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Abstract

DEVise is a data exploration system that allows users to ez-s-
ily develop, browse, and share visual presentations of large
tabular dataaets (possibly containing or referencing multi-
media objects) from several sources. The DEVise framework
is being implemented in a tool that has been already success-
fully applied to a variety of real applications by a number
of user groups.

Our emphasis is on developing an intuitive yet power-
ful set of querying and visualization primitives that can be
easily combhed to develop a rich set of visual presentations
that integrate data from a wide range of application do-
mains. While DEVise is a powerful visualization tool, its
greatest strengths are the ability to interactively explore a
visual presentation of the data at any level of detail (includ-
ing retrieving individual data records), and the ability to
seamlessly query and combine data from a variety of local
and remote sources. In this paper, we present the DEVise
framework, describe the current tool, and report on our ex-
perience in applying it to several real applications.

1 Introduction

It is being widely recognized that the traditional boundaries
of database systems need to be extended to support applica-
tions involving many large data collections, whether or not
all these collections are stored inside a DBMS. In this paper
we describe an effort to apply the query optimization and
evaluation techniques found in a DBMS to work on datasets
outside a DBMS, and to combine querying features with
powerful visualization capabilities. The main goals of the
DEVise project include:

● Visual Presentation Capabilities: Users can ren-
der their data in a flexible, easy-to-use manner. Rather
than provide just a collection of presentation idioms
(e.g., piecharts, scatterplots, etc.), we have developed
a simple yet powerful mapping technique that allows
a remarkable variety of visual presentations to be de-
veloped easily through a point-and-click interface (or
e~y-to-write ‘plug-ins’, if necessary). A distinguishing
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feature is that a user can interactively drill down into
a visual presentation, all the way down to retrieving
an individual data record.

Ability to Handle Large, Distributed Datssets:
The tool is not limited by the amount of available main
memory, and can access remote data over a network as
well as local data stored on disk or tape. Distributed
database query optimization is carried out to speed
evaluation of queries over the Web; we do not die-
cuss this aspect of DEVise here. The ability to deal
with datasets larger than available memory is central
to DEVise’s support for ‘drilling-down’ into the data.

Collaborative Data Analysis: DEVise enables sev-
eral users to share visual p-resentations of the data,
and to dynamically explore these presentations, inde
pendently or concurrently (so that some of the changes
made by one user are seen immediately by several other
users browsing the same data).

By integrating querying with data visualization features,
DEVise makes it possible to optimize data-level accesses
that arise due to visual operations more effectively; the se-
mantics of how different parts of the visual presentation are
‘linked’ offers many hints for what to index, materialize,
cache or re-compute. Further, memory can be managed by
a single btier manager that supports both visualization and
query evaluation.

The DEVise exploration framework is extremely power-
ful, but to appreciate this power fully, one must work with
the system or at least look at several applications in some
detail. This is especially true with respect to understanding
just how flexible the DEVise visual model (Sections 2, 3 and
4) really is.

The real power of DEVise’s visualization capabilities lies
in the support for interactively exploring the data visually
at any level of detail, including retrieving individual data
records. This results in complex queries being generated
through simple visual operations, and effective optimization
of these ‘visual queries’ is crucial for interactive use.

In this paper, we concentrate on describing the visual
model and visual operations rigorously in set-oriented terms,
to provide a foundation for database-style processing of vi-
sual queries. The seamless integration of visual queries and
database-style queries
most useful features.

in DEV~se is one of its ~que and
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1.1 Motivating Examples

DEVise is a novel tool in many ways, although many exist-
ing tools support some of its features. We now present some
example scenarios to illustrate its capabilities, and to help
the reader to understand how it goes bevond other related
tools. (For details on these app~ication~, including exam-
ple full-color DE Vise screens, see the DEVise home page at
http: /luvv. cs. uisc. edu/-devise)

Financial Data Exploration: In collaboration with
the Applied Securities Analysis program in the UW Busi-

ness School, we’ve developed an environment for integrated
visual exploration of financial datasets from several vendors,
including Compustat, ISSM and CRSP. This application
illustrates DEVise’s ability to access data from a variety
of formats, without requiring users to store all data in a
common repository, and its use in integrating information
from manv sources-users can now look for correlations and.
trends using the combined information from a variety of ven-
dors. It also highlights DEVise’s ability to support complex,
large datasets: for example, the Compustat data contains
records with over 350 fields, and a hierarchical view of this
schema, supported by DEVise, makes it much easier to work
with. DEVise also makes it e~y to ‘slice’ such multidimen-
sional data along any two axes and to correlate the ranges
seen in different slices; thus, it allows a user to navigate
through the multidimensional space to identify interesting
regions. The totzd size of the Compustat dataset is over
IGB.

In contrast to the ‘wide’ Compustat data, ISSM provides
trade and quote histories for over 5000 stocks; while each
history contains just a few fields and relatively few records,
the total amount of data is enormous. (The IBM history
for 1992, for example, contains about a million records and
is over 20MB. ) DEVise makes it possible to browse several
histories simultaneously, at various levels of detail, and to
move bet ween them easily. Thus, DEVise deals with not
only large volumes, but also large data complexity.

R-Tree Validation: The welLknown R-tree multidi-
mensional index organizes a collection of points and boxes
(which ‘bound’ spatial objects), Each leaf node (page) con-
tains several points or boxes, and each index node contains
several boxes (each of which ‘bounds’ all the cent ents of a
child page ). While developing R-tree algorithms, it is im-
portant to understand how different datssets are ‘packed’
into R-trees, and this can be accomplished naturally by vi-
sualizing the tree. An R-tree can be visualized in DEVise as
follows. First, note that each box is a data record with fields
(xI., WJ,xh,, yh: ); this information can be used to ‘map’ each
data record to a rectangle on-screen. By mapping all records
in a node, we can ‘see’ the node as a collection of boxes, and
by mapping all the nodes in a given level, we ‘see’ a hor-
izontal slice of the R-tree. Given such a visual presentation,
the visual operations supported in DEVise allow a user to
explore the tree, level by level, to scan around in a level and
on a page, to zoom into a specific region of the tree, and
even retrieve individual data records (‘boxes’ in leaf nodes,
in this example).

The ‘visual presentation’ of an R-tree can be applied to
any R-tree dataset, since there is a clean separation between
the definition of the presentation and the data that it oper-
ates on; this is analogous to the separation between a query
and the input relations in a DBMS. Defining the R-tree vi-
sual presentation in DEVise is straightforward, and can be
done using a point-and-click GUI.

Thk example illustrates the flexibility of the presenta-
tion mechanism. We were able to develop a sophisticated

presentation for a specialized data structure with ease, using
the DEVise point-and-click interface for defining new visu-

alizations. It also highlights DEVise’s ability to deal with

large datasets, and demonstrates the value of visual ‘mining’

for unusual patterns: examining some real datasets (Tiger
data for Orange county, a few hundred thousand records),
we noticed some unusual arrangements of boxes near page
boundaries, and by retrieving the relevant records (simply
by clicking on them!) we were able to find some subtle bugs
in our R-tree bulk loading algorithms that would otherwise
have been extremely difficult to spot.

Family Medicine and NCDC Weather Data: DE
Vise is being used by the UW Family Medicine department
to provide physicians access to data that is collected and
maintained independently by five clinics in the Madison
area. In addition to the clinic data, which is presented vi-
sually in such a manner as to allow physicians to look for
certain trends and correlations, we provide uniform access
to weather data for the Madison area from the National
Climate Data Center (NCDC) data repository. For exam-
ple, when a physician looks at a series of patient visits in
January 96, she may want to look at the temperature in
Madison over the same period to see if there is a correla-
tion. (The physicians indicated that they wanted to look
for such correlations!)

A common usage pattern is that a physician zooms and
scrolls on the visit data, which is local, and the ‘linked’
temperature view must then be automatically uDdated. DE-
Vis~ does this intelligently, by translating v~su~ operations
into queries on the underlying data, and utilizes form-based
query capabilities at the NCDC archive- one can specify a
region and period of interest for a particular time-series— to
ensure that only the desired data is fetched. In this example,
visual operations generate simple selections on the remote
data; more generally, joins of remote or remote and local
datasets may be involved, and DEVise generates a suitable
distributed query evaluation plan and evaluates the query
accordingly.

Cell Image-set Exploration: In this application, we
are working with biologists who are dealing with large sets
of images of cells, where each cell image has an associated
record with over 30 fields, containing information about
when and where the image was recorded and details about
the content of the image. The biologists working with these
images are looking for correlations in the records that can
be used to predict pathological features in the associated
images. Using DEVise, we have developed a visual pre-
sentation that allows a biologist to extract records satisfy-
ing certain selection criteria, identify subsets of the selected
records that satisfy further conditions, and then retrieve the
associated images at any desired level of resolution. The
development of the DEVise application was done using a
visual interface, using the notions of views, mappings, finks
etc. supported by DEVise, and the biologists’ exploration is
also done entirely through a visual interface supporting DE
Vise’s notion of visual queries. Executing user operations
involves a combination of evaluating SQL-style queries and
then updating the visual presentation of the results, but the
biologists can think (and express desired operations) entirely
in terms of what they see on-screen.

If a biologist finds an interesting correlation in the data,
he can send an active report to a colleague. The active re-
port consists essentially of the definition of the visual pre-
sentation, and, at the sender’s discretion, parts of the actual
data being visualized. The recipient can open the report us-
ing her own copy of the data, see the identical screen as the
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sender, and then proceed to interactively explore the data
further. This is extremely useful for collaborative analysis of

the biologists’ experimental data. Indeed, the DEVise arch]-
tecture makes it possible for two or more biologists to con-
cumentl y view the same report, so that changes made by one
are instantaneously visible to others, although the tool does
not support this capability yet. Another feature enabled by
the architecture, and which we are currently working on, is
called hyperdata. Biologists may fmd several trends, each of
which can be shared with others through an active report:
in addition, they can create a summary presentation (say)
that draws upon the underlying data and also ‘points’ to the
various active reports of interest. This enables a reader of
the summarv rmesentation (which is itself iust another ac-. .
tive report) to interactively’ bring up any ~f the referenced
active reports simply by clicking on the relevant portion of
the summary report; the referenced report can then be in-
teractively explored. Intuitively, an active report is like a
photograph that can ‘come alive’-users can scroll, zoom
etc. on it—and hyperdata enables references to other re-
ports, not just data values.

Soil Sciences Classification: This application illus-
trates an important point: users often want to generate
various kinds of summaries of their data, explore the sum-
mary information, and then be able to interactively look at
the ‘corresponding’ portion of the underlying data. This
makes it necessary for the visualization component of DE
Vise to understand the semantics linking the summary and
the summarized data. A research group in Soil Sciences is
working on automatic classification of forestry-canopy im-
ages, which are being generated in large numbers as part
of the BOREAS field experiments. They want to process
images and classify the pixels into categories like ‘trees’ and
‘sky’, and even ‘branches’, ‘soil’, ‘sunlit leaves’, etc. We’ve
combined a tool called BIRCH [15], which was developed

for finding clusters of points in multidimensional datasets,
with DEVise to create an analysis environment that they are
currently using on a daily basis for classifying images. By
applying BIRCH, they obtain a collection of clusters, each
of which corresponds to a category (e. g., ‘trees’). This col-
lection of clusters can be thought of as the summary of the
data for that image. A scientist can iteratively see the clus-
ters, refine the parameters of BIRCH, and re-cluster, until
the clustering is satisfactory. They can then take the data
points that are summarized by a cluster, say ‘trees’, and
identify cluaters within this set of points (e.g., ‘sunlit leaves’
and ‘branches’ ).

The crucial point here is how the relationship between
clusters (such as ‘trees’) and the points summarized by them
is preserved, and communicated by BIRCH to DEVise. Such
integrated interactive exploration of data and summary ‘meta-
data’ is an extremely powerful paradigm, and one of the
challenges facing us is to develop general mechanisms that
allow any analysis tool (e.g., a tool that finds association
rules, or even an SQL query that finds averages by some
group like department!) to communicate the semantics link-
ing the summary information and the summarized data to
DEVise.

1.2 Related Work

DEVise is related to tools that support data visualization,
data integration, distributed query processing, Web browsers,
and collaborative computing. Clearly, a comprehensive dis-
cussion of all the related work is beyond the scope of this
paper, but we now briefly discuss the relationship of DEVise

to well-known tools in each of these categories.
An introduction to existing visualization software can be

found in the surveys by Kornbluh[7] and Braham[2]. From
the standpoint of data visualization, DEVise is a general-
purpose tool for visual exploration of tabular datasets, un-
like tools like Vis5D [5], LinkWinds [6], Traceview [10], Para-
Graph [4], etc., that are specialized for a particular ap-
plication domain. Other visualization tools (e.g., Vis5D,
LinkWinds, AVS [14], Khoros [13]) also assume that the
datasets are sufficiently small for them to run entirely in
main memory; such an assumption limits the ability of the
tool to ‘go back’ to the source data record from its visual
presentation. Recently, the Tioga project at Berkeley and
the DataSpace project at Bell Labs [11] have also addressed
the problem of visualizing large datasets [12, 1], which is in-
dicative of the growing importance being attached to this is-
sue. Their approach, however, differs from ours in important
ways. DataSpace is not as flexible in terms of the kinds of vi-
sualizations that can be developed, although it supports 3D
rmesentations much better than DEVise (at least currentlv )
~oes. However, DataSpace assumes that ~ery large dataae~~
are stored in an external database, where= all its data struc-
tures are assumed to fit in memory: thus, it cannot handle
visualizations in which the data to be rendered on-screen
exceeds these memory bounds. We have taken a declarative
approach to defilng our visualization primitives, whereas
Tioga supports a more imperative, programming-oriented
style of defining visual presentations. DEVise is also more
comprehensive in its support for distributed query optimiza-
tion over the Web, its novel btier management features, and
its collaborative computing features.

While DEVise has aspects in common with data integra-
tion systems like IBM’s DataJoiner, we will not cover these
aspects in the present paper; we therefore omit discussion
of related work in this area as well.

With respect to collaboration tools, such as groupware
like Lotus Notes or workfiow m’oducts. DEVise is lanzel~.-?”

complementary. There is no support in DEVise for many of
the functions provided by such tools. However, DEVise en-
ables several users to share visual presentations of the data,
export such presentations over the Web, and to dynamically
explore these presentations, independent y or concurrently
(so that some of the changes made by one user are seen im-
mediately by several other users browsing the same data).
Thus, DEVise adds an important capability for collaborative
analysis of large datasets.

In two previous papers ([3, 8]), we reported on early
versions of DEVise, with a focus on how its visualization
features could be used to develop a variety of applications.
While the basic mapping technique has remained unchanged
in the current version, the visualization capabilities of DE
Vise have evolved considerably since, and we have added
data transformation/querying capabilities and extended the
framework to support collaborative computing. In this pa-
per, for the first time, we give rigorous set-oriented seman-
tics for all visual operations, thereby establishing a firm
connection between visualization in DEVise and relational
queries, and laying the foundation for database-style opti-
mization of visual queries.

1.3 Paper Outline

The rest of this paper is organized as follows. We describe
visual presentations in DEVise in Section 2, queries over vi-
sual mesentations in Section 3. and illustrate the Dower of. L

visual presentations in Section 4 by showing how sophisti-
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cated SQL queries are generated through intuitive user-level
operations on visual presentations. We briefly discuss data
transformation/query capabilities and the challenges posed
by the DEVise combination of visufllzation and querying,
especially in the context of Web data, in Section 5. We dis-
cuss optimization issues in Section 6 and DEVise support for
complex tasks such as uniform data/metadata exploration
and collaborative data analysis in Section 7.

2 The DEVise Visualization Model

Visualization in DEVise is based on mapping each source
data record to a visual symbol on screen. Source data ta-
bles are called TData(for’tabular data’), and the result of
applying a mapping to a TData table is a GData (for ‘graphi-
cal data’) table, which is a high-level representation of what
is to be painted on-screen. The actual painting is carried
out by drawing routines that are typically platform specific
(e.g., using X-window primitives or Windows NT drawing
primitives); we will not discuss the details of how GData is
‘painted’ any further. Mappings, TData and GData form
the building blocks for abstractions such as viewsand visual
presentations. We define below the various elements of the
DEVise model and its visual idioms. As an illustration we
consider visualization of data in the following tables:

DEPARTMENT( DID, DNAME, BUDGET, NUHEMPS)
department id, name, budget and
number of employees

ITEM ( ITE141D, INAHE, COST, DID )
item id, item name, cost of iten and
department selling it

SALES ( DATE, ITEPIID, CUSTID, NUNBER)
items sold, their number and customer ID,
on each date (mre/dd)

OVERALL.SALES( DATE, DID, TOTREV)
total sales revenue by dept id and date

2.1 Basic Concepts

TDATA: This is a collection of records with one or more
attributes, along with a schema that specifies the domain
(type) of each attribute. In our illustrative example, each
table (DEPARTMENT, ITEMS, OVERALL-SALES and
SALES) represents a TData source. We assume that an
appropriate type is specified along with the attribute in each
schema.

GDATA: Tocreate a visualization, each TData record
is mapped to a visual symbol. A GData record has a set
of visual attributes: z, U, size, coior, pattern, orientation
and shape.

MAPPING: This is a function that is applied to a
TDatarecord to produce aGData record. The mapping is
associated with the TData schema (and not with the data
itself-thus the same mapping may be applied to different
data sources with the same schema).

Figure lshows a visualization of the TDatasources de-
scribed earlier. V1 shows TOTREV on the y-axis and
DATE on the x-axis. Also, each DID is mapped to adif-
ferent symbol (square, circle, triangle). Each symbol on the
screen represents a single TData record. Thus the mapping
is (x = DATE , y = TOTREV, shape = DID). An alter-
native mapping may use a different color for each DID. V 1
is an example of a DEVise view and is enclosed in Wl, a
DEVise window, both of which we define below.

2.2 View: The Unit of Presentation

A view is the basic display unit in DEVise, and consists of
three layers: the background, data display and cursor dis-
play. The background includes the actual background on
which the data is drawn and decorations such as title and
axes. The cursor display layer is a data-independent layer
that gives additional information about the data display
layer. For instance, it can be used to highlight a portion
of the data display, as in view V3 in Figure 1.

Before describing the data display layer, we observe that
each view has an associated mapping and TData, and an
associated visual jiher. A visual filter is a set of selections
on the GData attributes of the view. For instance, a visual
filter may select a range of x and y attributes and a certain
color. View V1 in Figure 1 has a visual filter restricting the
x-axis to DATEs for the month of July. The data display
layer is GData obtained by applying the mapping to TData
and then selecting the GData records that satisfy the visual
filter. We use VGData to denote the GData records visible
in the data display layer, and view template, or view
definition, to refer collectively to all components of a view
except the TData and data display layer. Intuitively, a view
template is the data-independent portion of a view, and the
VGData, which is computed from the TData, is the data-
dependent portion. Together, they define a view completely.

2.3 Coordinating Views

Cursors and links are two kinds of view coordination mech-
anisms in DEVise. A cursor allows the visual filter of one
view (called the source view) to be seen as a highlight in an-
other view (the destination view). Cursors are bidirectional
in that a change in either the source or the destination view
causes a corresponding change in the other view. For in-
stance, Figure 1 shows a cursor with view V 1 as source and
V3 as destination. Notice that the two views have the same
x-attribute and the highlight in V3 extends over the range
of DATE values displayed in V1, i.e., the month of July. If
the highlight is moved over to the month of December, View
V1 will show the data corresponding to December.

A link is a constraint that allows the contents of two
views to be coordinated. Figure 1 illustrates different types
of links supported by the DEVise model.

A visual link is a selection condition that is added to
the visual filters associated with each of the linked views
(obviously, the GData attribute sets for each of the linked
views must contain the attributes mentioned in the visual
link selection). For example, the views V1 and V2 have a
visual link on the x axis. This means that both the views
display data for the same range of DATE values. So if the
user zooms in on V1 to see the data for the last week of
July, view V2 will also change appropriately.

A record link links two views (with possibly different
TData sources T1 and Tz), on a set of common TData at-
tributes, say A. A record link requires that the projection
of the VGData on the linked attributes for first linked view
(called the master) should act as a jilter on the TData of the
second linked view (called the slave). A record link could
be either positive or negative. Consider the set of TData
records, say T, that contribute to the VGData for the first
view. (Some TData records do not satisfy the selections in
the visual filter for the view, and therefore do not contribute
to the VGData for the view.) The positive (negative) record
link intuitively says that the second view should behave as if
its TData consists of only those records in Tz that have (do
not have) the same A values as those in T. A positive record
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Figure 1: An Example of a Visual Presentation
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link is useful for synchronizing two views that display dif-

ferent attribute combinations from the same TI)ata set. A

negative record link gives us the ability to do set differences.
Figure 1 shows a positive record fink from Views V6 to VI
on DID. Notice that view V6 shows three DID records and
V1 shows the TOTREV corresponding to these DIDs only
(as indicated by the shape attribute of the GData in both
the views). The record for DID = 4 has not been selected
in V6 and so does not appear in V 1. Assuming there are
only four DID values, if the record fink had been negative,
then V 1 would only display TOTREV (for the month of
July), for DID = 4.

An operator link is associated with views that are
called the link masters and an operator (such as union,
intersection, negation or join). The link creates a TData
source that is the result of applying the operator on the
TData(s) corresponding to the VGData(s) of the link mas-
ters; whether this TData table is materialized or computed
as needed in response to user operations is implementation
dependent. The user can now define a view (called a slave)
on this TData source by specifying a mapping. Once the
slave view is created any visuaf query on the link masters
would afTect the data in the slave view, just like in a vi-
sual or record link. Figure 1 illustrates union and join links.
View V9 has a join link from views V6 and V7. Thus, the
TData records in V6 (DEPARTMENT) and V7 (ITEMS)
are joined on DID, to produce a new TData source con-
sisting of attributes BUDGET, DID and COST. Note that
the join is performed only on those records (determined by
the visual filter) contributing to the VGData of the views.
View V9 is a visualization of attributes COST and BUD-
GET. Contrast this with a visual join shown in views V6
and V8 where a join is performed on DID by visual align-
ment of the x-axes of the views. The visual join in this case
gives the same information as the join link at a considerably
lower cost. View V1O has a union link from views V6 and
V7, on the DID attribute.

A careful reader may have observed that a record link
provides a mechanism similar to operator finks for intersec-
tion and negation operators, without the need for explicitly
creating an intermediate TData source. Notice however that
a record Iink, unlike operator finks, is always binary.

An aggregate link is a link between two views, with
an explicit (user-defined) or implicit (value-based) grouping
of attribute vafues for the TData in the first view. The
second view visualizes some aggregate function (such as sum,
average ) performed on each group of records in the first
view. For instance, Figure 1 shows an aggregate fink from
VI to V4 showing the sum of TOTREV of all departments
(whose DIDs appear in VI) for each day in July. Another
aggregate link exists between views V2 and V5 showing
the totzd number of items sold for each week in Jufy. The

grouping in V5) is defined by the user and in V4 is implicit
(every value of DATE).

2.4 Organizing Complex Visual Presentations

A window is a collection of views, together with a set of cur-
sors and links on these views. A window has an associated
layout that specifies the relative location of views within the
window. A visual presentation is a collection of windows,
plus a collection of links and cursors that relate views in
different, windows. We use visual template to denote the
data-independent portion of a visual presentation, i.e., a col-
lection of view templates, cursors and links for each window
in the visual presentation, plus the links and cursors that

span two windows, Thus Figure 1 is an example of a visu~
presentation. Views V 1 and V2 are in a window W 1. PJo-
tice the different layouts of views in windows WI and W3.
DEVise supports other layouts such as tiling and stacking
of views. [t also provides a mode for transparent overlays
of views. These features are not central to the visualization
model and we do not discuss them further for lack for space.

3 visual Queries

Once a visuaf presentation is created, a user can express
selections on the visual attributes of a view, or change a
cursor, and we refer to these operations as visual queries.
A visuaf query is appfied to a visuaf presentation, and the
result is another visual presentation.

Visuaf queries can be classified into three kinds:

WI

W2

op3

Create an x-y ‘rubberband selection’ on a view, or
zoom in/out in a view, or scroll; these are alf exam-
ples of x-y selections. In general, a user can express
selections on any visible GData attributes.

Click on a point in the view to display the actual
TData record; this is an x-y point selection, but with
a different display behavior.

Move a cursor highlight by first cficking on it and then
clicking on the new position to whi~h it should be
moved.

When the user performs one of the above operations on
a view V, queries may be generated on views that are linked
to V. A linked query is a query generated as a side-effect of
a visuaf query.

The presentation of the DEVise visualization model in
Section 2 is sufficient for purposes of understanding how
to create visual presentations and ask visuaf queries, but is
not sufficiently rigorous to define equivalence of alternative
implementation strategies. We now define the semantics of
mappings, views, cursors, finks and visual queries in DEVise
in terms of relational operations on TData. In addition to
giving queries a formal semantics, this lays the foundation
for database-style optimization of visual queries.

We use the operators selection (u), projection (n) and
function composition (o).

3.1 Mappings and VGData

A mapping p is a function that is applied to a TData record
to produce a GData record. In the current implementa-
tion of DEVise, a mapping is in fact a set of selections
{U,, U2,... ,an} such that if < tl,tz,...,tm> is a record
of TData and < gl, gz, . . . . g~ > is a record of GData, then

<tl, t2, ..., tm>-%gl

<tl, t2, . . . ,tm>= gz

<tl, tz, . . . ,tm >-% g.

The mapping function need not be one-to-one; several TData
records could be mapped to the same GData record.

A view V can be represented as a 5-tuple (B, UG,p, T, C)

where L? represents the background, aG the visuaf filter, p
the mapping, T the TData associated with the view and C
the cursor layer of the view. The GData G associated with
the view is P(T), and the VGData displayed in the view is
aG(G).
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3.2 Visual Links

A visual link between two views on attributes L means that
the selection conditions in their visual filters that involve
only attributes in L are identical. In other words,if views
vl(B], aG’ ,LJ1,T1, C1) and V2(B2, UG2, P2, T2, C2) are two
views with a visual link on attributes L:

cdink(u], W, L) +
~G] = ~G]~_~ o u~’2and

UG2 = U::L 00:12

When any visual query operation changes
on L, both views change accordingly.

3.3 Record Links

the visuaf filter

To define the semantics of record links, we must identify
the set of TData records that contribute to VGData for
the first linked view. We do this by defining an implicit
selection on TData, as illustrated in Figure 2. Consider a

klew (B, G: c, c)

71’
G)’ Visusl Filter , G

1’
t

*T I
9 GDats , G
t
\
\\ \\

I

Mapping, P
\

‘%
TDat.s, T

Figure 2: VGData and Implicit TData Selections

view Vl = (L31, UG1, PI, T1, Cl ). The VGData for this view
is a ‘1 o pl (Tl ). Let UT be a selection on TData such that
applying this selection and then applying mapping p yields
the same VGData as before:

aG1o P1(TI) = MI o UT (Tl)

i.e.,

L+opl=p loo T

Equivalently, UT can be defined using the following equa-
tion:

aT(T’l)= {t c Z’I I UG1 o pi(t) is non empty}

We can now define the semantics of a record link us-
ing the selection aT. A record link between two views
V1(B1, CTG’,P1, T], cl) and V2(B2, ~G2, p2, T1, C2) implies that
VGData for Vz is equal to:

for a positive record link.

lYG~Opzo(l –(rT’)(Tl)

for a negative record link.

Notice that the two views related by a record link have
the same TData component.

3.4 Operator Links

An operator link consists of master views VI ( Bl, crG1, p ~, TI, Cl ).

V2(B2, UG’ ,u2, T2, C2) . . . Vn(Bn, UG”, pn, Tn, Cn) and an

operator op. Suppose UT1 , aT2 . . . UT’I be the TData selec.
tions (as defined for record links) corresponding to the VG-
Data’s in VI, Vz, . . . . V.. Then we can define a TData Top
given by

aT’ (Tl )opaT2(Tz)op . . . OpaT” (Tn).

Now a view V(B, UG,p, TOp,C) maybe defined using TOp
as TData. The VGData for this view will be

UG o p o (Top)

The kind of operator associated with the operator fink
puts certain constraints on the TData’s in the master views,
The number of master views should be consistent with the
arity of the operator op. If the operator is union or inter-
section, then the TData’s T1, . . . . Tn should have the same
schema. Finalfy, for the operation to be a join an appropri-
ate join condition must be specified with the operator.

3.5 Aggregate Links

An aggregate link between two views V](Bl, UG’, pl, T1, Cl )
and VZ(BZ,a ‘2, IA2, T2, C2 ) has an associated grouping on
attributes of G1 or T1 and an aggregation function f, A
grouping on attributes Al, 0... Ak provides a grid of values
of attributes. The aggregate function is computed for each
coordinate (Al, . . , Ak.) on the grid. Let Tagg be the TData
whose records are of the form (A1, . . .. Am. f(A1, . ... An)).
The second view is some mapping defined on Tagg. The
grouping grid may be implicitly specified by having one
point on the grid for each vafue of (Al,..., Ak), as a range
of attribute values or some other manner which we leave
unspecified.

3.6 Cursors

A cursor links a source view and a destination view, and has
two parts:

1.

2.

A selection on visible GData attributes that operates
on the display layer of the destination view, and results
in highlighting some range of values for the GData at-
tributes in the selection. For instance, an x-y selection
could be shown as a highlighted area with a lighter
color. For selections on other attributes, a different
highlighting technique woufd have to be used; we leave
this unspecified, as an implementation detail.

A selection on the GData of the source view that se-
lects the same range as the selection on the display
layer of the destination view. Note that the GData
layer of the destination view is not constrained by the
cursor.

Formally, a cursor between VI (source) and V2 (destina-
tion) imposes the following conditions on the visual Ilters of
the two views. For the source view, the visual filter should
be of the form:

where u~l is a conjunction of range selections on visible
GData attributes in L.
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For the destination view, the wsual filter UG2 can be

any selection on GData attributes, but ranges of attributes
“ t,hatlie within theranges determined by theselected by UL

visual filter aG2 have to be highlighted in the display layer.

3.7 Semantics ofa Visual Query

A visual query can be represented formally by a 2-tuple
(op, Vl) where opis one of the three operations described
in Section 3, and VI is the view on which the operation is
performed. A visual presentation consists of a collection of
views, {VI, VZ, ..., Vn}andif other views arelinkedto Vl by
cursors, visual links or record links, additional (sub-) queries
are generated on these views.

We now define the visual query (and sub-queries) gener-
ated by each visual operation.

Let an operation op be performed on view VI represented
by (Bl, UC’, pl, T1, Cl ). Assume that the following (types
of) views exist in the visual presentation; this set of views in-
cludes an examde of everv kind of view that can be affected
by a

●

●

●

●

●

●

visual query on VI:

View Vz represented by (B2, crG’, PZ, Tz, Cz ) with a vi-
sual link vlink(Vl, Vz, L) on attribute L between V]
and Vz .

View Vs represented by (B3, aG3, ps, T1, Cs ) with a
record link rlink( V1, V3) from V1 to V3.

View V4 represented
cursor cur90r(V1, V4)
destination.

View V5 represented
cursor cur90r(V5, VI )
tination.

by (B4, UG4,P4,T4,C4) with a
that has V1 as source and Vq as

by (B5, UG’ ,p5, T5, C5) with a
with V5 as source and VI as des-

View VGrepresented by (BG,UG’, I@, TG,Ce) with an
aggregate fink on attribute L from VI to V6. Let, the
grouping be based on values of L. Let the aggregation
function be sum(L) and let PS map L to x and sum(L)
to y attributes of GData.

Views VT and VS represented by (BT, UG7, p7, T7, CT)

and (Ba, acs , prJ,TE, C13) such that there is an operator
link from Vl and VT to VE with the operator being
union.

We now describe the effect of op on VI. Views Vz through
Vs are also affected by the visual query on VI; the effect on
some of these other views can be described directly, and
in other cases is described by specifying a subquery that is
generated as a consequence of op on V1. Several cases arise
depending on the nature of operation op, which can be one
of the three kinds opl, op2 or op3 as described in Section 3:

Case I (op = opI ): This operation is a selection uG~
on attributes of GData. As a result, the visual filter of VI

changes to uc~, which means that the VGData displayed in

the view is now uG~(P1(T1 )).
According to the semantics of a visual link, a sub-query

(o~l, Vz ) will be generated on Vz, with the selection being

CrGI. Thus the VGData displayed in Vz is now (a~~~ o
/

a~l )(P2 (T2)). This is illustrated in Figure 3.

Let u~~ be the implicit TData selection determined by

uG~. Then, due to the record link between VI and V3 the

(Xl,yz) (X2’,yz’)

m AT

I (!41’,,1’) I I I
, , 1 1

(Xl,yl) Al ? (Xl”,yl’) Al
vlink(L. AI) _

* (x2,y4) (x2’,y4)

‘3-1 ‘3LI
(xl,y3) Al (xl ‘,y’) ‘1

Figure 3: Effect of opl in the Presence of a Visual Link

VGData now displayed in V3 changes to (u ‘30p30c7T~)(Tl).
If this had been a negative record link, the VGData dis-

“ op3 o (1 – uT~))(Tl).played in Vs changes to (u
This is illustrated in Figure 3.7.

(Xz,yz)

AZ

(xl, W-4

t (X3,Y4)

I--n,.
A3

(Xl,y’) Al
J1

V3

(x2’,y2’)

I VI

AZ

I_h_w
(.d’,yl’) Al

(>

A’

Li-L’

(xlJ’) Al
1

zy4)

Figure 4: Effect of opI in the Presence of a Record Link

Note that if the record link had instead been rlink(Vs, Vj )
then the operation on VI would have no eflect on Vs.

Let aG~ be of the form (u~~~ o u:;) where u:’ specifies
a conjunction of range selections on visible GData attributes

G1 that liein L.. Then the ranges of attributes selected by UL
within the ranges determined by the visual filter u‘4 will be
highlighted in the cursor layer of Vq. This is illustrated in
Figure 5.

On the other hand, no change occurs in the VGData of
Vs due to cursor(Vs, Vl ). The highlighted area in V1 may

change depending on the visual filter uG1.
Due to the operator link from V1 and VT to V8 the TData,

T8, corresponding to V8 now changes to (a=: U UT’) where

aT1 and aTT are the TData selections corresponding to a G]
and UG7. And the corresponding VGData in V’ is now
~ch o ~8(aT~ U aT7 ) Note that T1 and Ts mwt be don
compatible i.e. have same attributes.

Finally, if L1, L2, L3, .,. L. are the values of attribute
L, in the VGData corresponding to V1, then the GData
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in the Presence of a Cursor

(x,y) in V, would be {( L,, sumt(L,)), where t G uc~ o
P1(T1) and t.L = Li)}.

Case z (OP = op2 ): This operation specifies a GData

record given by a selection aG~ which is a conjunction of
equality constraints. The operation results in a popup win-
dow displaying the set of TData records:

{t ET, \ UG:o CG’ (fll(t))is non empty}

This query does not generate any subqueries on the linked
views and does not have any effect on the display of VI. This
is illustrated in Figure 6.

Al

El

G&) ::

A4=3

Al

F@e 6: Effect of op2

Case 3 (OP = 0P3): This operation changes the position
of the cursor highlight on the destination view. Thus, the
highlight in V] is centered around the new position given

by the user. As a result a new GData filter a:’ is created.
According to the bidirectional semantics of a cursor, the VG-

Data displayed in Vs is now given by (u:; o a~~L)(us(Ts)).
This is illustrated in Figure 7.

We wiU see how these definitions provide a foundation
for database-style visual query optimization in Section 6.

4 VLsual Queries and SQL

The visual query paradigm enables users who are not database
experts to generate sophisticated SQL queries through intu-
itive graphical operations. We illustrate this now through
several examples. The point of this section, however, is
not to argue that DEVise can be an SQL front-end (al-
though it is indeed a very good front-end for a large class
of SQL queries!). Rather, we demonstrate the close interac-
tion of data visualization and relational querying in DEVise.
Of course, the visual presentation offers the-significant !—
additional value of rendering the answers in a desired visual

I J

(X3,Y3) A4

F@re 7: Effect of opa in

I I

(X3.Y3) A4

the Presence of a Cursor

form, but we will concentrate on the set of answer tuples in
this section.

Consider a TData schema representing the sales data of
a company by location: (latitude, longitude, orders, tota-
Iatnount). This schema is a single data source and serves as
a good example of the range of SQL queries that its visual-
ization can produce.

Let T be a set of such TData records. We create the
following presentation. Mapping PI gives a scatter plot of
totalamount us. latitude and Mapping pZ gives a scatter plot
of orders us. latitude. This visual presentation is equivalent
to the following SQL queries:

SELECT (t otalamount, latitude ) FROMT
SELECT(orders, latitude) FROMT

Next, we create a visual link on the x attribute. Now
the same visual presentation with a fink between Viewl
and View2, is equivalent to the single SQL query,

SELECT(totalamount, latitude, orders) FROMT

Now we issue a ‘rubberband query’, i.e., an x-y selec-
tion, on one of the views, say Viewl. Thus we create the
selections:

10000 < y < 20000 AND30 < x < 40 on Vieul
30 < x < 40 on Vieu2

due to the x-link.
The equivalent SQL queries on View 1 and View2 respec-

tively are:

SELECT(totalamount, latitude)
FROMT
UHERE(10000 < totalamount < 20000)

AND (30 < latitude < 40)

SELECT(orders, latitude )
FROUT
UHERE(30 < latitude < 40)

Next, suppose that we modify PI and Pz so that longi-
tude is mapped to the color attribute. Then, in the original
views we can see the result of the following SQL queries on
Viewl and View2 respectively:

SELECT(latitude, totalamount, longitude) FROHT
SELECT(latitude, orders, longitude) FROMT
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we create the visual link on x between the two views as
before. Now if we perform a color selection on any of the
views (say View I):

colorl (longitude = 50) < color
< color2 (longitude = 60)

we generate the following SQL queries:

SELECT (latitude, totalamount, longitude)
FROMT
WHERE(50 f longitude f 60) : Queryl

SELECT (latitude, totalamount, longitude)
FROM T
WHERE( SELECT( snin(latitude)

FROt4CJueryl )
< latitude c
SELECT( max(latitude)
FROMC)ueryl ))

Consider an aggregate link giving Sum of totalamounts
where the aggregation is done on the latitude. Ifthis link is
created from Viewl to View3, whose mapping is totaiarnount
us. latitude then we have visualized the SQL query,

SELECT (latitude, sum(totalamount))
FROf4 T
GROUF BY latitude

If a visuaf filter of latitude <30, is applied to the view,
then the query would have the appropriate selection condi-
tion added to it.

Finally, we consider an operator link with the operation
being join. Suppose we have another table T1 with the
same schema as T, for a different company. Let VI and
V2 display tables T and T1 respectively, with the mapping
being totalamount vs. latitude. Consider a join operator link
with V 1 and V2 as the masters, join predicate (T.latitude =
2“1.[atitude), creating a TData source table with attributes
(latitude, totzdamountl, totalamount2). We can then create
a visualization of totalamount 1 VS. totalamount2 in the
created table, which gives us the answer to the following
SQL query:

SELECT (T.totalamountl, T2.totalamount)

FROM T, T1
UHERE(T.latitude = T1.latitude)

In contrast, observe that visual links allow us to display
theoutput ofsome simplejoine without explicitly computing
the join. We calf such joins visual joins. For instance, the
information computed with a join operator link in the above
exampie could also be obtained visually: Suppose mapping
p I on T is used to create a scatter plot of totalorders us.
latitude, Pz the same for TI, and we have a visual link on
the z attribute. If these views are laid out one below the
other we can see the totalamount corresponding to the same
fatitude inthe two views. However the queries evaluated in
the two views themselves are:

SELECT(totalamount, latitude)
FROMT

SELECT (totalamount, latitude)
FROM T1

In fact, since a visual link on z implies that the two
views have the same range of I attributes, but need not
have exactly same attributes we can get a visuaf ‘range’ join
by simply creating an x-y rubberband on one of the above
views. The resulting query is:

SELECT(T.totalamount, T1.totalamount)
FROMT, T1
WHERE(30 < T.latitude < 40)

AND (30 < T1.latitude < 40)

Similarly, wecoufd write corresponding SQL queries for
the more complex visualization in Figure 1.

4.1 Visualizing an SQL Query

We now show how an example SQL query could be expressed
using a visuaf presentation. We use the schema for sales
data described before for TData7’1. Consider the SQL view
generated by the following query:

SELECT(latitude, longitude)
FROMT-l
WHERE(totalamount > 20000)

AND (50 < longitude f 60)

This query intuitively asks the following question: “Ins
given geographical area, which locations hadat,otalamount
sale greater than a threshold?”

The foflowing visual presentation achieves this effect.
Define mapping pI as (longitudes. totaiamount) (Viewl).
Create a rubberband on View 1 to select totalamount >20000.
Define mapping pzas latitude us. longitude (View2). Create
a record link from Viewl to View2. This places the restric-
tionthat the records displayed in View2are also displayed in
Viewl. Now select the correct subset ofrecordsfrom View2
using a rubberband 50 < longitude< 60. View2 now shows
the result of the query.

Thus a query on TData attributes can be performed by a
appropriate sequence of operations on GData. These exam-
ples hopefully illustrate the power of visual queries, although
lack of space prohibits a fuller discussion of the expressive
power of visual queries.

5 Data Transformation and Querying

As DEVise was utilized in reaf appficatione, we repeatedly
received feedback from users indicating that more sophisti-
cated database-style query and data transformation capabil-
ities were needed. This might seem strange, considering that
we have just finished discussing how many SQL queries can
be effectively expressed in DEVise; in part, this was because
visual queries in the earfier version of DEVise were not as
powerful as the ones described in this paper. On the other
hand, in enhancing the expressive power visual queries, we
found ourselves implementing much of a database query fa-
cility. After considering this issue, we decided to re-design
the system to support data transformation and query ca-
pabilities within the DEVise engine. DEVise now supports
a subset of SQL queries (essentially, queries without nested
blocks), and extensions to support sequence queries are un-
der way.

An important feature of DEVise is that queries can op-
erate on both local and remote data sources. At remote
sites, if software is available that can provide query profil-
ing and/or evacuation services, the DEVise optimizer seeks
to exploit this; otherwise, it will retrieve complete relations
and essentially do the rest of the query evaluation at the site
where it is executing.
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6 Optimization Issues

Operations on the cursor and background layers are inexpen-
sive, and optimization must therefore focus on the impact
of visuaf queries on the VGData components of views. The
relational definitions given in Section 3.7 summarize how vi-
suaf aueries chamze the VG Data components of the aueried. .
view, as well as d“ linked views, and suggest several alterna-
tives for query evaluation. For example, selections in visuaf
filters and links can often be used to filter TData records be-

/ore applying the mapping associated with the view. These
alternative evaluation strategies must be considered, their
cost estimated, and the alternative with the least estimated
cost chosen for execution. This is done to a fimited extent
in the current version of DEVise, and is an area for further
work.

To see how new optimization opportunities arise because
visualization and database-style querying are combined in
a single tool, consider a very simple example: a view (in
DEVise terms) V that is created by mapping records from a
TData source T. Visuaf operations on V generate database-
styIe queries on T. If T is a locally stored table, examining
the mapping from T to V can tell us what indexes to create

on T.
For a more comdex examrie. consider the followirw sce-

nario. Suppose th~t a part~cular selection can inde~d be
pushed down, and expressed against the TData. If the
TData collection is defined by a database-style query, rather
than being an explicitly stored set of tuples, run-time query
evaluation is used to generate the tuples as needed. Clearly,
knowing about the selections that can be expected—this is
determined by the visuaf presentation— helps in planning
the database-style query. To take this one step further, a vi-
sual presentation might contain severaf linked views. Even
if selections cannot be pushed, the computation of their VG-
Data sets (required, say, due to subquenes generated in
response to a user operation on a linked view) can often
be combined, especially if the views share a single TData
source.

7 Advanced Exploration Tasks

In this section, we consider the use of DEVise for two ad-
vanced exdoration tasks: integrated ezulomtion of data and
summary ‘information and col~abomtiv; data ana~ysis. The
latter activity is supported by two DEVise features: active
reports and hyperdata.

7.1 Integrated Access to Data and Metadata

Even with intelligent btier management, interactive response
times cannot be achieved for very large datasets, and too
much information is lost by compressing a very large vol-
ume of data onto a single screen. A powerful paradigm for
addressing this fundamental moblem is to let users create
summarie~ of data (which ar~ typically much smaller than
the original dataset ) and to browse the summaries, or meta-
data, to get an overview of the entire dataset. Subsequently,
users can look at interesting portions of the data in more de-
tail; our experience has been that users find it very useful
to interleave the browsing of data and metadata.

The Soil Sciences application described in Section 1.1 is
a concrete example of interleaved data and metadata brows-
ing. The visualization of clusters of image points using
DEVise is illustrated in Figure 8. The important point to
be noted in this example is that the clusters produced by

BIRCH can be seen as a summary of the original data. Users
explore the clusters produced by BIRCH to obtain a high-

level overview of the data, and thereby narrow the scope of

subsequent detailed analysis to interesting portions of the

data.

The clusters produced by BIRCH are onfy one example

of a summary description of data. Other examples of sum-

maries include:

1. Statistical measures over subsets of the data. Indeed,
such summaries are so useful that support is built di-
rectly into the current version of the visualization en-
gine of DEVise.

2. Compressed versions of images [9]. Again, DEVise has
built-in support for retrieving images at various levels
of compression.

7.2 Collaborative Analysis

A visual presentation, as we noted earlier, has two parts:
a data-independent visual template, and a data-dependent
VGData. A user can save a visuaf template, if desired with
some portion of the underlying TData, and send it to an-
other user. The recipient can then re-create the exact visuaf
presentation seen by the sender, if the rest of the TData
is also available to the recipient, and continue exploring it.
This is supported in the current version of DEVise. We calf
a visuaf template that is used in this manner an active re-
port: intuitively, it is like a conventional report, except that
the reader can interactively explore the data contained in it,
i.e., it is ‘active’.

A powerfuf extension that is allowed by the architec-
ture, but is not fully supported in the current version, is
that multiple users can share part of a visual presentation
and changes made by one user to this part are automatically
seen by all users; further, any user can make changes (with a
mechanism for passing control between users to avoid con-
flicting changes). The basic mechanism here is similar to
active reports; each user runs a copy of DEVise, and only
the operations are communicated between copies (and exe-
cuted independently by each copy). Clearly, this approach
places little or no burden on network bandwith, in contrast
to approaches that ship screen-snapshots.

DEVise currently allows field values in TData records to
be images or text, and these can be GData field values as
well. This allows the creation of visuaf presentations that
look like conventional reports, with text and imagery inter-
leaved with presentations of tabular data (e.g., bar charts
or scatter-plots). The DEVise framework also aflows TData
and GData attribute values to be a view or a window, ca-
pable of being manipulated using all the DEVise powe~ we
cafl this hyperdata. The tool does not yet support this
functionality fully, and is being extended in this direction.
Clearly, this greatly enhances the vafue of active reports,
since they become much more expressive.
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Figure 8: Clustering a Soil Sciences Dataset
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