 1 1

Figure 8: Hybrid Distribution (HD) Algorithm in 3 x 4 Processor Mesh (G= 3, P = 12)

that the processor in the first column of the same row has
the total counts for the candidates in the same row proces-
sors. In the step 3, all the processors in the first column
generate frequent set from the candidate set and perform
all-to-all broadcast operation along the first column of the
processor mesh. Then the processors in the first column
broadcast the full frequent sets to the processors along the
same row using one-to-all broadcast operation [KGGK94].
At this point, all the processors have the frequent sets and
ready to proceed to the next pass.

This algorithm inherits all the good features of the IDD
algorithm. It also provides good load balance and enough
computation work by maintaining minimum number of can-
didates per processor. At the same time, the amount of data
movement in this algorithm has been cut down to 1/G of the
IDD.

4 Experimental Results

We implemented our parrdlel algorithms on a 128-proceseor
Cray T3D parallel computer. Each processor on the T3D is
a 150Mhz Dec Alpha (EV4), and has 64 Mbytes of memory.
The processors are interconnected via a three dimensional
torus network that has a peak unidirectional bandwidth of
150Mbytes per second, and a small latency. For commu-
nication we used the message passing interface (MPI). Our
experiments have shown that for 16Kbytes we obtain a band-
width of 74Mbytes/seconds and an effective startup time of
150 microseconds.

We generated a synthetic dataset using a tool provided
by [Pro96] and described in [AS94]. The parameters for the
data set chosen are average transaction length of 15 and av-
erage size of frequent item sets of 6. Data sets with 1000
transactions (6.3KB) were generated for different processors.
Due to the disk limitations of the T3D system we have kept
the small transactions in the buffer and read the transac-
tions from the buffer instead of the actual disks. For the
experiments involving larger data sets, we read the same
data set multiple times. 1

We performed scaleup tests with lOOK transactions per
processor and minimum support of 0.25%. We could not
use lower minimum support because the CD algorithm ran
out of main memory. For this experiment, in the IDD and
HD algorithms we have set the minimum number of candi-
dates for switching to the CD algorithm very low to show
the validity of our approaches. With 0.25~0 support, both
algorithms switched to CD algorithm in pass 7 of total 12
passes and 90.7~0 of the overall response time of the serial
code was spent in the fist 6 passes. These scaleup results
are shown in Figure 9.

As noted in {AS96], the CD algorithm scales very well.
Looking at the performance obtained by IDD, we see that
its response time increases as we increase the number of
processors. This is due to the load balancing problem dis-
cussed in Section 3, where the number of candidates per
processor decreases as the number of processors increases.
However, the performance achieved by IDD is much bet-
ter than that of the DD algorithm of [AS96]. In particular,
IDD haa 4.4 times less response time than DD on 32 proces-
sors. It can be seen that the performance gap between IDD
and DD is widening as the number of processors increases.
This is due to the improvement we made on lDD with the

1We also performed similar experiments on an IBM SP2 in which
the entire database resided on disks. Our experiments show that
the 1/0 requirements do not change the relative performance of the
various schemes.

01
0 20 40 m

d%9r01F—Ors
100 120 1 0

Figure 9: Scaleup result with lOOK transactions and 0.25%
minimum support.

better communication mechanism for data movements and
the intelligent partitioning of the candidate set. Looking at
the performance of the HDalgorithm, we see that response
time remains almost constant as we increase the number of
processors while keeping the number of transactions per pro-
cessor and the minimum support fixed. Comparing against
CD, we see that HDactually performs better as the number
of processors increases. Its performance on 128 processors
is 9,5’?70better than CD. This performance advantage of HD
over CD is due to that the number of processors involved
in global reduction operation of counts is much less in HD
thanin CD.

We measured how our algorithms perform as we increase
the number of transactions per processor from 50K(3.2MB)
to 800K(50.4MB). For these experiments, we fixed the num-
ber of processors at 16 and the minimum support at 0.25%.
These results are shown in Figure 10. From this figure, we
can see that CD and HD perform almost identically. For
both algorithms, the response time incre~es linearly with
the number of transactions. IDD also scales linewly, but
because of its load imbalance problem, its performance is
somewhat worse.

Our experiments so far have shown that the performance
of HD and CD are quite comparable. However, the real
advantage of HD (and IDD) over CD is thatthey do not
require the whole haah tree to reside on each processor, and
thus better exploit the available memory. This allows us to
use a smaller minimum support in the Aprion” algorithm.

To verify this, we performed the experiments in which we
fixed the number of transactions per processor to 50K and
successively decreased the minimum support level. These
experiments for 16 and 64 processors are shown in Figures 11
and 12 respectively. A couple of interesting observations
can be made from these results. First, both IDD and HD
successfully ran using lower support levels that CD could not
run with. In particular, IDD and HD ran down to a support
level of 0.06% on 16 processors and 0.04% on 64 processors.
In contrast, CD could only run down to a support level of
o.$?s~. and ran out of memory for the lower supports. The
difference between the smaller support levels on 16 and 64
processors is due to the fact that the IDD and HD algorithms
can exploit the aggregate memory of the larger number of
processors.

285

Figure 10: Sizeup result with 16 processors and 0.25% min-
imum support.

The second thing to notice is that HD performs better
than IDD both on 16 and 64 processors, and the relative per-
formance of IDD compared to HD get worse as the number of
processors increases. As discussed earlier, this performance
difference is due to the load imbalance. As the number of
processors increases, this load imbalance gets worse. How-
ever, on 16 processors IDD is 3770 worse than HD for sup-
port level 0.25Y0, but only 18% worse for support of 0.06%.
Thii is because aa the support level decreases, the number
of candidates (shown in parenthesis in Figures 11 and 12)
incresses which improves the load balance.

Figures 11 and 12 also show the performance of a sim-
ple hybrid algorithm obtained by combining CD and IDD.
In this scheme, in each pass of the Apriori algorithm, we
perform CD if the hash table can fit in the memory of each
processors or IDD if it can not. As we can see from these re-
sults, this simple hybrid algorithm performs worse than HD.
In particular, the relative performance of this scheme com-
pare to HD gets worse as the number of processors increases.
For example, for a support level of 0.06%, it is 6% worse on
16 processors and 17% worse on 64 processors. Thus the
HD algorithm, by gradually adjusting the subsets of proces-
sors that perform IDD and CD, achieves better performance.
This is because of the following two reasons. First, the can-
didate set is split among fewer number of processors which
minimizes load imbalance and second, the reduction opera-
tion to obtain the counts in CD is performed among fewer
processors, which decreases the communication overhead.

In another experiment, we varied the number of proces-
sors from 2 to 64 and measured how low we can go with
minimum support for the IDD and HD algorithms. Table 1
shows the result for these algorithms. The result shows that
as we have more processors, these algorithms can handle
lower minimum support. Table 2 shows how the HD algo-
rithm chose the proc~or configuration based on the num-
ber of candidates at each pass with 64 processors and 0.04%
minimum support.

5 Conclusion

cum +
irndlqem&la -i--

w m- -sin@OIl@nd*-

*
,;

,/ ,x

,.-

[211K]

0.6 0.25 0.1 0.06
MklkmunCqx# (%)

Figure 11: Response time on 16 processors with 50K trma-
actions as the minimum support varies. At each support
level, the total number of candidate item-sets is shown in
parenthesis

Icoo

800

SW

4m

203

0
0.5 0.25 0.1 0.M.04

Mhh!mslppnl(n)

Figure 12: Response time on 64 processors with 50K trtms-
actions ss the minimum support varies. At each support
level, the total number of candidate item-sets is shown in
pwenthesis

In this paper, we proposed two parcdlel algorithms for min-
ing association rules. The IDD algorithm utilizes total main
memory available more effectively than the CD algorithm.

286

Number of processors 1 2 4 8 16 32 64

Successful down to 0.25 0.2 0.15 0.1 0.06 0.04 0.03
Ran out of memory at 0.2 0.15 0.1 0.06 0.04 0.03 0.02

Table 1: Minimum support (%) reachable with different number of processors in our algorithms.

Pass 2 3 4 5 6 7 8 9 10

Configuration 8x8 64x1 4x16 2x32 2x32 2x32 2x32 2x32 1x64
No of Canal. 351K 4348K 115K 76K 56K 34K 16K 6K 2K

Table 2: Processor configuration and number of candidates of the HD algorithm with 64 processors and 0.04% minimum
support for each pass. Note that 64 x 1 configuration is the same as the DD algorithm and 1 x 64 is the same as the CD
algorithm. The total number of pass was 13 and all passes after 9 had 1 x 64 configuration.

This algorithms improves over the DD algorithm which has
high communication overhead and redundant work. The
communication overhead was reduced using a better data
movement communication mechanism, and redundant work
was reduced by partitioning the candidate set intelligently
and using bit maps to prune away unnecessary computation.
However, as the number of processors available increases, the
efficiency of thk algorithm decreases unless the amount of
work is increased by having more number of candidates.

The HD combines advantages of the CD and IDD. This
algorithm partitions candidate sets just like the IDD to ex-

ploit the aggregate main memory, but dynamically deter-
mines the number of partitions such that the partitioned
candidate set fits into the main memory of each processor
and each processor has enough number of candidates for
computation. It also exploits the advantage of the CD by
just exchanging counts information and moving around the
minimum number of transactions among the smaller subset
of processors.

The experimental results on a 128-processor Cray T3D
parallel machine show that the HD algorithm scales just aa
well as the CD afgorithm with respect to the number of
transactions. It also exploits the aggregate main memory
better and thus is able to find out more association rules
with much smaller minimum support with a single scan of
database per pass. The IDD algorithm also outperforms the
DD algorithm, but is not as scalable as HD and CD.

Future works include applying these algorithms to real
data like retail sales transaction, mail order history database
and World Wide Web server logs [MJHS96] to confirm the
experimental results in the real life domain. We plan to
perform experiments on different platforms including Cray
T3E, IBM SP2 and SGI SMP clusters. We also plan on im-
plementing our ideas in generalized association rules [HF95,
SA95], and sequential patterns [MTV95, SA96].

Referetices

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items
in large databases. In Prac. of 1993 ACM-
SIGMOD Int. Conf. on Management of Data,
Washington, D. C., 1993.

[AS94] &r Agrawal and R. Srikant. Fast algorithms
mining association rules. In Proc. of the

287

[AS96]

[HF95]

[HKK97]

[HS95]

20th VLDB Conference, pages 487499, Santi-
ago, Chile, 1994.

R. AgrawaJ and J.C. Shafer. Parallel mining of
association rules. IEEE IFansactions on Knowl-
edge and Data Eng., 8(6) :962–969, December
1996.

J. Han and Y. Fu. Discovery of multiple=level
association rules from large databases. In Proc.
of the 21st VLDB Conference, Zurich, Switzer-
kmd, 1995.

E.H. Han, G. Karypis, and V. Kumar. Scalable
parallel data mining for association rules. Tech-
nicaf Report TR-97-??, Department of Com-
puter Science, University of Minnesota, M in-
neapolis, 1997.

M. A. W. Houtsma and A. N. Swami. Set-
oriented mining for association rules in rela-
tional databases. In Proc. of the i lth Znt ‘i Conj.
on Data Eng., pages 25–33, Taipei, Taiwan,
1995.

(KGGK941 ViDin Kumar, Ananth Grama, Anshul Gupta,
L .-

and Geor~e KarvDis. Introduction to P~ral~

[MJHS96]

[MTV95]

[Pro96]

[PS82]

lel Compu~ing: A“f~orithm Design and Analysis.
Benjamin Cummings/ Addison Wesley, Redwod
City, 1994.

B. Mobasher, N. Jain, E.H. Hau, and J. Sri-
vaatava. Web mining: Pattern discovery from
world wide web transact ions. Technical Report
TR-96-050, Department of Computer Science,
University of Minnesota, M inneapolis, 1996.

H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences. In
Proc. of the First Int’1 Conference on Knowl-
edge Discovery and Data Mining, pages 210-215,
Montreal, Quebec, 1995.

IBM Quest Data Mining Project. Quest syn-
thetic data generation code.
http://www.almaden. ibm. comlcslquestjsyndata. html,
1996.

C. H. Papadimitriou and K. Steiglitz. Combina-
torial Optimization: Algorithms and Complex-
ity. Prentice-Hall, Englewood Cliffsl NJ, 1982.

[SA95] R. Srikant and R. Agrawal. Mining generalized
association rules. In Proc. of the 21st VLDB
Conference, pagea 407-419, Zurich, Switzerland,
1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance im-
provements. In Proc. of the Fifth Int’1 Con-
ference on Extending Database Technology, Avi-
gnon, France, 1996.

[SAD+ 93] M. Stonebraker, R. Agrawal, U. Dayal, E. J.
Neuhold, and A. Reuter. DBMS research at a
crossroads: The vienna update. In Proc. of the
19th VLDB Conference, pages 688-692, Dublin,
Ireland, 1993.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules
in large databases. In Proc. of the 21st VLDB
Conference, pages 432-443, Zurich, Switzerland,
1995.

288

