skip to main content
10.1145/2534008.2534013acmconferencesArticle/Chapter ViewAbstractPublication PagescvmpConference Proceedingsconference-collections
research-article

Robust Bayesian fitting of 3D morphable model

Published:06 November 2013Publication History

ABSTRACT

We propose to fit automatically a 3D morphable face model to a point cloud captured with a RGB-D sensor. Both data sets, the shape model and the target point cloud are modelled as two probability density functions (pdfs). Rigid registration (rotation and translation) and reconstruction on the model is performed by minimising the Euclidean distance between these two pdfs augmented with a multivariate Gaussian prior. Our resulting process is robust and it does not require point to point correspondence. Experimental results on synthetic and real data illustrates the performance of this novel approach.

References

  1. B. Amberg, A. Blake, A. Fitzgibbon, S. Romdhani, and T. Vetter. Reconstructing high quality face-surfaces using model based stereo. IEEE International Conference on Computer Vision, ICCV, pages 1--8, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Amberg, S. Romdhani, and T. Vetter. Optimal step nonrigid icp algorithms for surface registration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), pages 1--8, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Arellano and R. Dahyot. Mean shift algorithm for robust rigid registration between gaussian mixture models. In 20th European Signal Processing Conference (Eusipco), pages 1154--1158, Bucharest, Romania, August 2012.Google ScholarGoogle Scholar
  4. C. Arellano and R. Dahyot. Shape model fitting using non-isotropic gmm. In 23rd IET Irish Signals and Systems Conference, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. Arellano and R. Dahyot. Shape model fitting without point correspondence. In 20th European Signal Processing Conference (Eusipco), pages 934--938, Bucharest, Romania, August 2012.Google ScholarGoogle Scholar
  6. S. Baker and I. Matthews. Equivalence and efficiency of image alignment algorithms. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, pages 1090--1097, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  7. C. Basso, T. Vetter, and V. Blanz. Regularized 3d morphable models. In IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, pages 3--12, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Basu, I. Harris, N. Hjort, and M. Jones. Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3): 549--559, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Besl and N. McKay. A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14: 239--256, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. Proceedings of the annual conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pages 187--194, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Bradley, W. Heidrich, T. Popa, and A. Sheffer. High resolution passive facial performance capture. ACM Transactions Graphics, 29(4): 41:1--41:10, July 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Bulthoff. Shape from X: psychophysics and computation. In: Landy M, Movshon A, editors. Computational models of visual processing. Cambridge: MIT Press, 1991.Google ScholarGoogle Scholar
  13. S.-H. Cha. Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1: 300--307, 2007.Google ScholarGoogle Scholar
  14. H. Chui and A. Rangarajan. A feature registration framework using mixture models. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 190--197, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Cui, S. Schuon, C. Derek, S. Thrun, and C. Theobalt. 3d shape scanning with a time-of-flight camera. In IEEE conference on Computer Vision and Patern Recognition, CVPR, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Freedman, A. Shpunt, M. Machline, and Y. Arieli. Depth mapping using projected patterns. Patent Publication number: US 2010/0118123 A1, 2008.Google ScholarGoogle Scholar
  17. P. Fua. Regularized bundle-adjustment to model heads from image sequences without calibration data. International Journal of Computer Vision, volume 38: 153--171, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Granger and X. Pennec. Multi-scale em-icp: A fast and robust approach for surface registration. European Conference on Computer Vision ECCV, pages 418--432, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Hasanbelliu, L. S. Giraldo, and J. Principe. A robust point matching algorithm for non-rigid registration using the cauchy-schwarz divergence. IEEE International Workshop on Machine Learning for Signal Processing, pages 1--6, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Helén and T. Virtanen. Audio query by example using similarity measures between probability density functions of features. EURASIP Journal on Audio, Speech, and Music Processing, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgbd mapping: Using depth cameras for dense 3d modeling of indoor environments. In In RGB-D: Advanced Reasoning with Depth Cameras Workshop in conjunction with RSS, 2010.Google ScholarGoogle Scholar
  22. B. Huhle, T. Schairer, P. Jenke, and W. Straßer. Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Computer Vision and Image Understanding, 114(12): 1336--1345, 2010. Special issue on Time-of-Flight Camera Based Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Jebara, R. Kondor, and A. Howard. Probability product kernels. Journal of Machine Learning Research, volume 5: 819--844, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Jian and B. Vemuri. Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Lee, B. Moghaddam, H. Pfister, and R. Machiraju. Silhouette-based 3d face shape recovery. In Graphics Interface, pages 21--30, 2003.Google ScholarGoogle Scholar
  26. R. Lengagne, P. Fua, and O. Monga. 3d stereo reconstruction of human faces driven by differential constraints. Image and Vision Computing, volume 18(4): 337--343, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. D. Levine and Y. (Chris) Yu. State-of-the-art of 3d facial reconstruction methods for face recognition based on a single 2d training image per person. Pattern Recogn. Lett., volume 30(10): 908--913, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection. In International Conference on Image Processing (ICIP), volume 1, pages I-900--I-903, 2002.Google ScholarGoogle Scholar
  29. H. M, J. Choi, and G. Medioni. Laser scan quality 3-d face modelling using a low cost depth map. In 20th European Signal Processing Conference (Eusipco), pages 1995--1999, Bucharest, Romania, August 2012.Google ScholarGoogle Scholar
  30. P. Merrell, A. Akbarzadeh, L. Wang, J. michael Frahm, and R. Y. D. NistÃl'r. Real-time visibility-based fusion of depth maps. In International Conference on Computer Vision and Pattern Recognition (CVPR), 2007.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Myronenko and X. S. Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32: 2262--2275, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Newcombe and A. Davison. Live dense reconstruction with a single moving camera. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1498--1505, june 2010.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR '11, pages 127--136, Washington, DC, USA, 2011. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Ouji, M. Ardabilian, L. Chen, and F. Ghorbel. A space-time depth super-resolution scheme for 3d face scanning. In Proceedings of the 13th international conference on Advanced concepts for intelligent vision systems, ACIVS'11, pages 658--668, Berlin, Heidelberg, 2011. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Patel and W. A. Smith. 3d morphable face models revisited. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 1327--1334, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  36. P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for pose and illumination invariant face recognition. IEEE Conference on Advanced Video and Signal Based Surveillance, pages 296--301, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Verlag, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Romdhani, V. Blanz, and T. Vetter. Face identification by fitting a 3d morphable model using linear shape and texture error functions. European Conference on Computer Vision, ECCV, pages 3--19, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Romdhani and T. Vetter. Efficient, robust and accurate fitting of a 3d morphable model. In Proceedings of the IEEE International Conference on Computer Vision, ICCV, pages 59--66, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Romdhani and T. Vetter. Estimating 3d shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 986--993, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. Romeiro and T. Zickler. Model-based stereo with occlusions. In Proceedings of the 3rd international conference on Analysis and modeling of faces and gestures, AMFG, pages 31--45, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. International Conference on 3-D Digital Imaging and Modeling, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  43. J. Ruttle. Statistical Framework for Multi-Sensor Fusion and 3D Reconstruction. PhD thesis, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland, 2012.Google ScholarGoogle Scholar
  44. J. Ruttle, C. Arellano, and R. Dahyot. Extrinsic camera parameters estimation for shape-from-depths. In 20th European Signal Processing Conference (Eusipco), pages 1985--1989, Bucharest, Romania, August, 27--31 2012.Google ScholarGoogle Scholar
  45. D. Schneider and P. Eisert. Algorithms for automatic and robust registration of 3d head scans. Journal of Virtual Reality and Broadcasting, 7, 2010.Google ScholarGoogle Scholar
  46. D. Scott. Parametric statistical modeling by minimum integrated square error. Technometrics, 43: 274--285, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  47. C. Shen, M. Brooks, and A. van den Hengel. Fast global kernel density mode seeking: Applications to localization and tracking. IEEE Transactions on Image Processing, 16, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. W. A. Smith and E. R. Hancock. Recovering face shape and reflectance properties from single images. In IEEE International Conference on Automatic Face Gesture Recognition, pages 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  49. Y. Tsin and T. Kanade. A correlation-based approach to robust point set registration. In European Conference in Computer Vision ECCV, pages 558--569, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. J. Verbeek, N. Vlassis, and B. J. A. Kröse. Self-organizing mixture models. Neurocomput., 63: 99--123, Jan. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. P. Viola and M. J. Jones. Rapid object detection using a boosted cascade of simple features. In International Conference on Computer Vision and Pattern Recognition (CVPR), 2001.Google ScholarGoogle ScholarCross RefCross Ref
  52. X. Wang, W. Liang, and L. Zhang. Morphable face reconstruction with multiple views. International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC, pages 250--253, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-based facial animation. ACM Transactions Graphics, 30: 1--10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Int. Journal Comput. Vision, 13: 119--152, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Zhao, T.-S. Chua, and T. Sim. Morphable face reconstruction with multiple images. In IEEE International Conference on Automatic Face and Gesture Recognition, FGR, pages 597--602, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. M. Zollhöfer, M. Martinek, G. Greiner, M. Stamminger, and J. Süßmuth. Automatic reconstruction of personalized avatars from 3d face scans. In Proceedings of Computer Animation and Virtual Worlds (CASA), volume 22, pages 195--202, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust Bayesian fitting of 3D morphable model

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            CVMP '13: Proceedings of the 10th European Conference on Visual Media Production
            November 2013
            166 pages
            ISBN:9781450325899
            DOI:10.1145/2534008

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 6 November 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            CVMP '13 Paper Acceptance Rate18of28submissions,64%Overall Acceptance Rate40of67submissions,60%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader