
Time Critical Lumigraph Rendering

Abstract

Peter-Pike Sloan* Michael F. Cohent Steven J. Gortler$
University of Utah Microsoft Research Harvard University

It was illustrated in 1996 that the light leaving the con-
vex hull of an object (or entering a convex region of empty
space) Cm be my characterized by a 4D function over the
space” of rays crowing a surface surrounding the object (or
surrounding the empty apace) [10, 8]. Methods to repre
sent this function and quickly render individual images from
this representation given an arbitrary cameras were also de-
scribed. This paper extends the work outlined by Gortler et
al [8] by demonstrating a taxonomy of methods to accelerate
the rendering process by trading off quality for time. Given
the speciiic limitation of a given hardware configuration, we
discuss methods to tailor a critical time rendering strategy
using these methods.

CR Descriptors: 1.3.7 [Computer Graphics] Tbree-
Dimensional Graphics and Realism; Additional Key-
words: imagebaaed rendering, critical time rendering

1 Introduction

The traditional method of creating realistic images on a
computer involves first modeling the geometric and mate
riai properties of an object or scene as well as any light
sources. This is followed by simulating the propagation of
light and the actions of a synthetic camera to render a view
of the object or scene. The complexity at both the modeling
and rendering stages has led to the development of meth-
ods to directly capture the appearance of real world objects
and then use this information to render new images. These
methods have been called image based rendering or view in-
terpolation [5, 4, 11, 6, 13, 10, 8] since they typically start
with images as input and then synthesize new views from
the input images.

In two papers, Lightfiekl Rendering [10] and The Lumi-
gmph [8] it was shown that the light leaving the convex hull
of an object (or entering a convex region of empty space)
can be characterized by a 4D function over the space of rays
crossing a surface surrounding the object (or surrounding
the empty space). Given this observation, the process of
creating the 4D function, dubbed a Lumigroph in Gortler et

“ppsloanftcs.utah. edu
t ~cohen~mimowft .Wm
isjg@deas.harvard.edu

Permission to make digital(?tardcopies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
torepublisb,to@ on servers or to redistribute to lists, requires specific
perrksion ador fee.
1997 Symposium on interactive 3D Graphics, Providence R1 USA
Copyt’ight 1997 ACM O-89791 -884-3/97/04 ..$3.50

al, and synthesizing views involves three steps: 1. gather-
ing samples of the Lumigraph, typically from pixel values in
static images, 2. approximating and representing the con-
tinuous Lumigraph from the samples, and 3. conatmcting
new views (2D slices of the 4D Lumigraph) from arbitrary
synthetic camer~. The third step in the process should
be fast to allow interactive exploration of the Lumigraph
by real-time manipulation of a virtual camera. Both pa-
pers [10, 8] discuss different methods to make this possible,
however, both are limited in different ways. The method
discussed by Levoy and Hanrahan operates pixel by pixel
and thus is highly sensitive to image resolution while the
method discussed by Gortler et al takes advantage of tex-
ture mapping hardware and thus is sensitive to other limita-
tions. Leveraging hardware texture mapping is sensitive to
texture memory limitations (in our case 4Mb) and the band-
width between the host and the accelerator. Architectures
that support rendering from compressed textures [15, 1] and
ones that read textures directly from host memory could
overcome this bottleneck.

This paper extends the work outlined by Gortler et al by
demonstrating a taxonomy of methods to limit the amount
of texture information required per frame. These methods
make difkrent trade-offs between quality and time. Given
the speciiic limitation of a given hardware configuration, one
can use these methods to tailor a critical time rendering
method. In addition, the methods lead naturally to progres-
sive refinement rendering strategies.

2 The Lumigraph

In both [10] and [8], the 4D Lumigraph function was param-
etrized by the intersection of a ray with a pair of planes
(Figure 2). Fully enclosing a region of space involves using a
series of such pairs of planes, however, we will restrict our-
selves in this paper to discussing a single pair. In Gortler
et al and in the work here, the first plane has axes s and
t, with the second plane labeled with axes u and v. The
uu plane is situated to roughly pass through the center of
the object. Thus any point in the Lumigraph space has
parametem (s,t,u,v) and a value (typically an RGB triple)
representing the light passing along the ray seen in Figure
1. One can see the duality between getting samples into the
Lumigraph from au arbku’y image and constructing an ar-
bitrary image from the Lumigraph. In the first case, given
an input image as in F@re 1, the vahte at (s, t,u,U)is simply
the color of the image at the pixel location where the ray in-
tersects the image. Conversely, given a Lumigraph, one can
reconstruct the pixel on a desired image by using L(s,t, u,u),
the value of Lumigraph at the given parameter location. In
this way, any arbitrary image can be constructed pixel by
pixel.

17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253284.253296&domain=pdf&date_stamp=1997-04-30

4V /

d=GslEm cx’l&c

s

Figure 1: Lumigraph Parameterization

2.1 Discretization

In the finite context of the computer, the Lumigraph is dk+
cretized. We have found that a discretization of approxi-
mately 32x32 nodes on the st plane and 256x256 on the uv
plane gives good results. One can think of the 256x256 set
of RGB values asociat ed with each st node (the set of rays
passing through the st node and intersecting the uuplane) as
an image as seen from the given s-tpoint (we will call this a
uu image). We will use these images as a textures in the re-
construction methods. Given a discretization, one also needs
to select a blending function between nodal values both for
projection of the continuous function into the discrete one
and for reconstruction. We will use a quadralinear basis for
these purposes as was done in [8].

2.2 Use of Geometry

So far there has been no notion of the geometry of the object
since one of the major features of pure image based render-
ing is that no geometry is needed. On the other hand, given
some approximate geometry as can be constructed from a se-
ries of silhouettes [14] one can improve the reconstruction of
images as discussed in [8]. We will also use the approximate
geometry in the reconstruction methods discussed below.

2.3 Reconstructionas Texture Mapping

Gortler et al [8] describe a texture mapping process to per-
form the reconstruction of imag= with hardware accelera-
tion. To till in the shaded triangle on the image plane as seen
in Figure 2, one draws the shaded triangle on the st plane
three times (once for each vertex of the triangle) as a texture
mapped, alpha blended polygon. For each of the vertices, the
uv image associated with that vertex is used as the texture.
An alpha value of 1.0 is set for this vertex with an alpha of
0.0 at the other vertices. The texture U V coordinates are
common to all three versions of the triangle and are found
by intersecting rays from the camera center through the d
nodes with the uv plane. Summing the alphas results in full

coverage of the triangle and a linear blending of portions of
three textures. Repeating this process for each st triangle
seen in the cameras frustum completes the image. Current
texture mapping hardware from SGI can often render more
than 30 frames/see at 512x512 resolution using this method.

tv

‘i--t====
‘+Q=’o.

\u

F@re 2: Lumigraph Reconstruction as Alpha Blended Tex-
tured 11-kmgles

There are, however, some severe limitation of this ap
preach. The most crucial one is the limited amoumt of tex-
ture memory available on most machines (e.g., 4Mb on our
machine). In addition, main memory becomes a scarce re-
source as well since a full 32x32x256x256 x 6 planes x 3 byte
Lumigraph fills more than a gigabyte of information. Mov-
ing data to and from disk and to and from texture mem-
ory is the major bottleneck, particularly if the individual
uv images must be decompressed at the same time. Future
hardware designs that support rendering directly from com-
pressed textures will make this approach more attractive by
ameliorating many of these limitations.

3 Fast Approximate Rendering Given Lim-
ited Resources

This section discusses a taxonomy of methods to reuse data
from frame to frame. Taking advantage of coherence will
allow the construction of critical time Lumigraph rendering
algorithms. The methods fall into two categories, ones that
use a smaller set of textures than a full rendering, and a
method that uses the current reconstructed image as a new
texture itself for subsequent nearby frames.

We will discuss each method briefly below.

3.1 Usinga Limited Set of st Nodes

Given a limited budget of texture memory, we can devise a
number of strategies to use less than the full set of infor-
mation in the Lumigraph for a given view. In general, by
dynamically adjusting the tesselation of the st plane and the
alpha values at each vertex of the tesselation we will use less

18

memory and need to draw fewer polygons (albeit at reduced
quality). Each method must (a) cover the stplane (or at a
minimum the visible portion), and (b) produce a set of alpha
values that sum to unity.

● Su&le: the simplest idea to use a lower resolution
Lumigraph. Cutting the resolution of the d plane in
half results in one fourth of the uwimages needed for any
image. The triangles in Figure 2 would simply be twice
as large in each direction. This results in more depth
of field blurring which is ameliorated somewhat by the
depth correction afforded by the use of the approximate
geometry [8]. Cutting the resolution in uv also results
in the need of lees texture memory at a cost of overall
blurring. A 2D or 4D Mipmap [16] of multiple levels
can be constructed, however, just two levels of a 4D
Mipmap already results in a size l/16th that of the
original Lumigraph [see Color Plate 1] .

tv
t

t 1~‘JO.

Uu9Edlu%-p ‘

J s

Can?Ialxllter

Figure 3: lYiangulation of d Plane from Subset of Nodes

● Fixed pattern of st nodes: if our budget allows a fixed
number of textures, for example 9, we can ask which
nodes are the best to use and how should we cover the
d plane with the data from those nodes. We can pick
the 9 st nodes surrounding the center of the image and
generate a triangulation of the st plane. The triangu-
lation is created from the 9 selected nodes and other
fictitious nodee used to cover the d plane (see Figure 3
and Color Plate 2). The triangles within the square of 9
nodes are drawn three times each as before. Those tri-
angles outside are drawn twice. For example, triangle I
is drawn first using the uv plane associated with node
(a) and with aiplms of 1.0 at node (a), 0.0 at node (b),
and 0.5 at the fictitious node labeled (b,c). A similar
pattern is used from the point of view of node (b). Sim-
ilarly triangle 11is drawn with texture (a) with alphas
(1.0, 1.0, 0.5) and with texture (b) with aiphae (0.0,
0.0, 0. 5). Reuse of this fixed pattern of nodes provides
good parallax cues near the original image, but flattens
out as the center of the image moves outside the fixed
square. Thus, the nine nodee can be used for a small

●

●

3.2

amount of motion, after which new nodes need to be
brought in and old ones removed from the active set.

Arbitrary triangulation: any subset of nodes can in
fact be used to render an image by generalizing the
algorithm above. Once a triangulation of the plane is
constructed from the nodes with texture data and ficti-
tious nodes, each triangle can be drawn by the following
pseudocode algorithm:

for each vertex a with valid data
set texture to {\em uv) plane for a
drau.node.uith-dat a (a)

draii-node.with-data(Vertex a)
{

set alpha-a = 1.0
for each vertex b adj scent to a

set alpha-b = 0.0
for each triangle adjacent to a

draw t-napped alpha suned triangle
for each vertex b adj. to a WOvalid data

alph = 1.0 / num_valid_verts-ad j-to-b
drav-node-vithout-data (b, alph)

1

draw-node-u ithout-data(Vertex b, double alph)
{

set alpha-b = alph
for each vertex c adj scent to b

set alpha-c = 0.0
for each triangle adjacent to b

dram t-mapped alpha summed triangle
}

One constraint in the triangulation is that every vertex
must have at least one adjacent vertex that contains
vafid data, or there will be a hole in the reconstruction.
In F@u-e 3, the shaded area shows the support of influ-
ence of vertex (a). A critical time rendering scheme can
be designed to bring in new textures when it has time
and reuse those already loaded when needed. Later we
will show how this scheme can be slightly modified to
produce smooth transitions.

Nodes along a line: if the user’s motion can be pre-
dicted or restricted to lie along a line (or curve with
low curvature) then st nodes can be chosen to lie along
this line (or tangent). In this case, the st plane is not
divided into triangles, but rather strips perpendicular
to the line (see Figure 4 and Color Plate 4). Each strip
spans the space between adjacent nodes along the fine.
Each strip is drawn twice with the texture associated
with each adjacent node. The alphas are set to 1.0
along the line through the current node, and 0.0 along
the opposite edge. Moving back and forth along the
line of motion provides parallax cues in the direction
of motion. Moving perpendicular to the line appeam
to just rotate a 2D image. This same trick is used in
the construction of horizontal parallax only holographic
stereograms [2].

Using ProjectiveTextures

A second type of method uses the current image as a newly
defined texture map for subsequent nearby images. The ap

19

+“
A critical time rendering approach thus can use each im-

age as a texture over multiple frames. In the meantime,

1
0

0

0

0

0

0

0

*U

Cf’camraarlkr

Figure 4: Subdivision of d Plane from Line of Nodes

proximate geometry of the object is then used to warp the
texture to the new viewpoint. This is similar in flavor to
the original view interpolation work by Chen and WWams
[5] and the more recent work by Seitz and Dyer [13] and by
Debevec et al [6]. After an initial image is created, a matrix
M is constmcted and used for each subsequent frame. The
composite modeling and viewing matrix used for the initial
frame transforms points (z, y,z) in model space to screen co-
ordinates between -1 and 1 in X and Y. Composing this ma-
trix with a translation of (1,1) and a scale of (0.5,0.5) results
in a matrix that maps points in space to a .YV texture space
between (0,0) and (1,1). This texture matrix, M, is the used
to find texture coordinates for vertices of the approximate
model for each subsequent frame [12]. The texture coordi-
nates for each vertex are set to their (z, y,z) location. These
are transformed bv M into the 2D U V texture coordinates.

In pseud~code;

render an image I as usual
use image I as texture for subsequent frames
set matrix M to composite model/vieu matrix
compose H with translational, 1) and scale (.5, .5)
set N as texture matrix

for each subsequent image
set neu view matrix for desired camera
for each polygon in approxirnat e model

for each vertex of polygon
set texture coordinate to (x, y,z)
/* to be tranefomedby H into IJ,V */
set position to (x, y,z)
drau polygon

For subsequent images, near the original image that set
the texture matrix M, the warp will provide correct paral-
lax cues. Asthenew camera poeition moves away from the
one used for original image, the inaccuracies in the approx-
imate geometry, self occlusion changes in visibdity, and any
specular properties willbecomeobvious [see Color Plate 5].

a new image is constructed from a new camera position as
close as possible to a predicted position at the end of the
rendering cycle. This new image and its associated texture
matrix are then swapped in to replace the old ones, and the
process is repeated.

3.3 ProgressiveRefinement

The methods outlined above lead naturally to a number of
possible progressive refinement and/or progressive transmis-
sion methods. One can transmit an initial (small) set of
st nodes and information about the database (i.e., d and
uu resolutiona, crude geometric representation). As more
nodes are transferred they are inserted into the triangula-
tion (initially without data) and schedule the texture to be
decompressed and added to the new node. The geometry
also could, of course, also be represented in a progressive
format [9].

With a simple modification of the arbitrary triangulation
algorithm the data for vertices can be smoothly blended in
over time, or blended out as the vertex is removed. This re
quires a simple change in the claesilication of vertices, adding
a value per vertex for the validity of its associated data, be-
tween 0.0 and 1.0. Changing this value over time smoothly
reduces or increases the contribution of this node to the fi-
nal image [Color Plate 3]. In pseudocode, a slightly modified
draunode-uith_data, would be called for any vertex, a, with
data validity greater thau 0.0:

dram.node.vit~data (Vertex a)
{

set alpha_a = data validity at a
for each vertex b adjacent to a

set alpha_b = 0.0
for each triangle adjacent to a

draw texture mapped alpha summed triangle
for each vertex b adj scent to a

if (b. validity < 1.0)
vb = b. validit y
alph = (1.0 - vb) /num-valid-verts-ad j -t o-b
/8 same as before 8/
draw_node-without -data (b, alph)

}

4 Critical Time Rendering Strategies

We will explore a critical time rendering strategy applied
to the general case of triangulations of an arbhxu-y set of d
nodes. This basic strategy can be applied to all the methods
discussed above. The user sets a desired frame rate. Then,
at each frame (or every few frames) a decision is made about

● which new st nodes to bring in (this may involve decom-
pression, and loading/binding as textures) and which
nodes to delete

● triangulating the currently valid nodes and possible fic-
titious nodes to cover the d plane, and

● rendering the frame.

The latter two
tions. This leaves

points are discussed
us with the decision,

in the previous sec-
given a fixed budget

20

of time and/or texture memory constraints, what is the best
set of nodes to use, keeping in mind which ones we already
have ready to be used. To do this, like in [7] we define two
concepts for each node, the benefit that will be derived from
adding that node, and the cost of using it. The nodes are
sorted in order of the ratio of their benefit: cost. Given this
ordered set of nodes, the strategy is to add the highest rank-
ing nodes until the time budget is used up. As the texture
memory is used up the lowest benefit node is deleted and re-
placed by the next node in line to be added. The time bud-
get is dynamical resealed aa in [3] so that the desired frame
rate is met. This allows for variable load on the machine
and error in the machine dependent cost measurements.

4.1 Benefit

The benefit zwsigned to a node is set as a function of

● its distance from the intersection on the st plane of the
center of projection of the camera (the point labeled
(s,t) in figure 1)

● its position relative to the recent motion of the camera’s
center of projection (nodes close to a predicted path are
assigned a higher benefit), and

● its distance from other currently valid nodes

Specifically,
benejit(i, j) = Dist~s, t) *Path(s, t) *Neighbor(s,t)
where s, t are the coordinates of node (i, j) on the st plane, and
Dist, Path, and Neighbor each return values in [0,1]. Dist is
inversely proportional to the squared distance (plus a con-
stant) between the camera center and proposed node. Path
determines the proposed node’s distance from the predicted
future path of the camera on the st plane, and Neighbor is
baaed on the fraction of the neighboring nodes currently not
in the triangulation.

4.2 Cost

The cost of adding a node are primarily the fixed costs of
fetching a node from disk, decompressing it, and loading it
into texture memory. The relative costs of each of these
operations is machine dependent. At any time, some nodes
may be in memory but not bound to textures, while others
are only resident in compressed form on disk.

There is also the incremental cost of triangulation and
rendering of the additional triangles introduced by the new
node.

5 Performance Results

5.1 Node UsageMethods

The performance of the texture mapping algorithms depend
on:

● Texture Fill Rate: How many million bilinear filtered
textured pixels the hardware can generate per second.
Each pixel haa to be textured 3 times, for 30 fps at
512x512 resolution requires a texture iill rate of 23.6
milhon textured pixels/second. This is well within the
range of modem 3D hardware (a Maximum Impact has
peak rates of 119MTex/see) and even quite reasonable
for 3d hardware destined for personal computers (with
fill rates between 17 and 60 MTex/see). If the fill rate

●

b

●

●

is close to the required amount you will have to work
with almost the entire working set in texture memory.

Texture Storage: Number of Texels that can be stored.
Our Maximum Impact has fairly limited texture mem-
ory -4 megabytes that can only be addressed as 4 chan-
nel textures for this application. This is a significant
bottleneck.

Texture Paging Bandwidth: MTex/sec that can be
loaded into texture memory. The Impact loads textures
from the host extremely fast, 40 MTex/s in our bench-
marks. Other platforms (PCs, RE2, IR, DEC POWER-
STORM) may have more texture memory (8-64 MB)
and better utilization however (paletized textures or 3
channel memory layout).

Disk Access and Decompression: How fast can a uv
image be made ready to move to texture memory. De-
pending on the compression scheme used this may be
significant, as is the case in our current implementa-
tion using JPEG. Levoy and Hanrahan use a two stage
scheme, fist a vector quantization step (with fast de-
compression) and then an entropy encoding step (slower
to decompress). By performing the entropy decompres-
sion up front they are able to perform the remaining
decompression at frame rates for the required pixels.
The texture mapping process may also require decom-
pressing some pixels that are never used. Compression
issues remain a significant research tepic.

Frame Btier to Texture Memory Bandwidth (for pro-
jective textures): How fast a previously rendered frame
can be sent to texture memory. The Impact performs
this at roughly 10 MTex/sec.

Below is a table that characterizes the different methods
outlined above. Fill Rate refers to the average number of
bilinear textured pixels that need to be drawn per pixel.
Texture Load refers to how efficiently texture loads can be
scheduled. Locality refers to the distribution of detail for the
given method where “strong” locality means that the image
can be generated with higher fidelity in a smaller neighbor-
hood. For the Fixed method we are assuming that the 9
central nodes cover one quarter of the screen. In the fill
rate equation for Arbitrary - partial valid, x represents the
percentage of nodes with partially valid data. This has a
minimum at 25~0 and the maximum is at 100~0. For projec-
tion we are assuming that the model covers about 1/2 of the
screen and has a low depth complexity (2).

ret o
Subzunple
Fixed
Arbitrary
Partial Valid
Line
Projection

-ml lb te IT exture Load
3
2.25
3
6Z2–3Z+3
2
1.5

poor
good
strong
strong
good
not a factor

Locaht v
low
strong
good
strong
strong
strong

Table 1: Characterization of different reconstruction meth-
ods

Baaed on the target platforms performance in the above
metrics you could determine what kind of load it can take to
give a desired frame rate, where load is the average necessary
texture bandwidth per frame.

21

1 r !

0,81
RE2—

Desired -----

0.7 -

0.6 -

0.5 -

0.4 - ,1

0.3

0.2

0.1

0
0 50 100160200250300

a) IUS2 times

90

30

70

60

50

40

30

xl

10

01’ J
o 50 100 150 200 250 300

b) -2 mum images per frame

Figure 5: Timing results for RE2

5.2 Critical ~lme Rendering

Figure 5 shows our intial results using the critical time ren-
dering strategy previously defined running on an SGI Real-
ity Engine 2. The graphs represent time per frame (where
the user asked for 10 FPS) and the number of textures that
were used for each frame. In general, the strategy leads to a
reasonably constant frame rate.

The spikes in the graphs appear to be due to a bug in
the gl implementation of a fimction that determines which
textures are actually in texture memory. In addition, the in-
dividual costs (raeterizationl texture paging, JPEG decom-
pression) are not dynamical scaled, but rather the compu-
tations as a whole are scaled by the same factor. Individual
scaling factors will also lead to a more constant frame rate.

5.3 Issuesrelated to the 02 Architecture

Silicon Graphics Inc., has recently begun delivering machines
based on a new architecture which they dub the 02. This de-
sign uses main memory to hold both the frame bulfer (i.e., it
has no separate frame builer) and textures (i.e., no separate
texture memory), A performance price ie paid for this in
terms of raw rendering speed (number of textured polygons
per second). However, for the Lumigraph application this is
generadly a win eince we render relatively few textured tri-
angles, but with many textures. The bottleneck of severely
limited texture memory is lifted and replaced only with the

0.9

0.8 1

0.7

0.6
I

0.5 t

0.4

0.3 II

02 —
D&j~ed

{

I I
02

0.1

0
0 50 100 150 200 250 300

a) 02 times

80
02 —

70 -

60 -

50 -

40 -

30 - (“’”!

20 -

10 -

0
0 50 loo1602002503m

b) 02 mm images per frame

Figure 6: Thing results for 02

limitations of main memory. There is aleo hardware support
for asynchronously decompressing JPEG imagee. Many of
the strategies outlined above are still valid while others are
of reduced importance. We have made some initial exper-
imentson this machine as well by adjusting the cost function
for individual nodes. We have not yet taken advantage of the
JPEG decompression hardware, but the initial results are
promising. Figure 6 shows the results of the same sequence
shown earlier for the RE2, when run on the 02 machine.

6 Conclusion

At SIGGRAPH 1996, Levoy and Hanrahan [10] and Gortler
at al [8] showed how a four dimensional data structure, called
a Lumigraph in the latter work, could be constructed to
capture the full appearance of a bounded object or the light
entering a bounded region of empty space. Methods were
presented to quickly reconstruct images from the Lumigraph
from arbitrary objects. Unfortunately, these methods are
limited by the image resolution in the methods in the first
paper and by limited texture memory in the latter work.

In this paper we have shown a number of fast approx-
imate reconstruction methods for images from Lumigraphe
using the texture mapping process described in Gortler et al.
These methods fall into two classes, those that extend the
use of a limited or constant number of textures per image,
and a method that uses the current image as a texture itself
in subsequent images. The second type of reconstruction

22

relies on the approximate geometry of the object being rep-
resented by the Lumigraph. The trade-offs of speed versus
artifacts varies for each of these methods.

These reconstruction methods form the basis for develop-
ing strategies for critical time rendering from Lumigraphs.
One such strategy based on a cost/benefit analysis for each
node is discussed in the context of limitations of texture
memory and disk access and decompression time.

More work needs to be done to discover optimal strate-
gies for rendering and transmission of Lumigraphs given the
varying constraints of hardware and networks.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

BEERS, A. C., AGRAWALA, M., AND CHADDHA, N.
Rendering from compressed textures. In Computer
Graphics Proceedings, Annual Conference Seriesj 1996
(1996), pp. 373-378.

BENTON, S. A. Survey of holographic stereograms.
Proc. SPIE Int. Sot. Opt. Eng. (USA) 367 (1983), 15-
19.

BRYSON, S., AND JOHAN, S. Time management, si-
multaneity and time-critical computation in interactive
unsteady visualization environments. In Visualization
’96 (1996), pp. 255–261.

CHEN, S. E. Quicktime VR - an imag~based approach
to virtual environment navigation. In SIGGRAPH 95
Conference Proceedings (Aug. 1995), R. Cook, Ed., An-
nual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 2!3-38. held in Los Angeles, California, 06
11 August 1995.

CHEN, S. E., ANDWILLIAMS, L. View interpolation for
image synthesis. In Computer Graphics (SIGGRAPH
’99 Proceedings) (Aug. 1993), J. T. Kajiya, Ed., vol. 27,
pp. 279-288.

DEBEVEC,P. E., TAYLOR, C. J., ANDMALIK, J. Mod-
eling and rendering architecture from photographs: A
hybrid geometry-and-image-baaed approach. In Com-
puter Graphics Proceedings, Annual Conference Seties,
1996 (1996), pp. 11-20.

FUNKHOUSER,T. A., ANDSEQUIN,C. H. Adaptive dis-
play algorithm for interactive frame rates during visual-
ization of complex virtual environments. In Computer
Gmphics (SIGGRAPH ’93 Proceedings) (Aug. 1993),
J. T. Kajiya, Ed., vol. 27, pp. 247-254.

GORTLER, S. J., GRZESZCZUK,R., SZELISKI,R., AND
COHEN, M. F. The lumigraph. In Computer Gmphics
Proceedings, Annual Conference Series, 1996 (1996),
pp. 43–54.

HOPPE, H. Progressive meshes. In SIGGRAPH 96 Con-
ference Proceedings (Aug. 1996), H. Rushmeier, Ed.,
Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 99-108. held in New Orleans, Louisiana,
4-9 August 1996.

LEVOY, M., AND HANRAHAN,P. Light field rendering.
In Computer Gmphics Proceedings, Annual Conference
Series, 1996 (1996), pp. 31&42.

[11]

[12]

[13]

[14]

[15]

[16]

MCMILLAN, L., AND BISHOP, G. Plenoptic model-
ing: An image-based rendering system. In SIGGRA PH
95 Conference Proceedings (Aug. 1995), R. Cook, Ed.,
Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 3%46. held in Los Angeles, California, 06-
11 August 1995.

SEGAL, M., KOROBKIN, C., VAN WJDENFELT, R.,
FORAN, J., AND HAEBERLI, P. E. Fast shadows and
lighting effects using texture mapping. In Computer
Graphics (SIGGRAPH ’92 Proceedings) (July 1992),
E. E. Catmull, Ed., vol. 26, pp. 249-252.

SEITZ, S. M., AND DYER, C. R. View morphing.
In Computer Gmphics Proceedings, Annual Conference
Series, 1996 (1996), pp. 21-30.

SZELISKI, R. Rapid octree construction from image
sequences. CVGIP: Image Understanding 58, 1 (July
1993), 23-32.

TORBORG, J., AND KAJIYA, J. T. Talisman: Com-
modity realtime 3d graphics for the pc. In Computer
Gmphics Proceedings, Annual Conference Series, 1996
(1996), pp. 353-363.

WILLIAMS, L. Pyramidal parametric. In Computer
Gmphics (SIGGRAPH ‘8S Proceedings) (July 1983),
vol. 17, pp. 1–11.

23

