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Abstract

We introduce a new algorithm to compute the spatial join of
two or more spatial data sets, when indexes are not available
on them. Size Separation Spatial Join (S3 J) imposes a hi-
erarchical decomposition of the data space and, in contrast
with previous approaches, requires no replication of entities
from the input data sets. Thus its execution time depends
only on the sizes of the joined data sets.

We describe S3.J and present an analytical evaluation of
its 1/0 and processor requirements comparing them with
those of previously proposed algorithms for the same prob-
lem. We show that S3 J has relatively simple cost estima-
tion formulas that can be exploited by a query optimizer.
S3 J can be efficiently implemented using software already
present in many relational systems. In addition, we in-
troduce Dynamic Spatial Bitmaps (DSB), a new technique
that enables S3 J to dynamically or statically exploit bitmap
query processing techniques.

Fkmlly, we present experimental results for a prototype
implementation of S3.l involving real and synthetic data sets
for a variety of data distributions. Our experimental results
are consistent with our analytical observations and demon-
strate the performance benefits of S3J over alternative ap-
proaches that have been proposed recently.

1 Introduction

Research and development in Database Management Sys-
tems (DBMS) in recent decades has led to the existence of
many products and prototypes capable of managing rela-
tional data efficiently. Recently there is interest in enhanc-
ing the functionality of relational data base systems with
Object-Relational capabilities [SM96]. This means, among
other things, that Object-Relational systems shoufd be able
to manage and answer queries on different data types, such
as spatial and multimedia data. Spatial data are commonly
found in applications like cartography, CAD/CAM and Earth
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Observation/Information systems. Multimedia data include
video, images and sound.

In this paper we introduce a new algorithm to perform
the Spatial Join (SJ) of two or more spatial data sets. Spa-
tial Joins generalize traditional relational joins to apply to
multidimensional data. In a SJ, one applies a predicate to
paira of entities from the underlying spatial data sets and
performs meaningful correlations between them. Our algo-
rithm, named Size Separation Spatial Join (S3 J), is a gener-
alization of the relational Sort Merye Join algorithm. S3 J is
designed so that no replication of the spatial entities is neces-
sary, whereas previous approaches have required replication.
The algorithm does not rely on statistical information from
the data sets involved to efficiently perform the join and for
a range of distributions offers a guaranteed worst case per-
formance independent of the spatial statistics of the data
sets. We introduce and describe the algorithm, analyzing
its 1/0 behavior, and compare it with the I/0 behavior of
previous approaches. Using a combination of analysis and
experimentation with an implementation, we demonstrate
the performance benefits of the new algorithm.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews relevant work in spatial joins and describes
two previously proposed algorithms for computing spatial
joins of data sets without indices. Section 3 introduces and
describes Size Separation Spatial Joins. Section 4 presents
an analysis of the 1/0 and processor requirements of the
three algorithms and compares their performance analyti-
cally. In section 5, we describe prototype implementations
of the three algorithms and present experimental results in-
volving actual and synthetic data sets. Section 6 concludes
the paper and discusses directions for future work.

2 Overview of Spatial Joins

We consider spatial data sets that are composed of repre-
sentations of points, lines, and regions Given two data sets,
A and B, a spatial join between them, A spe B, appliea
predicate O to pairs of elements from A and B. Predicates
might include, overlap, distance within q etc. As an exam-
ple of a spatial join, consider one data set describing parking
lots and another describing movie theaters of a city, Using
the predicate ‘ nezt to’, a spatial join between these data sets
will provide an anewer to the query: “find all movie theaters
that are adjacent to a parking lot”.
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Figure 1: Space partition by the (a) PBSM and (b) SHJ
algorithms

The shapes of spatial objects are rarely regular. In order
to facilitate indexing and query processing, spatial objects
are usually described by their Minimum Bounding Rectan-
gle (MBR) or some other approximation [BKSS94]. As sug-
gested by Orenstein [Ore86], spatial joins can be executed
in two steps. In the first step, called the Filter Step, the
predicate is evaluated on the spatial approximations of ob
jects, and a list of candidate join pairs is produced. In the
Refinement Step, the actual spatial objects corresponding to
the candidate pairs are checked under the predicate.

There exists an extensive body of work on spatial join
algorithms. For Grid Files [NHS84], an algorithm for doing
spatial joins was developed by Rotem [Rot93]. Brinkhoff, et
al. [BKS93] proposed an algorithm to perform the spatial
join of two spatial data sets indexed with R-trees [Gut84]
[SRF87]. Sevcik and Koudas recently introduced an access
method called Filter Trees and provided an algorithm to
perform the Spatial Join of two data sets indexed with Flter
Trees [SK96].

Two new algorithms have been proposed recently to solve
this problem for the case where the data sets do not fit in
main memory. Patel and DeWitt ~D96] introduced Par-
tition Based Spatial Merge Join (PBSM) to compute the
spatial join of two data sets without the use of indices. Lo
and Ravishankar [LR96] also presented an algorithm for the
same problem called Spatial Hash Joins. In the next sub-
sections, we describe these two algorithms in greater detail.

2.1 Partition Based Spatial Merge Joins

Partition Based Spatial Merge Join (PBSM) is a general-
ization of the sort merge join algorithm. Given two spatial
data sets, A and B, the algorithm uses a formula to com-
pute a number of partitions into which to divide the data
space. These partitions act as buckets in hash joins. Once
they are filled with data, only corresponding partitions for
the two data sets must be processed to locate all candidate
joining pairs. However, since the entities in the two data
sets are in general not uniformly distributed, the number of
objects that fall in various partitions will vary. To improve
the chances of achieving balanced partition sizes, the algo-
rithm partitions the space into a larger number of tiles and
maps the tiles to partitions, either round robin or using a
hash function.

Given two spatial data sets, A and B, and the number
of tiles,

● Compute the number of partitions

● For each data set:

1. Scan the data set;

2. For each entity, determine all the partitions
to which the entity belongs and record the
entity in each such partition.

● Join all pairs of corresponding partitions (repar-
titioning, if necessary).

s Sort the matching pairs and eliminate duplicates

Figure 2: The PBSM Algorithm

A spatial entity might intersect two or more partitions.
The algorithm requires replication of the entity in all the
partitions it intersects. Once the first spatial data set has
been partitioned, the algorithm proceeds to partition the
second data set, using the same number and placement of
tiles and the same tile to partition mapping function. De
pending on the predicate of the spatial join, it might be the
case that, during the partitioning of the second data set,
a spatial entity that does not overlap with any tile can be
eliminated from further processing since it cannot possibly
join with any entities from the first data set. We refer to
this feature of PBSM as filtering.

Figure la presents a tiled space with three objects. As-
suming four partitions, one possible til&.o-partition map
ping is (A, B, E, F) to the first partition, (C, D, G, H) to
the second, (1, J, Lf, IV) to the third and (K, L, O, P) to the
fourth. Under this scheme object Objl will be replicated in
the first and second partitions.

Once the partitions are formed for both spatial data sets,
the algorithm proceeds to perform the join on partition pairs
(repartitioning, if needed, to make pairs of partitions fit
in main memory) and writes the results to an output file.
Corresponding partitions are loaded in main memory and
a plane sweep technique is used to evaluate the predicate.
Since partitions may include some replicated objects, the
algorithm has to detect (via hash or sort) and remove du-
plicates before reporting the candidate joining pairs. The
complete algorithm is summarized in figure 2.

When both spatial data sets involved in the join are base
sets and not intermediate results, one can adaptively deter-
mine the number of tiles one should use in order to achieve
good load balance. For intermediate results, however, the
appropriate number of tiles to use is difficult to choose, since
statistical information is not available and an adaptive tech-
nique cannot be applied. If an inappropriate number of tiles
is used} the algorithm still works correctly; however, using
too few tiles may result in high load imbalance resulting in a
lot of repartitioning, while using too many may result in an
excessive number of replicated objects. Note that replica-
tion takes place in both data sets. The amount of replication
that takes place depends on the characteristics of the under-
lying data sets, the number of tiles, and the tile to partition
mapping fimction.
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;iven two spatial data sets A and B,

● Compute the number of partitions

● Sample data set A and initialize the partitions

● Scan data set A and populate partitions, adjust-

ing partition boundaries

● Scan data set B and populate partitions for El

using the partitions of A and replicating where
necessary.

● Join all pairs of corresponding partitions

Figure 3: The SHJ Algorithm

2.2 Spatial Hash Joins

Lo and Ravishankar proposed Spatial Hash Joins (SHJ) in
order to compute the spatial join of two (or more) unindexed
spatial data sets. The algorithm starts by computing the
number of partitions 1 into which the data space should be
divided. The computation uses a formula proposed by the
same authors in earlier work [LR95]. Once the number of
partitions is determined, the first data set is sampled. The
centers of the spatial objects obtained from sampling are
used to initialize the partitions. Then the first data set is
scanned and the spatiaf entities are assigned to partitions
based on the nearest center heuristic [LR95]. Each spatial
entity is placed in the partition for which the distante from
its center to the center of the partition is minimum. Once an
entity is inserted in a partition, the MBR of the partition
is expanded to contain the entity if necessary. When the
MBR of the partition is expanded, the position of its center
is changed. At the end of this process, the partitions for the
first data set are formed. Notice that no replication takes
place in the first data set.

The algorithm proceeds by scanning the second data set
and partitioning it using the same partitions as adjusted to
accommodate the fist data set. If an entity overlaps mul-
tiple partitions, it is recorded in all of them, so replication
of spatial entities takes place at this point. Any entity that
does not overlap with any partition can be eliminated from
further processing. Consequently filtering can take place in
this step of the algorithm. Figure lb presents one possible
coverage of the space by partitions after the partitioning of
the first data set. In this case, object Objl of the second
data set will have to be replicated in partitions A, B and C

and object Objs in partitions C and D.
After the objects of the second data set have been associ-

ated with partitions, the algorithm proceeds to join pairs of
corresponding partitions. It reads one partition into main
memory, builds an R-tree index on it, and processes the
second partition by probing the index with each entity. If
memory space is exhausted during the R-tree building phase,
LRU replacement is used as outer objects are probed against
the tree. The complete algorithm is summarized in figure 3.

1The authors use the term slot [LR96], but in order to unify ter-
minology and facilitate the presentation, we use the term partitions
throughout this paper.

2.3 Summary

Both PBSM and SHJ divide the data space into partitions,

either regularly (PBSM) or irregularly (SHJ) and proceed to

join partition pairs. They both introduce replication of the

entities in partitions in order to compute the join. Replica-

tion is needed to avoid missing joining pairs in the join phase
when entities cross partition boundaries. When data distri-
butions are such that little replication is introduced during
the partition phase, the efficiency of the algorithms is not
aflected. However, for other data distributions, replication
can be unacceptably high, and can lead to deterioration of
performance. Prompted by the above observation, in this
paper, we present an alternative algorithm that requires no
replication. We experiment with data distributions that can
lead to increased replication using the previously proposed
algorithms and we show the benefits of avoiding replication
in such cases.

3 Size Separation Spatial Join

Size Separation Spatial Join derives its properties from the
Filter Tree join algorithm SK96]. Filter ‘Tkeespartition spa-
tial data sets by size. iS J comtructs a Fflter Tkee parti-
tion of the space on the fly without building complete Filter
Tree indices. The level ~ filter is composed of 2~-1 equally
spaced lines in each dimension. The level of an entity is the
highest one (smallest j) at which the MBR of the entity is
intersected by any line of the flter, This assures that large
entities are caught at high levelz of the Filter lhe, while
most small entities fall to lower levels.

3.1 S3 J Algorithm

Denoting the opposite comers of the MBR of an entity by
(xi, W) and (Zh, gk), S3J uses two calculated values:

c Hilbert(xc, y=), the Hilbert value of the center of the
MBR (where z= = ~, yc = ~) ~ia69].

● Level(xl, y~, xk, ~k ), the level of the Filter Tree at which

the entity resides (which is the number of initial bits

in which zt and Zh as we~ as yt and yk agree) [SK96].

Given two spatial data sets, A and B, S3 .l proceeds as
follows. Each data set in turn is scanned and partitioned
into level jiies. For each entity, its level, L-evel(xl, yl, Xh, I/h),

is determined, and an entry is composed and written to
the corresponding level file for that data set, Such an entry
consists of the comer points of the MBR, the Hilbert value
of the midpoint of the MBR and (a pointer to) the data
associated with the entity.

The memory requirement of this phase under reasonable
statistical assumptions, is just L + 1 pages where L is the
number of level files (typically, 10 to 20) for the data set
being partitioned. One page is used for reading the data set,
and L are used for writing the level files. Next, each level
file for each data set is sorted so that the Hilbert values of
the entries are monotonically nondecreasing. The final step
of the algorithm is to join the two sets of sorted level files.
The join is accomplished by performing a synchronized scan
over the pages of all level files and reading each page once,
as follows: Let At (He, He) denote a page of the Lth level
file of A containing entities with Hilbert values in the range
(H,, He). Then for level files 1 = 0,..., L:
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Figure 4: Space Partition by S3J

● process entries in A1 (H., He) with those contained in
B1-’(H., H=) for i = O, . ...1.

● process entries in I?i (H., He) with those in A[-l (H,, He)

fori=l,..., i.

Figure 4 shows two levels of the space segmentation on
which S3 J is baaed and presents the intuition behind the
algorithm. S3J divides the space in multiple resolutions aa
opposed to PBSM and SHJ which partition the object space
at a single level. S3 J takes advantage of this space parti-
tioning scheme and is able to perform the join while reading
each page only once. Partitioning the space in multiple reso-
lutions and placing each object at a level determined largely
by its size, the algorithm can determine which pages are ac-
tually needed at each step. Figure 4 presents two data sets,
A and l?, each composed of two level files after being pro-
cessed by S3 J. Partition Al from data set A needs to be
processed against partitions L31 and 130 of data set 1? only.
Similarly, partition Bl of data set B has to be processed
only with partition AO of A. No further processing for these
partitions is necessary since no other overlapping pairs are
possible.

Figure 5 summarizes the S3 J algorithm. The algo-
rithm can be applied either to base spatial data sets or to
intermediate data sets without any modification. While we
choose to use Hdbert curves to order level files, any curve
that recursively subdivides the space will work (e.g., z-order,
gray code curve, etc). Notice that the computation of the
Hilbert value is not always necessary. The Hilbert values can
be computed at the time entities are inserted and become a
part of the descriptors of each spatial entity at the expense
of storing them. For base spatial data sets this is probably
a good choice. When the spatial data sets involved are de-
rived from base sets via a transformation that changes the
entity’s physical position in the space or creates new entities,
the Hilbert values can be recomputed.

The implementation of the S3 J algorithm is relatively
straightforward. Partitioning the data sets involves only
reading each entity descriptor and routing it to the appro-
priate level file (buffer page) based on examining the bit rep-
resentations of the coordinates of the corners of its MBR.

Given two spatial data sets A and B,

●

●

●

Scan data sets A and B and for each entity:

1. Compute the Hilbert value of the entity,
H(x, y).

2. Determine the level at which the entity be-
longs and place its entity descriptor in the
corresponding level file.

For each level file,

1. Sort by Hilbert value

Perform a synchronized scan over the pages of
level files.

Figure 5: Size Separation Spatiaf Join Algorithm

Sorting each level fde, based on the Hllbert value of the cen-
ter of the MBR of each entity, can be done with a sort utility
commonly available in database systems. Fdy, the syn-
chronized scan of the level fdes strongly resembles an L-way
merge sort (which can be implemented in a couple hundred
lines of code).

3.2 Dynamic Spatial Bitmaps for Filtering

Both PBSM and SHJ are capable of filtering, which makes it
possible to reduce the size of the input data sets during the
partitioning phase. S3 J as described, performs no IiItering
since the partitioning of the two data sets is independent.
No information obtained during the partitioning of the first
data set is used during the partitioning of the second.

S3J can be extended to perform filtering by using Dy-
namic Spatial Bitmaps (DSB). DSB is similar to the tech-
nique of bitmap join indices in the relational domain [Va187]
[OG95] [0’N96]. However, DSB is tailored to a spatial d~
main.

S3.l dynamically maps entities into a hierarchy of level
files. Given a spatial entity, pages from all the level files of
the joining data set have to be searched for joining pairs,
but, as indicated in the previous section, this is done in a
very efficient manner.

DSB constructs a bitmap representation of the entire
data space as if the complete data set were present in one
level lile. A bkmap is a compressed indication of the con-
tents of a data set. In the relational domain, using a bitmap
of N bits to represent a relation of Al tuples, we can perform
a mapping between tuples and bits. Using this mapping we
can obtain useful information during query processing. For
example we could, by consulting the bitmap, check whether
tuples with certain attributes exist. Now consider a two di-
mensional grid. In a similar manner, we can define a map-
ping between grid cells and bits of a bitmap. In this case
the bitmap couJd, for example, record whether any entity
intersects the grid cell or not.

To support filtering in S3 J, we use a bitmap correspond-
ing to level 1. At level file, 1, there are 41 partitions of the
space, so the bitmap, M, will have 41 one-bit entries. Ini-
tially all the bit entries of M are set to zero. Then, during
the partitioning phase, for each spatial entity, e, that be-
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F@re 6: Example Operation of” )SB

longs to level file 1= and has Hilbert value H>:

● If 1 ~ le, we transform the Hilbert value, H$, of e into
H: (by setting to zero the 1 – lC least significant bits
of H&). We then set M[H~] to one.

● If 1> 1=we have to compute the Hilbert values at level

‘let’ H~l’H~’’ ”””’
H~n, that completely cover e and

set M[Hei], ~ = 1, . . . . n to one. The computation of
H:l, H:2,. ... H:. can be performed either by deter-
mining all the partitions at level 1 that e overlaps and
computing their Hilbert values, or by extending H$
with all possible 1. —1 blt strings.

The operation described above essentially projects all en-
tities onto level file 1. Then, during the partitioning of the
second data set 13, for each spatial entity e, the same oper-
ation is performed, but this time:

● If 1 < 1., e is placed into level file 1. only if kf[lf~] is
set to one.

● If 1 > le, e is placed into level file 1, only if at least one
of the bits MIH$I], M[H~2], . . . . M[H~n] is set to one.

Figure 6 illustrates the operation of Dynamic Spatial
Bitmaps. Entities, el and ez, existing in level file L2, are
projected to the higher level LI which, for the purposes of
this example, is the level chosen to represent the bitmap.
The corresponding bit of the bitmap are set to one, indicat-
ing that entities exist in that portion of the space. Similarly
entity, ea from level file LO is projected to L1. For es, since
it overlaps partitions O and 1 of L 1 only those bits should be
set to one. We can either calculate the partitions involved
for each entity and set the corresponding bits or set all the
bits corresponding to the partition that contains ea in LO
which is faster but less accurate.

Consider again the example in figure 4. A spatial entity
belonging in partition L?l of data set B needs to be stored in
a level file for data set B only if a spatial entity of data set
A exists in partitions Al or AO. Information about whether

~Y spati~ entity of data set A exists in any partition of any
level file IS captured by the bitmap,

The size of the bitmap depends on which level file is cho-
sen as the base onto which to project the data space. For
level file 1, the size of the bitmap is 41 bits. With a page of
size 2P bits, 221-P pages are needed to store the bitmap. As-

12 bits (4KB), using level fde ‘evensuming a page size of 2
for bitmap construction will yield a bitmap of four pages.
Using level eight will yield a bitmap of sixteen pages and so
on. There is a tradeoff between the size of the bitmap and
its effectiveness. Using a lower level file (larger j) will yield
a more precise bitmap. However, this will increase the num-
ber of pages needed to store the bitmap and the processor
time to manipulate it. As long as a spatial entity belongs in
a level lower than the level file used to represent the bitmap,
the Hilbert value transformation is very fast, since it involves
a simple truncation of a bit string. However for spatial enti-
ties belonging to level files higher than the bitmap level file,
several ranges of Hilbert values have to be computed and
this will increase the processor time required. Alternatively,
one might choose to extend H& with all possible 1 —1=long
bit strings. This will offer a fast Hilbert value transforma-
tion, since only a bit expansion is involved, but will decrease
the precision of the bitmap.

4 Analysis of 1/0 behavior

In this section we present an analytical comparison of the
1/0 behavior of S3 J, PBSM and SHJ. Table 1 summarizes
the symbols used and their meaning. For the purpose of this
analytic comparison, we assume a spatial data set composed
of entities with square MBRs of size d x d that are uniformly
distributed over the unit square.

4.1 Analysis of the three algorithms

4.1.1 S3J 1/0 analysis

The Size Separation Spatial Join algorithm proceeds by read-
ing each data set once and partitioning essentially according
to size, creating LA + LB level fib. The number of page
reads and writes for data sets A and B in the scan phase
will be:

2SA+2SB (1)

The factor of two accounts for reading and writing each data
set.

In the sort phase, S3 J sorts each level file. Assuming
a uniform distribution of squares, level file i will contain a
fraction of objects given by:

{

d(2 – d) :=(I

ji= 2’d(l_~2’d) i=l,..., k(dl–l (2)
(1 - ~2’~dld)2 i = k(d)

where k(d) = (– log2 dl is the lowest level to which any
d x d object can fall (since d must be less than 2-k) [SK96].
Then the expected size of each level tile i for data set j
will be about S:j = ~iSj, i = 1 . . . ma~(~A, LB), j ~ A, B.
Assuming that read requests take place in bulks of B pages
from the disk, applying merge sort on the level file of size
St~ will yield a sort fan-in F of ~ and [i; = logF s~jl merge
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Symbol Mcanz ng Symbol Meaning

Sf Size of File ~ in pages M Memory Size in Pages

J Size of join result in pages rf replication factor for data set ~

D Divisions of space Lf Number of level files for data set $

H Processor time to compute a Hilbert value c Size of candidate pair list before sort
, E Object descriptor entries per page B Size of bulk reads from disk

Table 1: Symbols and their meanings

sort levels (1, will not commonly be one). The total number
of page reads and writes of the sorting process is given by:

LA LE

2 ~lAS, A+2 ~lB SIB (3)

i= 1 ,=1

Once the sorted level files are on disk, S3 J proceeds with
the join phase by reading each page only once, computing
and storing the join result, incurring:

SA+SB+J (4)

page reads and writes The total number of page reads and
writes of S3J is the sum of the three terms above. The best
case for S3 J occurs if each level file fits in main memory
(i.e., SiJ ~ M, Vi). In this case the total number of page
reads and writes of the algorithm becomes:

5SA+5SB+J (5)

In its worst case, S3 J will find only one level file in each
data set. In this case, the total number of page reads and
writes will be:

3SA+3SB +21 ASA+21BSB+ J (6)

Except for artificially constructed data sets, the largest
of the level files would usually contain 10~0 to 30y0 of the
entities in the data sets. If the Hilbert values are initially
not part of each spatial entity’s descriptor, then they have
to be computed. This computation takes place while parti-
tioning the data sets into levels. The processor time for this
operation is:

H(SA + SB)E (7)

Using a table driven routine for computing the Hilbert val-
ues, we were able to perform the computation in less than
10 flsec per value at maximum precision on a 133MH2 pro-
cessor, so H s 10psecs.

4.1.2 PBSM 1/0 analysis

The number of partitions suggested by Patel and DeWitt
for the PBSM algorithm [PD96] is:

~=&+sB
M

(8)

Defining the replication factor r f as:

Data set size after replication and filtering
rf =

original data set size (Sf)
(9)

the number of page reads and writes during the partitioning
phase is:

(l+rA) SA +(l+rB) SB (lo)

since the algorithm reads each data set and possibly intro-
duces replication for entities crossing partition boundaries,

Entity replication will increase the data set size, making

rf ~eater than one, but filtering, will counteract that, re-
ducing r f, possibly to be even less than one for cases where
the join is highly selective (i.e, where there are very few
join pairs). Due to replication, the size of the output file
that is written back to disk may be larger than the initial
data set size. More precisely if A is the data set that is’
partitioned first, then rA ~ 1 and rB ~ O. The amount of
replication introduced depends on the data distributions of
the data sets and the degree of dividing of the data space
into tiles. Depending on data distributions, 1 ~ rA ~ D
and O ~ r~ < D. Notice that rB could be less than one
depending on the partitioning imposed on the first data set.
To illustrate the effects of replication, again assume uni-
formly distributed squares of size d x d, normalized in the
unit square. Then assuming a regular partitioning of the
unit square into sub squares of side 2-), the fraction, N, of
objects falling inside tiles will be:

1 – d2J+l + d2223 (11)

assuming that d < 2-J, so that the side of each square object
is less than or equal to the side of each tile. As a result the
fraction of objects replicated will be d2~+ 1 – d222~. The
amount of replication taking place depends on d2J, since
replication is introduced either by increasing the object size
for constant number of tiles or by incre=ing the number of
tiles for constant object size. Figure 7 shows the fraction of
objects replicated as a function of d2s. As d2J increases, the
amount of replication that takes place increases.

The algorithm then checks whether corresponding par-
titions fit in main memory. Assuming that partitions have
the same size and that each pair of partitiona fits in main
memory, the number of page reads and writes for this step
is:

rASA+rjgSB+C (12)

where C is the size of the initial candidate list. If parti-
tion pair i does not fit in main memory then it has to be
repartitioned. Using equation (8) to compute the number of
partitions we expect under a uniform distribution, half the
partitions to require repartitioning. Using a hash function
to map tiles to partitions, we expect the MBRs of partitions
to be the same as the MBR of the original data file. Thus
the fraction of replicated objects remains the same for sub-
sequent repartitions. The total number of page 10s during
the first partitioning phase is given by equation (10). Since
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Figure 7: Fractions of Replicated Objects

on average half of the partitions will have to be reparti-
tioned, the expected number of page 10s during the second
partitioning phase will be:

(1+ r~)r~S~ + (1 +r~)r~S~

2 2
(13)

For uniform data distributions, this is expected to offer ac-
ceptable size balance across partitions and pairs of corre-
sponding partitions will fit in main memory. The algorithm
proceeds to read all pairs of corresponding partitions and
join them in main memory using plane sweep. The total
number of page 10s for this phase will be:

(1 +,~)r~s~ + (1 +~B)rEfsB +C

2 2
(14)

where C is the size of the candidate list. After the ioin
phzwe, the result of the join is stored on disk. but dud~ate
elimination must be performed since
may have occurred in both data sets.
is achieved by sorting the join result.
reads and writes during the sort is:

dedication of entities
D~plicate elimination

The number of page

1-1

2 J&&
c (1–+)

–2J~ ~.+ (15)

1=0

where F is the fanout factor of the sort. The number of

sort merge phases will be 1 = log ~ C. Since elimination of
duplicates can take place in any phase of the sort we have to
perform the summation over all sort merge phases, resulting
in equation (15). If C fits in memory, the cost of page reads
and writes during the sort (with duplicate elimination) will
be C+J.

The total number of page reads and writes of the algo-
rithm results if we sum all clauses above, taking into ac-
count whether intermediate results fit in main memory or
not. The replication factors, r,4 and rB, play an important
role in the total number of I/ O‘s given above. Their value
depends on the number of tiles in the space and the input
data distributions.

4.1.3 Spatial Hash Joins

Assuming that data set A is to be processed with D parti-
tions, the number of page reads and writes during sampling
and partitioning of data set A is:

cD+2SA (16)

where c is some integer and CD represents (an upper limit
on) the random I/0 performed while sampling set A. The
number of page reads and writes during partitioning of data
set B is:

(1 +r~) SB (17)

since all of data set 1? must be read and multiple rB of its
initial size must be written. After the partitioning phase,
the algorithm joins the corresponding pairs of partitions. If
the corresponding partitions for both data sets fit in main
memory, both partitions will be read and then joined. The
join can be done either using nested loops or by constructing
an R-tree in main memory for the first partition and probing
it with the elements of the second. If both partitions fit in
main memory the number of page reads and writes during
the join phase is:

S.4+rllSB+J (18)

where the first two terms correspond to reads and the third
to writes. However, with SHJ there is no guarantee that
the partitions will be balanced in size or that they will fit in
main memory. Moreover, the partition placement depends
only on samples taken from one data set. A general analy-
sis of SHJ is difficult, because its behavior depends on the
distributions of the joined data. For uniformly distributed
squares, an analysis similar to the one presented for PBSM
can be applied. However, for specific data set sizes and
main memory size, the number of partitions used by SHJ is
much larger than the number used for PBSM. Consequently,
the amount of replication required in SHJ is expected to
be larger than that in PBSM. Assuming that partitions do
not fit in main memory and that partitions are joined using
nested loops (for the purposes of this analysis), the number
of page reads and writes during the join phsae becomes:

~(~ S:B + S,A) (19)

i=l

where S:A, SIB are the sizes of the partitions for A and
B. Very little can be said about S:A and SIB. For unifordy

distributed data sets, we expect SiA = ~ and .!$iB = rB X

~
~.

For SHJ, replication is introduced only for one of the
two data sets involved. As in the case of PBSM, the value
for the replication factor rB plays an important role in the
algorithm’s performance. Notice that, in the worst case, rB
equals D.

Using the formulas derived above, an analytical compar-
ison of the algorithms has been carried out. Due to space
limitations it is not presented here but is available elsewhere
[KS96].
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5 Experimental Comparison

In this section, we present experimental results from proto-
type implementations of all three algorithms. We include ex-
perimental results using combinations of real and synthetic
data sets. We implemented all three algorithms on top of a
common storage manager that provides efficient 1/0. Sev-
eral components common to all algorithms were shared be-
tween implementations, contributing to the fairness of the
comparison of the algorithms at the implementation level.
Specifically, the same sorting module is used by S3J and
PBSM, and alf three algorithms use the same module for
plane sweep.

All of our experiments were conducted on an IBM RS6000
model 43P (133MHz), running AIX with 64MB of main
memory (varying the buffer size during experiments) with a
Seagate Hawk 4 disk with capacity lGB attached to it. The
processor’s SPEC ratings are SPECint95 4.72 and SPECfp95
3.76. Average disk access time (including latency) is 18.1
msec assuming random reads.

We present and discuss sets of experiments, treating joins
of synthetic and real data sets for low (many output tuples)
and high (few output tuples) selectivity joins. For our treat-
ment of S3J, we assume that the Hilbert value is computed
dynamically. If the Hilbert value were present in the en-
tity descriptor initially, the response times for S3J would
be smalfer than the ones presented by a small amount, re-
flecting savings of processor time to compute the values.

For PBSM, we demonstrate the effect of different pa-
rameters on the performance of the algorithm. We include
results for various numbers of tiles. In all PBSM experi-
ments, we compute the number of partitions using equation
(8) as suggested by Patel et al. [PD96]. Similarly, SHJ per-
formance depends on the statistical properties of the input
data sets. We compute the number of partitions using the
formula suggested by Lo and Ravishankar [LR95].

We present the times required for different phases of
the algorithms. Table 2 summarizes the composition of the
phases for the three algorithms. For the experiments that
folIow, unless stated otherwise, the total buffer space avail-
able is 10~0 of the total size of the spatial data sets being
joined.

5.1 Description of Data Sets

Table 3 presents the data sets used for our experiments. All
the data sets composed of uniformly distributed squares are
normalized in the unit square. UN 1, UN2 and UN3 have
artificially low variability of the sizes of objects and conse-
quently low coverage, 0.4, 0.9 and 1.6 respectively. Coverage
is defied as the total area occupied by the entities over the
area of the MBR of the data space. The LB and MG data
sets contain road segments extracted from the TIGER/Line
data set ~ur91]. The first (LB) presents road segments in
Long Beach County, California. The second (MG) repre-
sents road segments from Montgomery County, Maryland
and contains 39,OOOline segments. Data set TR is used to
model scenarios in which the spatial entities in the data sets
are of various sizes. We produced a data set in which the
sizes of the square spatial entities are generated according
to a triangular shaped distribution. More precisely, the size
of the sauare entities is. d = 2– ~ where 1 has a urobabihtv
distribution with minimum value x 1 maximum v~ue X3, an~

the peak of the triangular distribution at X2. As one
would expect, the overlap among the entities of such a data
set is high. TR contains 50,000 entities and was generated
using Z1 = 4, Z2 = 18, X3 = 19. CFD is a vertex data set
from a Computatianaf Fluid Dynamics model, in which a
system of equations is used to model the air flows over and
around aero-space vehicles. The data set describes a two
dimensional cross section of a Boeing 737 wing with flaps
out in landing configuration. The data space consists of a
collection of points (nodes) that are dense in areas of great
change in the solution of the CFD equations and sparse in
areas of little change. The location of the points in the data
set is highly skewed.

5.2 Experimental Results

5.2.1 No Filtering Case

We present and discuss a series of experiments involving low
selectivity joins of synthetic and real data sets. Table 4 sum-
marizes all the experimental results in this subsection and
presents the response times of PBSM and SHJ normalized
to the response time of S3J as well as the replication factors
observed for them.

The tit two experiments involve data objects of a single
size that are tmiformly distributed over the unit square. For
uniformly and independently distributed data, the coverage
of the space is a realistic measure of the degree of overlap
among the entities of a data set. Fkom the first experiment
to the second, we increase the coverage (using squares of
larger size) of the synthetic data sets and present the mea-
sured performance of the three algorithms. For algorithms
that partition the space and replicate entities across parti-
tions, the probabllit y of replication increases with coverage,
for a fixed number of partitions.

Figure 8a presents the response time for the join of two
uniformly distributed data sets, UN1 and UN2 containing
100,000 entities each. Results for PBSM are included for
two different choices of tiling: the first choice is the number
of tiles that achieves satisfactory load balance across par-
titions and the second is a number of tiles larger than the
previous one. For S3J the processor time needed to evalu-
ate the Hilbert values accounts for 8~o of the total response
time. The partitioning phase is relatively faat, since it in-
volves sequential reads and writes of both data sets while
determining the autput level of each spatial entity and com-
puting its Hilbert value.

For PBSM, since we are dealing with uniformly distributed
objects, a small number of tiles is enough to achieve balanced
partitions. The greatest portion of time is spent partition-
ing the data sets. Most partition pairs do not fit in main
memory and the algorithm has to read again and repartition
those that they do not fit in main memory. ApproximateJy
half of PBSM’S response time is spent partitioning the in-
put data sets and the rest is spent joining the data sets and
sorting (with duplicate elimination) the final autput.

SHJ uses more partitions than PBSM does for this ex-
periment. The large number of partitions covers the entire
space and introduces averlap between partition boundaries.
The algorithm spends most of its time sampling and par-
titioning both data sets. As is evident from figure 8a, the
partitioning phase of SHJ is more expensive than the cor-
responding phase af S3J and a little more expensive than
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S’ J Partition Reading, partitioning and writing the level files for both data sets
Sort Sorting (reading and writing) thesorted level files
Join Merging thesorted level files and writing the result on disk

PBSM Partition Reading, partitioning and writing partitions for both data sets
Join Joining corresponding partitions and writing the result on disk
Sort Sorting the join result with duplicate elimination and writing the result on disk

SHJ Partition Reading, partitioning and writing partitions for both data sets
Join Joining corresponding partitions and writing the result on disk
Sort none

Table 2: Phase Timings for the three algorithms

] Name Type Size Covemge

‘ UN1 Uniformly-Distributed Squares 100,000 0.4
UN2 Uniformly-Distributed Squares 100,000 0.9
UN3 Uniformly-Distributed Squares 100,000 1.6

LB Line Segments from Long Beach County, California 53,145 0.15
MG Line Segments from Montgomery County, Maryland 39,000 0.12
TR Squares of Various Sizes 50,000 13.96
CFD Point Data (CDF) 208,688 -

Table 3: Real and Synthetic Data Sets used

that PBSM with kwge tiles. The join phase, however, is fast
since all pairs of partitions fit in main memory and due to
less replication, fewer entities have to be tested for intersec-
tion.

Figure 8b presents the results for the join of UN2 and
UN3. The impact of higher coverage in UN3 relative to UN1
affects S3.1 only in processor time during the join phase. The
portion of time spent partitioning into levels and sorting the
level files is the same. Although the partitioning times re-
main about the same, join time and sorting time increase
according to the data set sizes. For SHJ the larger replica-
tion factor observed increases 1/0 as well as processor time
in the partitioning and join phases. Due to the increased
replication, the join phase of SHJ is more costly than in the
previous experiment.

Figures 9a and 9b present results for joins of data sets
LB and MG. For each of LB and MG, we produce a shifted
version of the data set, LB’ and MG’, as follows: the center
of each spatial entity in the original data set is taken as the
position of the lower left corner of an entity of the same size
in the new data set.

F@re 9a presents performance results for the join of LB
and LB’. For S3J, the time to partition and join is a little
more than the time to sort the level files. When decomposed
by S3J, LB yields 19 levels files. The largest portion of
the execution time is spent joining partition pairs. PBSM’S
performance is worse with more tiles due to increased repli-
cation. In this case, the join result is larger than both
input data sets, so PBSM incurs a larger number of 1/0s
from writing the intermediate result on disk and sorting it.
Not all partitions fit in main memory (because of the non-
uniformityy of the data set) and SHJ has to read pages from

disk during the join phase. Figure 9b presents the corr~
spending experiment involving the MG and MG’ data sets.
Similar observations hold in this cue.

The experiments described above offer intuition about
the trends and tradeoffs involved with real and synthetic
data sets with moderate and low coverage. With the fol-
lowing experiment, we explore the performance of the alg~
rithms on data sets with high coverage, with varying sizes
in the spatial entities, and with distributions with high clus-
tering.

Figure 10a presents the results of a self join of TR. Al-
though ordy a single data set is involved, the algorithm does
not exploit that fact. S3 J, with Hilbert value computation,
is processor bound. Due to the high coverage in the data
set, S3 .l has to keep the pages of level files in memory longer
while testing for intersections.

PBSM spends most of its time partitioning and joining
corresponding partitions but sorting and duplicate elimina-
tion also account for a large fraction of the execution time,
since the size of the join result is large. In contrast with
S3J, PBSM appears 1/0 bound.

SHJ requires extensive replication during the partition-
ing of the second data set. This results from the spatial
characteristics of the data set and the large number of par-
titions used. Large variability in the sizes of the entities
leads to large partitions. As a result, the probability that
an entity will overlap more than one partition increases with
the variability of the sizes of the spatial entities. SHJ is 1/0
bound and most of its time is spent joining pairs of parti-
tions which, in this case, do not fit in main memory. Due
to the replication, the time spent by the algorithm parti-
tioning the second data set is much larger than the time
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“ Data Sets PB.SM small #tiles PBSM large #tiles SHJ

used Response Time r~ + rE Response Time rA + rR Response Time rR

UN1,UN2 1.3 2.44 1.5 3.3 1.35 1.5
UN2,UN3 1.58 2.66 1.85 3.8

1

LB, LB’

1.38 1.6

1.9 2.4 2.34
MG,MG’

3 1.33 1.62
1,92 2.62 2.26 3.2 1.4 1.5

TR 2.32 4.92 3.1 7.8 2.65 10
CFD 1.75 4.2 1.96 4.6 3.04 4

Table 4: Join Response Times, normalized to S3J Response Time and Replication Observed

spent during the partitioning of the first data set. Although
SHJ introduces more replication than PBSM, it does not re-
quire duplicate elimination and, depending on the amount
of replication and repartitioning performed by PBSM, its
partitioning phase might be cheaper. It is due to the fact
that no duplicate elimination is needed that SHJ is able to
outperform PBSM in the case of large tiles.

Figure 10b presents results from a self join of CFD. We
employ a spatial join to find all pairs of points within 10-6
distance from each other. For this data distribution, which
involves a large cluster in the center of the data space, both
PBSM and SHJ perform poorly. PBSM requires a large
number of tiles to achieve load balancing for its partitions
and a lot of repartitioning takes place, introducing a large
degxee of replication. The join phase is faster than SHJ how-
ever in this experiment since all pairs of partitions obtained
via repartitioning fitin main memory. The sampling per-
formed by SHJ is ineffective in this case and the join phase
is costly involving a large number of page reads from the
disk. The partitions have varying sizes and one of them
contains almost the entire data set.

5.2.2 The Effects of Filtering

With the experiments described in the previous subsection,
we investigated the relative performance of the algorithms
when no filtering takes place during the join of the data sets
involved.

All three algorithms are capable of filtering and their
relative performance depends on the amount of filtering that
takes place. Due to space limitations the discussion is not
included here but is available elsewhere [KS96].

5.3 Discussion

We have presented several experiments comparing the per-
formance of the three algorithms S3 J, PBSM, and SHJ, in-
volving real and synthetic data sets. Our experimental re-
sults are consistent with our analytic observations [KS96].
The relative performance of the algorithms depends heav-
ily on the statistical characteristics of the dataaets. Al-
though the experimental results presented involved data sets
of equal size, we expect our results to generalize in cases
where the joined data sets have different sizes. S3 .l appears
to have comparable performance to SHJ when the replica-
tion introduced is not large, but is able to outperform it
by large factors as replication increases. PBSM is compara-
ble to S3 J when replication factors are too small or when

sufficient filtering takes place and, in this case, performs
better than SHJ. The amount of filtering that makes PBSM
competitive is difficult to quantify, because it depends on
the characteristics of the data sets involved, the amount of
replication that PBSM introduces, the order in which the
data sets are partitioned, and the number of page reads and
writes of the sorting phase of PBSM.

While S3J neither requires nor uses statistical knowledge
of the data sets, the best choice for the number of tiles in
PBSM or for the amount of sampling in SHJ depends on the
spatial characteristics of the data sets involved in the join
operation. Good choices can be made only when statistical
information about the data sets is available and the MBRs
of the spaces are known. Under uniform distributions, the
amount of overlap between the MBRs of the two spaces gives
a good estimate of the expected size of the join result. Un-
der skewed data distributions however, no reliable estimate
can be made, unless detailed statistical characteristics of
both data sets are available, We believe that such measures
could be computed for base spatial data sets. However, for
intermediate results, the number of page reads required to
obtain the statistical characteristics might be high.

Itappears from our experiments that, although the par-
titioning phase of SHJ is expensive, it is worthwhile in the
case of low selectivity joins, because it yields a large num-
ber of partitions which usually fit in main memory in the
subsequent join phase. In contrast, the analytical estimate
for the number of partitions to be used in PBSM doesn’t
consistently yield appropriate values. The partition pairs
often do not fit in main memory because of the replication
introduced by the algorithm, and the cost of repartitioning
can be high.

We experimentally showed that there are data distribu-
tions (such as the triangular data distribution we experi-
mented with) for which both PBSM and SHJ are very in-
efficient. For such distributions it is possible that due to
the high replication introduced by both PBSM and SHJ the
disk space used for storing the replicated partitions as well
as the output of the join before the duplicate elimination in
the case of PBSM, is exhausted, especially in environments
with limited disk space.

Depending on the statistical characteristics of the data
sets involved, S3J can be either I/0 bound or processor
bound. We experimentally showed that, even with distri-
butions with many joining pairs, both PBSM and SHJ are
1/0 bound, but S3.7 can complete the join with a minimal
number of 1/0s and can outperform both other algorithms.
For distributions in which filtering takes place, we experi-
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mentally showed that b’: / iflt 11DSB is able to outperform
both PBSM and SHJ [I{ S96j. 11’heu enough filtering takes
place, for our experimental results, PBSM does better than
SHJ mainly due to the expensive partitioning phase of SHJ.
However, the previous argument depends also on the num-
ber of tiles used by PBSM, since it might be the case that
excessive replication is introduced by PB SM using too many
tiles and the performance advantages are lost. S3 J is equally
capable of reducing the size of the data sets involved and is
able to perform better than both PBSM and SHJ.

6 Conclusions

We have presented a new algorithm to perform the join of
spatial data sets when indices do not exist for them. Size
Separation Spatial Join imposes a dynamic hierarchical de-
composition of the space and permits au efficient joining
phase. Moreover, our algorithm reuses software modules
and techniques commord y present in any relational system,
thus reducing the amount of software development needed
to incorporate it. The Dynamic Spatial Bitmap feature of
S3J can be implemented using bitmap indexing techniques
already available in most relational systems. Our approach
shows that often the efficient bitmap query processing algo-
rithms already introduced for relational data can be equally
well applied to spatial data types using our algorithm.

We have presented an analytical and experimental com-
parison of S3.l with two previously proposed algorithms for
computing spatial joins when indices do not exist for the
data sets involved. Using a combination of analytical tech-
niques and experimentation with real and synthetic data
sets, we showed that S3J outperforms current alternative
methods for a variety of types of spatial data sets.
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