arXiv:1305.1293v1 [cs.GR] 7 May 2013

Parallel Chen-Han (PCH) Algorithm for Discrete Geodesics

Xiang Ying

Shi-Qing Xin

Ying He*

Nanyang Technological University

Abstract

In many graphics applications, the computation of exact geodesic
distance is very important. However, the high computational cost
of the existing geodesic algorithms means that they are not practi-
cal for large-scale models or time-critical applications. To tackle
this challenge, we propose the parallel Chen-Han (or PCH) algo-
rithm, which extends the classic Chen-Han (CH) discrete geodesic
algorithm to the parallel setting. The original CH algorithm and
its variant both lack a parallel solution because the windows (a
key data structure that carries the shortest distance in the wave-
front propagation) are maintained in a strict order or a tightly cou-
pled manner, which means that only one window is processed at
a time. We propose dividing the CH’s sequential algorithm into
four phases, window selection, window propagation, data organi-
zation, and events processing so that there is no data dependence
or conflicts in each phase and the operations within each phase can
be carried out in parallel. The proposed PCH algorithm is able
to propagate a large number of windows simultaneously and inde-
pendently. We also adopt a simple yet effective strategy to control
the total number of windows. We implement the PCH algorithm
on modern GPUs (such as Nvidia GTX 580) and analyze the per-
formance in detail. The performance improvement (compared to
the sequential algorithms) is highly consistent with GPU double-
precision performance (GFLOPS). Extensive experiments on real-
world models demonstrate an order of magnitude improvement in
execution time compared to the state-of-the-art.

Keywords: Discrete geodesic, parallel computation, window
propagation, GPU

1 Introduction

Computing geodesics on triangle meshes, as a fundamental prob-
lem in geometric modeling, has been widely studied since the mid-
1980s. Over the years, several algorithms have been proposed
to compute the “single-source-all-destination” geodesic distance,
such as, the MMP algorithm [Mitchell et al. 1987], the CH algo-
rithm [[Chen and Han 1990] and the improved CH (or ICH) algo-
rithm [Xin and Wang 2009], the fast marching method [Kimmel
and Sethian 1998]] and the approximate MMP algorithm [Surazh-
sky et al. 2005]]. While the state-of-the-art approaches [[Surazhsky
et al. 2005] [Xin and Wang 2009] work quite well for models of
moderate size, their high computational cost means that they are
not practical for large-scale models or time-critical applications.

In the past decade, there has been an increasing trend of perform-
ing the traditionally-CPU-handled computation on a graphics pro-
cessing unit (GPU), which uses large numbers of graphics chips
to parallelize the computation. However, developing parallel al-
gorithms for discrete geodesics is technically challenging due to
the lack of parallel structure; specifically, the geodesic distance is
propagated from the source to all destinations in a sequential or-
der. To date, the only parallel geodesic algorithm is that of Weber
et al. [2008], who developed a raster scan-based version of the fast
marching algorithm. Although Weber et al.’s method is highly ef-
ficient, it only computes the first-order approximation of geodesic
and requires parameterization of the surface into a regular domain,

*Email: {ying0008, sqxin, yhe } @ntu.edu.sg

which is usually difficult for surfaces with complicated geometry
and/or topology. To our knowledge, there is no parallel algorithm
with which to compute an exact geodesic on triangle meshes.

Technical challenges The existing exact geodesic algorithms (for
example, the MMP, CH and ICH algorithms) do not support par-
allel computing due to the lack of parallel structure. These algo-
rithms partition each edge into a set of intervals, called windows,
which are maintained in a queue and then propagated across the
mesh faces. The propagation step pops a window from the queue
and then computes its children windows and performs clipping or
merging if necessary, which can add, modify, or remove existing
windows, and the queue is updated accordingly. These algorithms
generate the correct solution regardless of the order in which win-
dows are removed from the queue; however, selecting windows in
arbitrary order causes extremely slow performance.

The MMP algorithm and the ICH algorithm propagate the windows
as a wavefront by ordering them in a priority queue according to
their distance from the source. However, maintaining a priority
queue is a sequential and global process. It is highly non-trivial
to implement a parallel priority queue on GPUs. The performance
of the MMP and ICH algorithms drops significantly without the
priority queue.

The CH algorithm organizes the windows in a tree data structure
and propagates the windows in a breadth-first-search sweep from
the root to the leaves. Due to the data dependency between parents
and their children nodes, only windows on the same level can be
processed in parallel. To maintain this global tree data structure, a
CPU/GPU synchronization must be conducted for each layer. As
the depth of the tree equals the number of mesh faces, the O(n)
times synchronization is too expensive for large models, making
parallel implementation unpractical.

Our contributions This paper extends the classic CH algorithm for
parallel computing the exact geodesic distance on triangle meshes.
Our algorithm, which is called the Parallel Chen-Han (or PCH) al-
gorithm, follows the window propagation framework, as all the ex-
act algorithms do. Our idea is to divide CH’s sequential algorithm
into several phases in such a way that there is no data dependence
in each phase and the operations within each phase can be done in
parallel. Our parallel algorithm design considers three key factors:
(1) propagating the windows in as parallel a manner as possible;
(2) controlling the total number of windows effectively; and (3)
avoiding data conflicts during window propagation. The following
concepts made it possible for us to address these issues.

e First, in contrast to the existing approaches, which main-
tain the windows in a “tightly-coupled” structure (such as
the tree data structure in the CH algorithm) or a “strictly-
ordered” structure (such as the priority queue in MMP/ICH
algorithms), the windows in the proposed PCH algorithm are
loosely organized. Consequently, our method neither sorts the
windows nor traces the ancestor windows. Therefore, the win-
dows can be propagated in a fully parallel and independent
manner.

e Second, to reduce the total number of windows, the PCH algo-
rithm adopts a k-selection to determine the k£ windows near-
est to the source, where the parameter k is specified by the
user. These windows will then be processed independently by

multiple GPU threads. Together with a parallel k-selection
and the window filtering techniques in the CH and ICH al-
gorithms, our parallel algorithm is very effective for window
propagation, as well as for controlling the total number of
windows. Extensive evaluation of real-world models shows
that our algorithm only has slightly more windows than the
ICH algorithm, which uses a priority queue to maintain the
wavefront.

e Third, during window propagation, if a window brings the
vertex v a shorter distance than its current distance, our
method does not immediately update the geodesic distance
at v immediately, since other threads may also access v at
the same time and such an update would cause data conflicts.
Instead, our method triggers an update event. Once all the se-
lected windows have been propagated, our method processes
these events and updates the corresponding data. This updat-
ing can also be done in a parallel manner.

The proposed PCH algorithm is the first parallel technique for cal-
culating exact geodesic distance on triangle meshes. We have im-
plemented our algorithm on modern GPUs and obtained promising
results on a wide range of models. We have observed that the per-
formance improvement is highly consistent with the GPUs’ double-
precision performance (GFLOPS). For example, our method can
compute the exact geodesic distance field on the 1.8-million-face
Blade model (see Figure 1) in 11 seconds on an Nvidia GTX580
graphics card, which is an order of magnitude faster than the state
of the art [Xin and Wang 2009]. This indicates that our algorithm is
suitable for applications involving intensive geodesic distance com-
putations.

1.8M faces, 11s 1.4M faces, 15s

1.7M faces, 17s

Figure 1: Computing the exact geodesic distance on triangle
meshes by using the proposed PCH algorithm. Our implementa-
tion on Nvidia GTX 580 is one magnitude of order faster than [Xin
and Wang 2009].

2 Related Work

The discrete geodesic problem has been widely studied since mid-
dle 80s. There are many elegant algorithms to compute the single-
source-all-destination geodesic, geodesic path, geodesic loop and
all-pairs geodesic. Due to the limited space, we review only the

representative work of the single-source-all-destination geodesic,
which is our major target.

Exact geodesic algorithms Sharir and Schorr pioneered
the discrete geodesic algorithm with time complexity O(n® log n).
However, their algorithm applies only to convex polyhedral. Us-
ing a continuous Dijkstra sweep, Mitchell, Mount and Papadim-
itriou presented the first practical algorithm to compute
geodesic distances on general polyhedral surfaces with time com-
plexity O(n? logn). Liu et al. improved the robustness of
the MMP algorithm by presenting effective techniques to handle
the degenerate cases. Surazhsky et al. observed the worst
case running time of the MMP algorithm is rare, and in practice
the algorithm runs in sub-quadratic time. However, the MMP algo-
rithm is memory inefficient due to its quadratic memory complex-
ity O(n?), which diminishes its application to large-scale models.
Chen and Han improved the time complexity to O(n?) by
organizing the windows with a tree data structure. As only the
branch nodes are saved, the CH algorithm has linear space com-
plexity O(n). Although the time complexity of the CH algorithm
is better than that of the MMP algorithm, extensive experiments
show that the CH algorithm runs much slower than the MMP algo-
rithm, mainly because most of the windows in the CH algorithm are
useless, which do not contribute to the shortest distance. Xin and
Wang presented an effective window filtering technique to
reduce the windows significantly, and used a priority queue to or-
der the windows according to the minimal distance from the source.
They demonstrated that their improved CH algorithm (ICH) outper-
forms the MMP and CH algorithms in terms of both execution time
and memory cost. Schreiber and Sharir [Schreiber and Sharir 2006]]
presented an O(n log n)-time algorithm for convex polyhedral sur-
faces, which reaches the theoretical lower bound. However, the
optimal time bound for general polyhedral surfaces is still an open
problem. With the exact geodesic distance, Liu et al. Sys-
tematically investigated the analytic structure of iso-contours and
bisectors on triangle meshes, and proposed efficient algorithm for
computing geodesic Voronoi diagrams.

Approximation geodesic algorithms Sethian proposed the
O(nlogn) fast marching method for first-order approximation of
geodesics on regular grids. Kimmel and Sethian extended
the fast marching method to triangle meshes. Weber et al.
presented a raster scan-based version of the fast marching algo-
rithm for approximating the geodesic distance on geometry images.
Thanks to its parallel structure, their approach allows highly effi-
cient parallelization on modern GPUs. Polthier and Schmies
proposed the locally straightest geodesic, which differs from the
conventional locally shortest geodesic. Surazhsky et al.
presented the approximate MMP algorithm that has optimal time
complexity O(nlogn) and computes approximate geodesics with
bounded error.

3 Preliminary

Let M = (V, E, F) be a triangle mesh representing an orientable
2-manifold where V', E and F' are the vertex, edge and face sets,
respectively. For a vertex v € V, the total angle is the sum of inte-
rior angles formed between each pair of neighboring edges incident
at v. A vertex v is called spherical if its total angle is less than 27,
Euclidean if the total angle equals 27, and saddle if the total angle
is greater than 2. Mitchell et al. proved that there exists
a geodesic path from the source s, typically a mesh vertex, to any
other point on the surface. They also showed that a geodesic path
cannot pass through a spherical vertex except that it is an end point.

Theorem [Mitchell et al. 1987] The general form of a geodesic
path is a path that goes through an alternating sequence of vertices

C— < d Fud

1
\
Vi A B W Vs A R Vi
(a) (b)

Figure 2: (a) A window represents an interval [A, B] on an ori-
ented edge e, which is “visible” by the pseudo source I after un-
folding the corresponding face sequence. (b) The position of the
pseudo source on the unfolded plane can be determined by do and
ds.

and edges such that the unfolded image of the path along any edge
sequence is a straight line segment and the angle of the path passing
through a vertex is greater than or equal to 7.

If a geodesic path from the source s to destination ¢ passes through
one or more saddle vertices, we call the vertex, which is nearest to ¢,
a pseudo source. Clearly, a geodesic path must be a straight line in-
side a triangle. When crossing over an edge, the geodesic path must
also correspond to a straight line if the two adjacent faces are un-
folded into a common plane. The exact geodesic algorithms parti-
tion each mesh edge into a set of intervals, called windows [Surazh-
sky et al. 2005] [Xin and Wang 2009], each of which encodes the
geodesic paths passing through the same face sequence.

As shown in Figure[2] a window data structure associated to an edge
e is a 6-tuple (d, A, B, do, d1, €) where

e d is the distance from the pseudo source to the source s;
e A and B are the left and right endpoints of the interval;

e dp and d; are the distances from the edge endpoints to the
(pseudo) source.

An important step in the exact geodesic algorithms is to propagate
the windows across the adjacent triangle, which yields new win-
dows on the opposite edge(s). In general, a window at edge e can
have up to two children at the edges opposite to e. See Figure[3{a)-
(b). For a special case where the geodesic path passes through a
saddle vertex v, one or more windows are then created for the edges
in a fanned area. See Figure[3{c).

Chen and Han [1990] proposed using a tree data structure to keep
record of the parent-child relationship. The depth of the tree is equal
to the number of faces. To avoid exponential explosion in the tree,
Chen and Han adopted a simple “one angle one split” scheme: if
two windows occupy a vertex, at most one of them can have two
children. See Figure Eka). Xin and Wang [2009] further reduced the
number of windows by using a strict window filtering technique.
See Figure f[b). They also suggested using the priority queue to
organize the windows according to their distance back to the source.
Adopting the priority queue together with the two window filtering
techniques, the ICH algorithm outperforms both the MMP and CH
algorithms.

Mitchell et al. [1987]] proved that each edge may have O(|E|)
windows and therefore the total number of windows is O(|E|?),

v U1 Yo v g

(a) (b) (c)

Figure 3: Window propagation results in new windows. (a) A win-
dow creates one child on the opposite edge. (b) A window creates
two children on opposite edges. (c) For a saddle point v, the injec-
tion ray l is split into two directions (dashed grey lines), each is an
extended straight line of | after unfolding. Then the new windows
are generated on the opposite edges in the fanned area formed by
the two directions.

which is the theoretical upper bound. In practice, Surazhsky et
al. [2005] observed that for typical meshes an edge has an average

of O(4/|E|) windows. Thus, the key for developing an efficient
geodesic algorithm is to organize the windows effectively.

va(go)

Figure 4: Window filter. (a) The “one angle one split” filter in
the CH algorithm. Two windows w1 and w2 share the same edge
(vo, v1) and occupy the vertex va. However, the pseudo source I
can not provide a shorter distance to va. Thus, only window ws can
generate two children. (b) The filter used in the ICH algorithm. The
window w on edge (vo,v1) is generated by some window on edge
(v1,v2). Let g; be the current shortest distance for vertex v;, i =
0, 1, 2. The window w is useless, if one of the following inequalities
holds: d + ||IB|| > go + ||voB|| or d + || IA|| > g1 + ||vi A]| or
d+[[IB| > g2 + [lv2B]-

4 Computing Geodesics in Parallel

The proposed parallel Chen-Han algorithm is based on the shared
memory model so that all of the data (such as mesh data structure,
geodesic distance, etc.) are assessable to all processors. This sec-
tion presents our algorithm on modern GPUs, as these are readily
available to the graphics community.

4.1 Data Structure

Our algorithm maintains several global variables, as shown in Ta-
ble[l] Let M = (V, E, F) denote the input triangle mesh, where V,
F and F are the set of vertices, edges and faces. We use the half-
edge data structure to encode M ’s incidence information. Consid-
ering the limited GPU memory, we adopt a minimal half-edge data
structure. Each edge is decomposed into two half-edges with op-
posite orientations. Each half-edge stores the index of the starting
vertex, the index of the opposite half-edge and its length. Each ver-
tex references one outgoing half-edge.

struct half_edge {

[Data [Location | CPU access | GPU access |
half_edge GPU RAM - read only
data structure
angle _split[] CPU RAM (mapped read read only
geod_dist|] to GPU RAM) & write
memory pool GPU RAM - read & write

Table 1: Global variables.

int starting_vertex_id;
int opposite_half_ edge_id;
double length;

bi

half_edge hel];
half_edge outgoing_hel[];

// size 3|F|
// size |V]

Compared to the standard half-edge data structure, our struct
half_edge does not have the face that it boarders and the next half-
edge around the face. The complete incidence information is en-
coded into two arrays, he of dimension 3|F’|, which stores all half-
edges of M, and outgoing_he, of dimension |V'|, which stores one
of the half-edges emanating from each vertex. The three half-edges
of the 4-th triangle are stored at he[3i], he[3i + 1] and he[3i + 2],
respectively. Given the half-edge[j], the triangle that it boarders
is the |j/3]-th triangle and the next-half-edge around that face is
half-edge[3|7/3] + (5 + 1)%3], where |-] is the floor function.

To access the one-ring neighbors of the i-th vertex v;, one can sim-
ply start with the outgoing half-edge outgoing_he[i] and iteratively
switch to the opposite half-edge and find the next half-edge that
points to neighboring vertex. The half-edge data structure, he and
outgoing_he, are located in the GPU memory and accessible to the
GPU threads in the real-only manner. The PCH algorithm does not
require the vertex coordinates, instead, it needs only the metric (the
edge length).

double geod_dist|[];
window angle_split[];

// size |V|
// size 3|F|

The array geod_dist[0..|V'|-1] stores the distance value at each ver-
tex. The initial value for each non-source vertex is co. When the al-
gorithm terminates, the value geod_dist[i] gives the globally short-
est geodesic distance at the i-th vertex.

The array angle_split[0..3| F'|-1] contains the window that can pro-
vide the shortest distance to each angle. Such information is used
by the Chen-Han’s “one angle one split” window filter.

During the wavefront propagation, a large number of windows will
be created, processed, and then discarded. To allow efficient access
of the windows, our program creates a memory pool in the GPU
memory. The memory pool contains all the active windows, which
are stored continuously so that there are no memory gaps between
adjacent windows. This condition allows us to distribute the active
windows evenly to all GPU threads. The memory pool also pro-
vides each GPU thread with a buffer for the temporary storage of
the new windows. The global array buffer_address[0..T-1] stores
the beginning address and size of each buffer. Unlike the contin-
uous storage of the active windows, these thread buffers are not
physically continuous in the memory pool.

4.2 PCH Algorithm

Let S = {si}i~; be the set of source points specified by the user.
For each source point s;, our algorithm creates a window for every
edge facing s;, and then iteratively processes the windows.

[Current windows] Memory poal
e e el AR
[PendinTindcws] [K nearest windows]
M-

o e

New windows

T

o o e e

!
LTI

[Mew windows]

L S— ?._

(
| Pending Windows
L

Figure 5: During each iteration, our algorithm selects k windows
that are nearest to the source points and assigns these windows to'T’
GPU threads. Each window is taken by one GPU thread and then
propagates independently, which will result in one or more chil-
dren windows. After all the selected windows have been processed,
our algorithm collects the newly-generated windows and organize
all windows such that there are no memory gaps between adjacent
windows in the memory pool. The empty slots in the memory pool
are drawn in light gray.

Each iteration contains the following four steps: First, the algo-
rithm selects k windows that are nearest to the source points s;,
i=1,---,m. Second, the selected £ windows are processed by T’
threads in a completely independent manner. The window propaga-
tion results in new windows, which are stored in each thread’s own
buffer. If a window w can provide a shorter distance for a vertex
v, our algorithm does not immediately update the corresponding
entries of geod_dist or angle_split, as doing so would cause con-
flicts. Instead, the algorithm creates an update event, which will be
processed later. Third, the algorithm collects the new windows and
organizes them with the existing windows in the memory pool, so
that there are no memory gaps between the adjacent windows. Fi-
nally, the algorithm processes these update events and updates the
arrays geod_dist and angle_split for the corresponding vertices
and corner angles.

These four steps are repeated until all windows in the memory pool
have been processed. The data flow for each iteration is shown in
Figure [b] and the pseudo code is shown in Algorithm 1. Next, we
explain the algorithm in details.

Initialization (lines 1, 2) In the initialization stage, our algo-
rithm creates a memory pool, and two global arrays: the first ar-
ray geod-dist[|V|] contains the geodesic distance at each vertex,
where the initial value is O for the source points and oo for all other
vertices; the second array angle_split[3| F|] contains the windows
for each angle, which is used by the “one angle one split” window
filter. For every edge opposite to the source point s;, a window is
created and put in the memory pool.

Step 1. Parallel selection (line 3) Rather than sorting all windows,
our algorithm selects & windows, which are closest to the source
points. The k-selection is a fundamental problem in computer sci-
ence, which has been widely studied. The state-of-the art parallel
algorithm is due to Monroe et al. [2011]]. Their algorithm proceeds

Algorithm 1: Parallel Chen-Han Algorithm

Algorithm 2: PropagatingWindow(w)

Input: A triangle mesh M = (V, E, F'), the set of source points
S = {si|si € V,1 < i < m}, the selection parameter k, and
the number of GPU threads 7'
Output: The geodesic distance for each vertex
1: initialize the global variables
2: parallel create a window for every edge opposite to the source
points
: Repeat
parallel select k nearest windows
parallel propagate the selected windows
organize the newly-generated windows and update events
parallel process the update events
: Until all windows are processed

i A

via an iterative probabilistic guess-and-check process on pivots for
a three-way partition. When the guess is correct, the problem is
reduced to selection on a much smaller set. They proved that their
probabilistic algorithm always gives a correct result and always ter-
minates. We adopt Monroe et al.’s parallel algorithm in our GPU
implementation. We also develop an approximate k-selection to im-
prove the speed. We choose k& > T to fully utilize the pipeline of
the GPU cores. The details of optimal parameter selection and the
approximated version of k-selection will be presented in Sec.

Step 2. Parallel window propagation (line 4) All of the selected
windows are evenly distributed to the 7" GPU threads. Some win-
dows may generate one or more children, while others may not.
Statistics on a wide range of real-world models show that each win-
dow generates an average maximum of 3.8 childrerﬂ Therefore,
we allocate each GPU thread a 4[%]-sized buffer in the memory
pool to contain the new windows. This fixed-size buffer works well
in practice and we do not observe any buffer overflow in our ex-
periments. In case of an overflow in the buffer of the ¢-th thread,
for example, the thread ¢ creates a new buffer of doubled size,
copies the contents to the new buffer, and then updates the entry
buffer_address|i]. These buffers are not required to be consecutive
in the memory, since they store the new windows temporarily.

Note that during the window propagation, if a new window
can provide the vertex v a shorter distance than its current one
geod_dist[v], we should update geod_dist[v] accordingly. How-
ever, this would cause data conflicts, as other GPU threads may also
access v at the same time. To avoid conflicts, we create a distance
update event for v. Similarly, if a window w occupies the vertex
v and provides v a shorter distance than that of the window in the
corresponding entry of angle_split, we also create an angle update
event. All these events will be processed later. The pseudo code for
window propagation is shown in function PropagatingWindow().

Step 3. Data organization (line 5) In the above window propaga-
tion step, each GPU thread T generates a certain number of win-
dows, which are stored in 7;’s own buffer. The purpose of this step
is to organize these newly-generated windows in the memory pool
such that there are no memory gaps between adjacent windows,
which is a critical condition for the parallel selection and parallel
updating.

Since each GPU thread counts the number of new windows inde-
pendently, we use O(T') space to store these numbers, where 7 is

'In general, each window has at most two children during the propa-
gation. See Figure [3] However, a saddle vertex can produce more than 2
windows. The worse case is that one window is created for each edge oppo-
site to the saddle vertex. Our statistics show that when processing L(> 8)
windows in parallel, the number of new windows is less than 3.8 L.

// assume w = (d, A, B, do, d1, €) is on the oriented
/l edge e = (vo,v1) and vs is the opposite vertex of e;
if A =wvo && do + d < geod_dist[vo] then
// w provides a short distance to vo;
create a distance update event (vo, do + d);
if vo is a saddle vertex then
| create windows in the fanned area (see Fig. c));

if B=v1 && d1 + d < geod_dist[v1] then
/I w provides a short distance to v ;
create a distance update event (v1, d1 + d);
if vy is a saddle vertex then
| create windows in the fanned area (see Fig. EKC));

if w occupies v2 then
/I apply the one-angle-one-split filter;
if w provides va a shorter distance than angle_split|[vs]
then
create an angle update event (e, w);
| create w’s two children (see Fig. b));

else
// w has only one child on edge (vo,v2) or (vi,v2);
| create w’s child (see Fig.[da));
if || Tvz|| + d < geod_dist[vz] then
create a distance update event (v, || Iv2|| + d);

if v is a saddle vertex then
| create windows in the fanned area (see Fig.[3]c));

else
// w has only one child on edge (vo,v2) or (vi,v2);
| create w’s child (see Fig.[3[a));
apply the ICH filter for the new windows and store the useful
windows in the buffer (see Fig. [@{b));

the number of GPU threads. We then compute the accumulated
number of new windows for each thread. Finally, each GPU thread
copies its new windows from its buffer to the memory pool. The
pseudo code for data organization is shown in function Organiz-
ingData(). We use the same procedure to organize the generated
distance and angle update events.

Algorithm 3: ReorganizeData({dataCount}, {data}, addr)

// data;: the buffer storing the output of the i-th thread;
/! dataCount;: the size of data;;
/I addr: the address of the first free slot in the memory pool;
cumg < 0
fori =1t0T —1do
| cum; < cum;—1 + dataCount;_1

parallel for each thread i do
| copy data; to addr 4+ cumy;

Step 4. Processing the update events (line 6) The window prop-
agating step produces distance and angle update events, which are
organized in step 3 such that they are stored in the memory pool in
a seamless manner. This allows us to parallel process these events.

An event is a 2-tuple (key, value). For the distance update event,
key is the vertex id, and value is the geodesic distance. For the
angle update event, key is id of the oriented edge, which determines
the opposite angle/vertex, say v, and value is a window occupies
v.

To avoid the conflicts in events updating, we must sort all events by
their keys in increasing or decreasing order. If two keys tie, we com-
pare the two events by their values. For example, for two distance
events (v;,d’) and (v;,d") occurring at the same vertex v;, the one
with smaller distance wins. To break a tie between two windows,
we compare the shortest distance from the source to the correspond-
ing interval. This tie-breaking enables us to process only the first
event at a vertex or angle, since all the subsequent events occurring
at the same vertex or angle do not carry useful information. We then
assign the ordered events evenly to 7" GPU threads, which update
the corresponding vertices or angles. The pseudo code is shown in
function ProcessingEvents().

Algorithm 4: ProcessingEvents({event}, { Data})

/I event;: a 2-tuple {key, value};
/I {Data}: the to-be-updated array geod-dist or angle_split;
thrust sort {event} by key and use value for tie breaking;
S < size of {event};
parallel for each thread i do

forj=ix[2]t0(i+1)x[£]—1do

if event;.key # event;_1.key then
L | Datalevent;.key] < event;.value;

4.3 Correctness

The correctness of our parallel algorithm is based on two obser-
vations. First, during the window propagation, we adopt Chen and
Han’s “one angle one split” and Xin and Wang’s filtering techniques
to reduce the total number of windows. It is shown [[Chen and Han
1990][Xin and Wang 2009] that both techniques remove only the
useless windows, which do not carry the shortest distance. Sec-
ond, Mitchell et al. [1987]] proved that there exists a geodesic path
from the source s to any other vertex. Our window propagation step
keeps the useful windows, which carry the shortest distance. Thus,
for a vertex v, we can always find a sequence of windows w1, wa,
-+, wy, to encode the geodesic path, where w; is the last window
on the edge e opposite to v such that w; occupies the vertex v. So
w; finally assigns the geodesic distance at v. Regardless of the or-
der in which the windows are processed, such window sequence
always exists. Thus, the resulting distance field is correct.

5 Implementation & Experimental Results

5.1 Implementation Details

We implemented our parallel geodesic algorithm on a 64-bit PC
with an Intel Xeon 2.66GHz CPU and 12GB memory. The graphics
card is an Nvidia GTX 580 with 512 cores and 1.5GB memory. Our
program is compiled using CUDA 4.2.

The input mesh is maintained by using the half-edge data structure.
Only one copy of the mesh structure is transferred to GPU mem-
ory. More specifically, we need only an array of half-edges, each
of which has the length information. We do not need to store the
vertex in the GPU memory; the face connectivity is also encoded in
the half-edge structure.

Our algorithm requires a parallel selection to choose the k nearest
windows and a parallel sorting to order all update events by their
keys and values. Selection and sorting can be fully implemented
in parallel. We adopted the probabilistic parallel selection [Monroe
et al. 2011[] and CUDA’s thrust sorting [Bell and Hoberock 2011] in
our implementation, but, surprisingly, observed poor performance.

As shown in Figure [f] (a), the GPU selection and sorting are very
slow for the 144K-face Bunny, taking more than 80% of the exe-
cution time. This slowness is mainly because the GPU selection
algorithms require a large amount of CPU/GPU synchronization.
As a result, these algorithms obtain good performance only for a
very large number of elements (for example, more than 1 million).
To improve the performance, we adopted the following simple yet
effective strategies in our implementation.

First, we implement an approximate k-selection on the GPU. As-
sume that there are N (> k) windows, w1, - - - , wn, in the memory
pool and that there are 7" threads available. We allocate the follow-
ing windows w;, wit+T, WitoT, - -, to the i-th thread, which en-
ables each thread to obtain approximately [N/7"] windows, among
which the [k/T'] nearest windows are selected. Thus, 7" threads
select £ windows in total. This approximate selection uses only a
single GPU launch and can significantly reduce the execution time.

Second, since GPU sorting is not efficient, we copy the update
events from GPU to CPU. To minimize the CPU/GPU data transfer,
we use cudaHostAlloc() to allocate the memory for global variables
geod_dist[] and angle_split[]. The memory is mapped to CUDA
address space using cudaHostAllocMapped, so both CPU and GPU
can access it. All writing operations on such global variables are
performed by CPU and the GPU procedure PropagatingWindow()
accesses these data in a read-only manner. Although this CPU op-
eration makes the event updating step sequential, we find it is much
more efficient than the GPU sorting and updating and improves the
overall performance significantly. See Figure[6{b).

Remark 1. Our PCH algorithm requires the windows to be stored
continuously in the physical memory. This condition plays an im-
portant role in the parallel selection step, where the ¢-th thread
checksthe ¢, i+ 71, ¢+ 27, - - -, positions in the memory pool, and
then selects the window nearest to the source. The continuously
stored windows guarantee that each thread requires approximately
the same number of windows, which means that the workload is
balanced. Also, because different threads may generate different
numbers of windows during the window propagation step, the pro-
cedure ReorganizeData() is required in order to reorganize the new
windows and ensure the condition for the next-round parallel selec-
tion.

Remark 2. Although our implementation adopts the approximation
k-selection to choose the windows, the correctness of the computed
geodesic distance is guaranteed, since our algorithm does not delete
any useful windows and the correctness of the geodesic distance
is independent of the order in which the windows are processed.
Therefore, the resulting geodesic distance is exact.

Remark 3. One of the key factors in designing a parallel algorithm
is to effectively avoid data conflicts. Because our PCH algorithm
propagates the windows and then updates the arrays geod_dist and
angle_split in parallel, it is critical to maintain the data consistency
in these arrays. Mutex and atomic operations are two commonly
used techniques to access the shared memory in parallel comput-
ing. However, these techniques are not suitable to the proposed
PCH algorithm, which requires frequent access of the global ar-
rays geod_dist and angle_split: each call of PropagatingWindow
reads geod_dist three times and angle_dist once. It may also write
geod_dist up to three times and angle_dist once.

The large size of both arrays makes it expensive to set a mutex lock
for each element. More importantly, by using mutex lock, each
read/write operation locks the corresponding resources to avoid the
access by other threads, which will significantly compromise the
performance. On the other hand, using the atomic operations in
PCH is not effective either, since doing so when reading/writing the
two global arrays will slow down the procedure PropagatingWin-

EWindow Selection WWindow Propagation
12 0 16

1 14
10 I 1
14 g

=
[P

T | socon s
& o
= m

-
s
windows |millioes]

s
=

a
7

&]

& Ix 1)

(a) GPU exact selection & GPU event update

g I
5 |
is S—
£ 8 ’
£, :
4
2 .
2
o o]
18 4 L H a0 & 56 64

(b) GPU approximate selection & CPU event update

Data Organization MEvent Update - # Windows

»

1B
il
. §
I I I 1:-5
HTRNEER "
: 3
¢ 3

4

2

o

16] 4 56 54

LH
& |x1024]

(c) Exact geodesic distance

Figure 6: The window selection and event sorting on the GPU take 3 to 6 seconds on the 144K -face Bunny model. We implement an
approximate selection on the GPU and process the events on the CPU, which can significantly reduce the overall execution time. The vertical
axes are the execution time in seconds and the total number of windows. The horizontal axes are the selection parameter k. Although the
window selection is approximate, the computed geodesic distance is exact.

dow - the most expensive of the four steps - thereby compromising
the performance of the entire program.

Therefore, our implementation does not contain the mutex or
atomic operations. Instead, we adopt the delayed update strategy
to avoid data conflicts. Note that the procedure PropagatingWin-
dow does not update geod_dist and angle_dist. Thanks to the read-
only operations in PropagatingWindow, all the selected k£ windows
can be propagated without any data dependence. Then, in the Pro-
cessingEvents procedure, we sort the distance and angle updating
events to detect and delete the conflicted data, after which the ar-
rays can be updated in parallel. This delayed update strategy works
quite well in practice, which is justified by the promising experi-
mental results.

5.2 Parameter Setting

The performance of our PCH algorithm depends on the mesh com-
plexity n = |V|, the GPU’s computational power (such as the num-
ber of cores and frequency), and the selection parameter k, which
specifies the number of nearest windows to be processed by GPU
threads in parallel.

The value of k is closely related to the rofal number of windows
produced in the wavefront sweep. Both the MMP algorithm and
the ICH algorithm use a priority queue to determine which window
is nearest to the source. Xin and Wang showed that the prior-
ity queue is very effective in terms of controlling the total number
of windows. If k = 1, the k-selection becomes a priority queue,
leading to a small number of windows. For such a case, however,
our program becomes a sequential program, as only one window is
processed at a time. In order to take full advantage of the parallel
nature of our algorithm, a large k is usually preferred, so that mul-
tiple windows can be processed independently. On the other hand,
for a sufficiently large k, the total number of windows increases dra-
matically. For example, if k is larger than the total number of win-
dows, then all windows are selected and processed simultaneously,
which means that the from-near-to-far wavefront is not maintained
at all. As observed in both the MMP and CH algorithms, such cases
will result in an extremely large number of windows and, therefore,
very poor performance. Consequently, there is a trade-off between
controlling the total number of windows and utilizing the GPU’s
parallel structure. We tested various k& on a large number of mod-
els and observed that the total number of windows is almost linear
to the parameter k; the smaller the k, the fewer windows, and vice
versa. Figurem shows that the performance curves for Lucy, Bunny
and Golf Ball, and the other models have very similar patterns. We
found the optimal range for & is [16 x 2'°,24 x 2'°], which leads

to the least execution time.

We also investigated the relationship between the optimal range of
k and the mesh resolution. As Figure|[8]shows, all the performance
curves have the similar pattern, which reveals the trade-off between
utilizing the GPU’s parallel structure and obtaining the optimal per-
formance on the Bunny model of various resolutions. We found the
optimal range of k is insensitive to the mesh resolution.

5.3 Performance

We tested our program on a wide range of 3D models, from the
small Bunny (144K faces) to the large-scale Dragon (4 million
faces). We observed that the execution time of the MMP/ICH al-
gorithms and ours depends on the location of the source point, and
that different source points may result in up to 10% — 15% time
difference because the total number of windows is dependent of the
source point. To obtain a consistent evaluation, we repeated our test
100 times, where a random source point is generated each time. Ta-
ble|§| shows the mesh complexity and the average execution time,
memory cost, the number of windows, etc. The consistent experi-
mental results show that our method obtains an order-of-magnitude
improvement for models with more than 500K faces. Our algo-
rithm is also flexible in terms of computing the “multiple-source-
all-destination” geodesic distance. Table [2] shows the performance
of our algorithm and the ICH algorithm on the Golf Ball and Pega-
sus.

source Golf ball Pegasus

points ||Tron | Tpor |Tica/Teou || Tica | Tpeu |Trer/Trou

1 23.71 2.51 9.45 32.61 3.33 9.79

2 22.02 2.30 9.59 33.10 3.04 10.80

4 19.36 2.01 9.65 29.94 2.83 10.56

8 14.61 1.46 10.04 34.55 3.16 10.94

16 11.17 1.02 10.90 31.67 3.40 9.33

32 8.49 0.69 12.32 26.02 2.83 9.21

64 5.99 0.50 11.97 24.33 2.34 10.41

128 4.60 0.37 12.53 20.08 1.99 10.10

256 3.62 0.29 12.65 15.39 1.57 9.81

512 2.85 0.23 12.46 12.68 1.25 10.17

1,024 2.36 0.20 12.06 9.95 0.98 10.15

Table 2: Statistics of “multiple-source-all-destination” distance.
Execution time was measured in seconds.

Figure Ekb) shows that GPU processing takes more than 75% of the

MMP ICH PCH Speedup

Time Peak Time Peak Total Time Peak Total Peak Ticu/Tpcu
Models # faces (s) mem. (MB) (s) mem. (MB) #windows (s) |mem.(MB)| #windows |# windows || Worst | Average
Bunny 144,036 8.19 250.49 6.24 7.04 6,910,123 0.95 15.10 8,912,758 47,729 || 5.28 | 6.57
Golf ball 245,760 26.86 676.32 26.10 12.61 27,770,244 || 2.49 22.50 28,541,081 | 59,218 || 9.78 | 10.48
Lion 305, 608 17.18 476.36 12.60 14.43 13,986,984 || 1.51 26.80 16,315,130 | 54,916 || 7.45| 8.34
Sphere 327,680 86.94 | 1,894.02 || 70.39 21.55 81,022,375 || 8.11 37.08 82,412,805 | 201,499 || 8.51 | 8.68
Armadillo 345,944 13.25 412.36 10.34 15.91 11,169,475 || 1.40 28.51 13,159,141 | 35,599 || 6.04 | 7.39
Lucy 525,814 22.27 627.03 18.20 22.17 21,590,268 || 1.71 42.93 22,996,519 | 57,691 || 7.43 | 10.64
Pegasus 667,474 49.80 | 1,224.35 || 33.69 27.47 28,471,897 || 3.09 53.15 31,632,899 | 56,460 || 8.55 | 10.90
Buddha 1,439,116||179.67| 3,698.71 || 160.70 67.42 113,292,750 15.20| 114.77 |122,402,062| 139,761 || 7.95 | 10.57
Ramesses 1,652,528 || 76.43 | 1,734.26 || 52.09 57.90 47,374,020 || 5.79 124.72 53,404,855 | 55,083 || 7.25 | 8.99
Gargoyle 1,726,398 (1 211.25| 4,096.23 || 179.90 71.30 119,568,420/ 17.50| 139.77 |137,773,318| 208,614 || 8.47 | 10.28
Blade 1,765,388 |/205.91| 3,725.16 || 122.80 72.12 90, 044,841 |[11.00| 137.67 97,250,102 | 134,014 || 8.82 | 11.16
Isidore horse | 2,208,936 || 80.85 | 2,026.17 || 67.77 69.04 56,403,922 || 6.31 165.04 68,469,783 | 54,294 || 8.95 | 10.74
Dragon 4,000,000 || 534.53 | 8,311.39 || 421.20| 174.37 |265,327,798|/41.32| 308.40 |325,421,513| 240,455 || 8.63 | 10.19

Table 3: Model complexity and performance. Tests were repeated 100 times with random source point and the mean values are reported in

this table. The last column shows both the worst and average speedup.

total execution time, while the corresponding ratio for large-scale
models may exceed 90%. As all windows are processed completely
in GPU, the performance of our program depends heavily on the
GPU’s parallel computing capacity. We verified this by testing our
program on three Nvidia graphics card: GTX 285, GTX 470 and
GTX 580. As Figure [I0] shows, we observed that the performance
improvement T7c 1 /Tpcw is highly consistent with GPU double-
precision performance (GFLOPS). Accordingly, we believe that our
algorithm can achieve better performance on the next-generation
graphics card.

In addition to performance, we also measured the peak memoryﬂ
of the MMP, ICH, and PCH algorithms. In order to avoid tiny
windows, we adopt the same tolerance 10~° for all the three al-
gorithms. As Table [3] shows, the memory cost of our algorithm
is much smaller than the MMP algorithm, which has O(n?) space
complexity. Our memory cost is 1.5 — 2 times higher than the ICH
algorithm due to the greater number of windows generated, as well
as the fact that some extra space is required to store the distance and
angle update events.

6 Comparison & Discussion

This section compares our method to the other exact geodesic al-
gorithms, including the MMP algorithm, the CH algorithm, and the
ICH algorithm. As mentioned before, all these algorithms do not
have parallel structure.

Comparison to the MMP algorithm The MMP algorithm takes a
continuous Dijkstra sweep and maintains the windows on the wave-
front using a priority queue. It is highly non-trivial to maintain the
priority queue in parallel. The MMP algorithm requires windows
clipping during the window propagation. The strong dependency
among the windows makes it difficult to process the windows in
parallel. The MMP algorithm has O(n?) space complexity, which
diminishes its application on the GPU because the GPU usually has
much less RAM than CPU. Unlike the MMP algorithm, our method
does not require the priority queue and window clipping operation.
Our algorithm also has linear memory complexity.

Comparison to the CH algorithm Instead of using a priority
queue, the CH algorithm organizes the windows in a tree structure

2The peak memory of PCH is the actual GPU memory taken by our
algorithm, rather than the size of the memory pool.

and propagates windows from the root to the leaves. Because only
the branch nodes are retained, the CH algorithm has linear mem-
ory complexity O(n). Chen and Han also proposed a “one angle
one split” scheme to avoid exponential explosion. Whenever a new
window w occupies the vertex v and provides v a shorter distance,
the original sub-tree at v is deleted. Due to the parent-child data
dependency, only windows on the same level can be processed in
parallel. As a result, a CPU/GPU synchronization must be con-
ducted for each layer. Note that the depth of the tree is equal to
the number of mesh faces. Such O(n) synchronization is very time
consuming, which means it is not practical to parallelize the CH
algorithm.

Our algorithm also adopts the “one angle one split” scheme to iden-
tify the useless windows, which do not carry the shortest distance.
However, our algorithm neither has the tree structure nor maintains
the parent/child relation. This allows the windows to be propagated
in a fully independent manner.

Comparison to the ICH algorithm The ICH algorithm is a variant
of the CH algorithm, which adopts an effective window filtering
technique to reduce the number of windows. Like the original CH
algorithm, the ICH algorithm maintains the parent-child relation
and the tree structure. Unlike the original algorithm, however, the
window in our algorithm does not contain its parent information
and no windows are sorted. This feature allows us to propagate a
large number of windows in a completely independent manner.

The ICH algorithm also uses the priority queue to maintain the
wavefront, which is able to minimize the total number of win-
dows. Instead of the priority queue, our algorithm uses a simple
k-selection to determine the windows, which are close to the source
points. This strategy is very effective in terms of controlling the to-
tal number of windows. Our experimental results show that the total
number of windows in our parallel algorithm is only slightly higher
than that of the ICH algorithm.

The PCH algorithm on the CPU We also implement our PCH
algorithm on the CPU in such a way that all the parallel procedures
are replaced by their sequential counterparts. We adopt quickselec-
tion for the sequential k-selection, which selects the top k windows
without ordering them, and then compare its performance to the
ICH algorithm on the same hardware setting. We observe that the
CPU PCH algorithm is 5-30% slower than the ICH algorithm for
all test models.

=

Time (seconds)

Time [seconds)

Figure 7: Testing the selection parameter k on an Nvidia GTX 580
with 512 cores. The total number of windows (in red) is approxi-
mately linear proportional to the selection parameter k (the hori-
zontal axis). Choosing a small k does not utilize the GPU'’s parallel
structure at all. On the other hand, choosing a very large k would
produce too many useless windows, resulting in slow performance
(see the blue timing curves). We found the optimal range for k is

-]
H
5.8
E
43
s §
=
2
2%
=
1
o
16 32 48 64 80 96 112 128
k[x1024)
3
[—time = - =3
B = 7
o — G
P 22
../.." . -~ 'g
= s
— — — v
~
P z
T L3
= 5
=*
T 0
16 32 48 64 80 a6 112 128
k (x1024)
5
of windows /_.--""
- 4
-
e .2
—— 3E
T -}
.-"/ - - £
p— =}
. 2 3
= 3
5
=

16 32 a8 64 20 86 112 128
k [x1024)

[16 x 2'°,24 x 2'°], which leads to the least execution time.

Figure 8: Given the Bunny model of various resolutions, we found

the optimal range of k is insensitive to the mesh resolution.

Figure 9: More results.

12

GTX285

GTX470

GTX580

150

100

GPU Double-Precision Performance|Gflops)

Figure 10: The performance improvement Trcw /TpcH is consis-
tent with the GPU double precision performance (GFLOPS).

The priority queue is known to play a critical role in the ICH al-
gorithm, since it guarantees that the to-be-processed window is the
closest to the source among all active windows. Strictly ordering
the windows by their distances to the source is a very effective way
to control the total number of windows. The CPU PCH algorithm
selects the top £ windows and then propagate them one by one.
Because the selected & windows are not ordered, the children win-
dows of a far-but-early-processed window may be over-ridden by a
close-but-late-processed window. This means that the CPU PCH al-
gorithm must process process 10-40% more windows than the ICH
algorithm, resulting in slower performance.

The GPU PCH algorithm processes the same number of windows
as the CPU PCH algorithm. However, the overhead cost of process-
ing the extra windows is very small compared to the performance
speedup by the high throughput of the GPU. Therefore, the GPU
PCH algorithm significantly outperforms its CPU counterpart and
the ICH algorithm.

Window deletion & complexity analysis The CH algorithm or-
ganizes the windows in a tree data structure. Chen and Han [[1990]
suggested that once a window becomes useless, the useless window
and its sub-tree should be deleted (or tagged) immediately, which
can guarantee the total number of windows is O(n?), leading to an
O(n?) time complexity. Our PCH algorithm does not require the
tree data structure to maintain the parent-children relation among
windows. Also, it does not delete the useless windows until the
update process. These features significantly reduce the data depen-
dence, thereby providing great flexibility in the parallel algorithm
design. However, the price to of such flexibility is the lack of rigor-
ous complexity analysis.

Because time complexity is linearly proportional to the total num-
ber of windows, we empirically evaluated the time complexity by
counting the total number of windows. As Table 3] shows, we ob-
served that the total number of windows of the PCH algorithm is
only 5%-20% more than that of the ICH algorithm. This implies
that such a delay in windows deletion only has a very minor effect
on the time complexity. As Table [3]shows, our PCH algorithm can
achieve 8x-10x speedup for most of the models, which justifies the
good performance of our algorithm.

7 Conclusion & Future Work

It is highly desirable to develop a parallel algorithm to compute
exact geodesic on triangle meshes. However, the existing exact
geodesic algorithms have very strong data dependence and lack the
parallel solution. This paper presents the PCH algorithm, which ex-
tends the classic Chen-Han algorithm to parallel setting. Our idea
is to divide the sequential CH algorithm into four phases, namely
window selection, window propagation, data re-organization and
events processing, such that the operations in each phase have no
dependence or conflicts and can be done in parallel. In contrast
to the original CH algorithm, the proposed PCH algorithm neither
maintains the windows in a tightly coupled manner nor sorts the
windows according to their distance to the source. As a result, it can
process a large number of windows simultaneously and indepen-
dently. We also adopt a simple selection strategy which is effective
to control the total number of windows. We implemented our par-
allel geodesic algorithm on modern GPUs (e.g., Nvidia GTX 580)
and observed that the performance improvement (compared to the
conventional sequential algorithms) is highly consistent with GPU
double precision performance (GFLOPS), which justifies the par-
allel nature of our algorithm. Extensive experiments on real-world
models demonstrate an order of magnitude improvement in execu-
tion time compared to the state-of-the-art.

There are a few interesting future directions. First, we will study

effective windows filtering techniques to further reduce the total
number of windows, thus, improving the overall performance. Sec-
ond, our PCH algorithm naturally supports the multiple-source-all-
destination geodesic distance, thus, it has the potential to improve
the performance of the geodesic Voronoi diagram [Liu et al. 2011]].
Third, as the first parallel geodesic algorithm with good perfor-
mance, the PCH algorithm is highly desired in many time-critical
applications which require extensive computation of geodesics. We
will investigate such applications in the near future.

References

BELL, N., AND HOBEROCK, J. 2011. GPU Computing
Gems, jade ed. Morgan Kaufmann Publishers, ch. Thrust: a
productivity-oriented library for CUDA, 359-371.

CHEN, J., AND HAN, Y. 1990. Shortest paths on a polyhedron. In
Proceedings of Symposium on Computational Geometry, 360-
369.

KIMMEL, R., AND SETHIAN, J. A. 1998. Computing geodesic
paths on manifolds. In Proc. Natl. Acad. Sci., 8431-8435.

Liu, Y.-J., ZHOU, Q.-Y., AND Hu, S.-M. 2007. Handling degen-
erate cases in exact geodesic computation on triangle meshes.
The Visual Computer 23,9-11, 661-668.

Liu, Y.-J., CHEN, Z., AND TANG, K. 2011. Construction of
iso-contours, bisectors, and Voronoi diagrams on triangulated
surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 8, 1502—
1517.

MITCHELL, J. S. B., MOUNT, D. M., AND PAPADIMITRIOU,
C. H. 1987. The discrete geodesic problem. SIAM J. Comput.
16, 4, 647-668.

MONROE, L., WENDELBERGER, J., AND MICHALAK, S. 2011.
Randomized selection on the GPU. In Proceedings of Sympo-
sium on High Performance Graphics, 89-98.

POLTHIER, K., AND SCHMIES, M. 1998. Mathematical Visual-
ization, ch. Straightest Geodesics on Polyhedral Surfaces, 391.

SCHREIBER, Y., AND SHARIR, M. 2006. An optimal-time al-
gorithm for shortest paths on a convex polytope in three dimen-
sions. In Proceedings of Symposium on Computational Geome-
try, 30-39.

SETHIAN, J. 1996. A fast marching level set method for monoton-
ically advancing fronts. Proc. Nat. Acad. Sci 93, 4, 1591-1595.

SHARIR, M., AND SCHORR, A. 1986. On shortest paths in poly-
hedral spaces. SIAM J. Comput. 15, 1, 193-215.

SURAZHSKY, V., SURAZHSKY, T., KIRSANOV, D., GORTLER,
S. J., AND HoPPE, H. 2005. Fast exact and approximate
geodesics on meshes. ACM Trans. Graph. 24, 3, 553-560.

WEBER, O., DEVIR, Y. S., BRONSTEIN, A. M., BRONSTEIN,
M. M., AND KIMMEL, R. 2008. Parallel algorithms for approx-
imation of distance maps on parametric surfaces. ACM Trans.
Graph. 27, 4.

XIN, S.-Q., AND WANG, G.-J. 2009. Improving Chen and Han’s
algorithm on the discrete geodesic problem. ACM Trans. Graph.
28,4, 104:1-104:8.

	1 Introduction
	2 Related Work
	3 Preliminary
	4 Computing Geodesics in Parallel
	4.1 Data Structure
	4.2 PCH Algorithm
	4.3 Correctness

	5 Implementation & Experimental Results
	5.1 Implementation Details
	5.2 Parameter Setting
	5.3 Performance

	6 Comparison & Discussion
	7 Conclusion & Future Work

