
The Demand for Consistent Web-Based Workflow Editors

Sandra Gesing
∗

University of Notre Dame, Ctr
for Research Computing &

University of Edinburgh,
Informatics Forum

111 Information Technology
Center

Notre Dame, IN 46556, US
sandra.gesing@nd.edu

Malcolm Atkinson,
Iraklis Klampanos,

Michelle Galea
University of Edinburgh,

Informatics Forum
Edinburgh EH8 9AB, UK

{malcolm.atkinson,

iraklis.klampanos,

michelle.galea}@ed.ac.uk

Michael R. Berthold
Universität Konstanz

FB Informatik &
Informationswissenschaft

Box 712
78457 Konstanz, Germany

Michael.Berthold@uni-

konstanz.de

Roberto Barbera,
Diego Scardaci

Italian National Institute of
Nuclear Physics

95123 Catania, Italy
{roberto.barbera,

diego.scardaci}@ct.infn.it

Gabor Terstyanszky,
Tamas Kiss

University of Westminster
115 New Cavendish Street,

London W1W 6UW, UK
terstyg@wmin.ac.uk,

t.kiss@westminster.ac.uk

Peter Kacsuk
Laboratory of Parallel and

Distributed Systems
MTA SZTAKI

Kende Street 13-17, 1111
Budapest, Hungary
kacsuk@sztaki.hu

ABSTRACT

This paper identifies the high value to researchers in many
disciplines of having web-based graphical editors for sci-
entific workflows and draws attention to two technological
transitions: good quality editors can now run in a browser
and workflow enactment systems are emerging that man-
age multiple workflow languages and support multi-lingual
workflows. We contend that this provides a unique oppor-
tunity to introduce multi-lingual graphical workflow editors
which in turn would yield substantial benefits: workflow
users would find it easier to share and combine methods
encoded in multiple workflow languages, the common frame-
work would stimulate conceptual convergence and increased
workflow component sharing, and the many workflow com-
munities could share a substantial part of the effort of de-
livering good quality graphical workflow editors in browsers.
The paper examines whether such a common framework is
feasible and presents an initial design for a web-based ed-
itor, tested with a preliminary prototype. It is not a fait
accompli but rather an urgent rallying cry to explore collab-
oratively a generic web-based framework before investing in
many divergent individual implementations.

Keywords

H.5.3 Group and Organization Interfaces—Information Sys-
tems, web-based workflow editors, workflow composition,

∗Corresponding author

workflow languages and concepts, workflow interoperability

1. INTRODUCTION
In this paper we argue the case for a community effort

to define, develop and support a web-based generic workflow
editing system for scientific and data-intensive applications.
This is timely because of emerging technological trends:

1. recent advances in W3C standards mean that it is now
feasible to provide easily accessible good quality graph-
ical editors in browsers [10]; and

2. systems that are capable of handling and enacting work-
flows written in multiple workflow languages are now
available [50].

The investment will be worthwhile because of three main
reasons. Firstly, there is a growing use of workflows, par-
ticularly in research, as a means of making methods repeat-
able, enabling their incremental improvement, and allow-
ing methods to be shared, re-used, repurposed or validated.
Secondly, there is also a proliferation of workflow languages,
as a result of contemporaneous research, targeting various
communities and different enactment models. Lastly, there
is not yet a standard underpinning scientific workflow lan-
guages in sight, which could be processed via a wide range
of different workflow systems. The development of such a
standard and its integration in workflow systems would ne-
cessitate a vast amount of work on each supporting work-
flow system. Consequently, researchers will benefit from
adapting and combining methods that are encoded in dif-
ferent workflow languages; we call the combined workflow
a ‘multi-lingual meta workflow’. Projects, such as SHIWA
and ER-Flow, deliver multi-lingual meta-workflow enact-
ment [50] (currently >10 workflow systems with submission
to many Distributed Computing Infrastructures (DCIs)).
The authors represent the ER-Flow, KNIME, and Dispel
workflow systems and the Catania Science Gateway Frame-
work and have user communities that require web-based ed-
itors.

112

http://nbn-resolving.de/urn:nbn:de:bsz:352-264865


Many of today’s workflow systems use editors implemented
as applications that have to be installed on users’ worksta-
tions. This inhibits uptake as potential users may be re-
luctant or unable to install and manage such software, and
rarely do it for more than one workflow language. Con-
versely, there is rapid uptake of facilities made available
via browsers, where the explicit installation of software and
many security issues are avoided. Developing good quality
editors that run in the full gamut of popular browsers on a
range of devices is a major undertaking. The following bene-
fits will be obtained by developing a generic system, capable
of handling and authoring a range of workflow languages.

1. Users will be better able to transfer skills between
workflow languages, and to edit multi-lingual meta
workflows within the one editor.

2. The common framework will encourage convergence of
concepts, leading to greater ability to share workflows,
components and libraries and methods.

3. Development costs of versatile and effective web-based
editors will be amortised across workflow communities
increasing the sustainable quality of editing systems.

A critical mass of implementation and adoption is necessary
to achieve these benefits. That depends on a framework
that accommodates a sufficient spectrum of workflow lan-
guages and has sufficient commonality that the consistency
and amortisation materialises. We believe that by drawing
on previous work we can initiate such a framework. The
matter is urgent as we know that many workflow language
developers are beginning work on web-based editors specific
to their language. Once those are well developed the op-
portunity for amortising development will be lost. Once
they are in common use it will be harder to introduce an
alternative as users will have become accustomed to their
particularities. This is therefore an urgent rallying cry for
collaboration across research communities to drive an open-
source project that will rapidly achieve that critical mass.

The framework adopts the model-view-controller (MVC)
pattern for interactive systems. Here the model captures
the properties of each workflow language, each community’s
mechanisms for sharing, such as access to registries of ser-
vices and data, and the details of each workflow instance.
The properties of a language will be specified once per lan-
guage by a specialist in that workflow language, and the
sharing mechanisms will be shaped and pre-populated at
that stage. The view provides a manipulable visualisation
of the model, e.g., of a particular workflow instance that
is being created, edited or submitted. The controller con-
tains parameters that govern the transformations between
the model and the view. In part, it is set by workflow lan-
guage experts as they install their language in the frame-
work, so that the familiar look-and-feel encourages users to
adopt the web-based system. In part, it is set by user pref-
erences, e.g., determining which aspects of a workflow are
visible, how nesting, scale and complexity are managed, as
well as conventional control of sharing, colour, authorship,
etc.

The web-based generic editor will support a number of
capabilities for typical users, including import and export of
workflows; copying, creation, editing, saving and discard of
mono-lingual and multi-lingual workflows; management of a
workflow’s lifecycle; and interaction with registries for shar-
ing and use of predefined libraries of components. The scope

of the generic workflow editor should be carefully limited to
achieve the 80 : 20 trade-off, 80% of benefits for 20% of the
effort and complexity. For example:

1. quirky details in existing editors cannot be replicated;
2. the editor will not ‘understand’ a workflow’s semantics

– only selected composition constraints; and
3. hence, translation between workflow languages will not

be attempted.

There is an additional caveat—the interfaces with enact-
ment services and security still require analysis. However,
a minimal submit-run-collect-results model will need to be
supported immediately and more sophisticated incremental
monitored enactments will be needed for debugging and dy-
namic control.

Section 2 illustrates the driving technological trends and
the current breadth of workflow use and implementation.
Section 3 introduces the framework which is capable of sup-
porting the required generic functionality. We concentrate
mainly on the model but show how the view and controller
can be derived from this in a straightforward way. Sec-
tion 4 presents work-in-progress on GeWWE, a prototype of
the proposed generic GUI framework, and illustrates how
this generic framework can be used for several workflow lan-
guages. We conclude with a summary of contributions and
our vision as to how the workflow community can convert
this idea into a widely used generic workflow editing sys-
tem. The appendices and a web-page, bit.ly/WBWFE, pro-
vide readers with more detail including the full schema and
invite discussion of the way forward.

2. BACKGROUND
This section introduces the terminology used in the paper,

describes a workflow lifecycle, from inception to execution,
and highlights our focus—that of workflow definition, and
the tools used for that purpose. It also touches on the in-
creasing requirement for interoperability between workflows
and workflow systems, and the pivotal role that registries of
workflows and workflow components play in this.

2.1 Workflow concepts and lifecycle
A scientific workflow is a set of interrelated computational

and data-handling tasks designed to achieve a specific goal.
It is often used to automate processes which are frequently
executed, or to formalise and standardise processes. A work-
flow may be used to define and run computational experi-
ments or to conduct recurrent processes on observational,
experimental and simulation data. Scripting languages and
graphical notation may be used to represent the tasks in a
workflow, and the dependencies between them—this is dis-
cussed in more detail in Section 2.2.

A Workflow Management System (WfMS) is a software
system that facilitates the management of workflows from
their initial definition to their enactment. A WfMS enables
the exploration and analysis of scientific data by enabling the
quick (re-)design of experiments defined as workflows; and,
by providing easy selection and integration in a workflow of
the required resources – data, algorithms and computation.

The major components of a WfMS correspond to the dif-
ferent phases of a workflow lifecycle depicted in Figure 1.
Different WfMSs implement the four phases of a workflow
lifecycle listed below with varying degrees of sophistication.

Workflow composition – the specification of the tasks and

113





2.3 Workflow interoperability
The challenge of an ever growing diversity of workflow

languages has long been recognised, see for example [16,
22]. A range of models motivate fundamental differences,
e.g., differentiating between master-worker models where the
workflow execution engine is the focus and controller – P-
GRADE/ gUse [20] for example, versus peer-to-peer mod-
els which achieve orchestration as an emergent behaviour
– Dispel for example. Other diversity emerges from imple-
mentation strategies, e.g., those that assume a common file
infrastructure from those that do not. There is also signif-
icant variation in the level of abstraction, the support for
the four phases of Figure 1 and linguistic style. The great-
est cause of diversity is that many of the workflow languages
started in a particular discipline and with communities that
already adopted particular data services and programming
languages. Those systems often develop a large investment
in primitive components for their community and a sig-
nificant collection of workflows supporting current working
practices. Analysis of many existing workflow systems, in
science and business, has yielded 40 control-flow patterns,
40 data patterns and 43 resource patterns [53]. A generic
editor cannot directly cover such diversity and we there-
fore introduce a category level in the conceptual model that
permits each workflow language to specify the patterns it
supports— see Section 3.

There will remain strong forces for multiple workflow lan-
guages for the foreseeable future. The infeasibility of moving
communities onto new technologies because of their intellec-
tual investment collides with the high-cost of rebuilding the
libraries of components and workflows. This comes to the
fore when experienced people move communities or when
researchers combine methods from different communities.

To address this confrontation Elmroth et al. identified com-
mon structures in workflow systems that could underpin
integration or translation across workflow languages [18].
They identified three dimensions of variation: workflow-
execution environment, model of computation, and workflow
language, and three levels at which these should be consid-
ered: activity, sub-workflow and workflow, thereby parti-
tioning the overall challenge into manageable parts. The
SHIWA project investigated two strategies [35,40] for work-
flow integration:

1. develop a catalogue of the functional elements of work-
flow languages and translate via this between languages;

2. provide a common management and enactment envi-
ronment for a set of workflow languages and provide
for enactments that use more than one.

The latter strategy led to an effective system that today
supports more than ten workflow languages with the help
of the ER-Flow project [50]. A workflow engine for mul-
tiple languages could sit behind a multi-lingual graphical
workflow editor and the ER-Flow project is involved via the
authors.

2.4 Workflow sharing and registries
Workflow-based systems/infrastructures require reposito-

ries or registries from which to retrieve components of inter-
est for execution, modification or study. Depending on the
requirements around which different systems are designed,
such repositories may contain workflow building components,
workflows, information about resources, required data, etc.

In most cases, a workflow system, and from the user’s per-
spective its editor, is expected to interact with multiple
repositories or registries, seamlessly.

There are a number of workflow systems for e-Science,
each with their design decisions and target audiences. Here,
we briefly outline a few examples of their repositories. A
web-based platform for importing and sharing workflows as
well as derivative or related digital research objects is myEx-
periment [47]. As a sharing platform, myExperiment also re-
lies on external repositories, most notably BioCatalogue [12]
and recently others, through the myGrid collaboration [24].
Even though not dictated by design, myExperiment is best
integrated with the Taverna workflow system [31], which in
turn integrates processing elements or processes as web ser-
vices. BioCatalogue is a catalogue of bioinformatics-related
web services, which can be used when composing Taverna
(or other, e.g., KNIME) workflows and can be viewed and
interacted with from workflow editors.

Two repositories representing different approaches to work-
flow management that cover different stages of a workflow’s
lifecycle are SHIWA [50] and Wf4Ever [9]. SHIWA ad-
dresses the challenge of workflow interoperability, support-
ing workflows from different environments. Users make use
of SHIWA services, including a central repository of work-
flows created by different WfMSs, to compose and execute
meta-workflows through the SHIWA portal. Wf4Ever on
the other hand focuses on workflow preservation and digital-
experiment reproducibility. Wf4Ever exposes APIs allowing
access to the digital object store, a generic store includ-
ing workflows and related services, such as recommendations
and workflow transformation.

SCI-BUS [35] offers a repository with a user-interface-
oriented approach. The repository presents gUSE workflows
wrapped in portlets deployable in portal frameworks based
on the JSR168/JSR286 [1,45] standard. Internally, the life-
cycle of a workflow is managed via a portlet. Its users are
supported with user interfaces tailored to its application.

The repositories and systems discussed above take a higher-
level view of workflow composition, as registrable compo-
nents are generally assumed to be readily enactable in their
own right, within their respective contexts. In contrast to
that, there are workflow repositories which expose individ-
ual workflow components which, while they cannot be run
on their own, they are used for composing enactable work-
flows at a finer granularity. An example of such a reg-
istry is the VERCE Dispel registry [38], which is designed
to contain Dispel language [4] components, predominantly
data-stream processing elements, as well as complete Dispel
workflows currently targeted at seismology. Kepler has a
large repertoire of available components, which it calls ‘ac-
tors’, covering both file-based tasks and stream-based pro-
cessing [7]. Another system which follows a similar, fine-
grained approach is KNIME, an open-source, enterprise-
oriented workflow-based workbench addressing data analysis
and transformation. It offers over 2,000 re-usable workflows
and workflow fragments in its enterprise-extension reposi-
tory, as well as allowing sharing via myExperiment and the
use of web services, such as those in BioCatalogue.

The multitude of approaches, briefly introduced above,
demonstrates that the design of generic tools should take
into account the different requirements addressed regarding
component granularity and computing resources as well as
the “non-functional” attribution for use and modification,

115







3. composition and amendment of potentially multi-lingual
meta workflows;

4. management of each workflow’s lifecycle, from abstract
to concrete forms, enactment and discard;

5. interaction with repositories used for sharing; and
6. use of packages of predefined components and sub-

workflows.

The prototype GeWWE (Generic Web-based Workflow Ed-
itor) in its current form is focused on the lifecycle of the
editing process of workflows (see Fig. 4). Here the stages
of workflows’ lifecycles are more fine-grained than just ab-
stract and concrete. An abstract workflow closely matches
its visual representation. The successive stages of a concrete
workflow are logical flow, instantiated workflow and ready-
to-process workflow. In some workflow languages some of
these stages may be elided by automated completion.

Figure 4: Lifecycle of editing a workflow.

The visual representation – GeWWE is a graphical editor,
which allows users to select graphical nodes, the processes,
and graphical connections with diverse forms and character-
istics. The logical flow in the workflow is rudimentary and
defined via the graph.

The logical flow – processes are associated with each other
via connections between connectors. Connectors represent
the input and output of a process and each connector is
bound to one process instance whereas a process may be
bound to several connectors.

The instantiated workflow – is one whose processes, con-
nectors and connections are populated with full definitions.

The ready-to-process workflow – if an instantiated work-
flow includes complete descriptions of all of the exact pro-
cesses, inputs, outputs and external resources to be used,
then the workflow is in a ready-to-process state.

The result of a fully performed lifecycle is a ready-to-
process workflow, which can be exported to a submission
interface of a suitable workflow engine. The submission and
the monitoring of a workflow is part of the submission inter-
face. The latter is not yet part of GeWWE but envisaged
for further development. The lifecycle of editing a workflow
can also be started by importing into GeWWE a workflow
at any stage of completion including ready-to-run, which
can then be changed by a user or adapted for different in-

puts, outputs or external resources. GeWWE preserves the
source of a workflow in the chosen workflow language as if
the workflow has been edited via the original WfMS. Users
are able to insert and edit for each node the source of the
process, related connectors and connections.

4. STATUS AND EXAMPLES
A first prototype of the workflow editor has been devel-

oped as proof-of-concept. GeWWE is web-based and ap-
plies the VAADIN [27] framework deployed in a servlet con-
tainer, e.g., Apache Tomcat [51]. VAADIN allows us to
build server-side and client-side web applications in com-
bination very efficiently. It supports Google Web Toolkit
(GWT) [29] libraries and translates Java to JavaScript on
the client side. To build workflow graphs with drag-and-
drop mechanisms, we chose the powerful JavaScript library
jsPlumb [34]. GeWWE has been developed as a combina-
tion of a server-side and client-side web software with the
data used in the workflow editor being stored in a MySQL
database [30]. The data is managed on the server-side using
Hibernate [33]. Thus, the choice of the underlying database
is flexible and another relational database could be used.

4.1 Example workflow language installations
In its current state, GeWWE rudimentarily supports three

workflow languages: Dispel, gUSE [35] in XML format, and
Galaxy [25] workflows in JSON format. We use simple ex-
amples and only discuss the editor issues; as the normal
power and tutorial guides for the languages still apply. As
the first step to demonstrate the model’s generic applicabil-
ity, these three workflow languages, which we already work
with, were chosen for several reasons:

1. they are used in diverse communities,
2. the registry interface can be tested with Dispel, and
3. they exhibit significantly different enactment models,

levels of abstraction and syntactic forms.
• Dispel and Galaxy support users with a kind of

toolbox. Dispel offers pre-configured processing
elements in three distinct categories and Galaxy
offers pre-configured tools.

• gUSE and Galaxy support DAG-based workflows
and interpret each process as a single job, whereas
Dispel activates the whole graph and runs the
tasks concurrently with data streaming between
the processes.

• gUSE and Galaxy support the import and ex-
port of workflow instances, whereas Dispel de-
notes workflows in textual form designed for both
human and machine comprehension.

The following figures illustrate examples for each workflow
system chosen to be sufficiently simple for exposition here.

4.2 Status
Figure 8 illustrates the basic layout of GeWWE. Users

can switch between the main groups of functionality via the
menubar. The options include opening, saving and deleting
workflows. On the left side, workflow languages, registries,
process classes and resources can be selected. Icons denoting
different process classes can be chosen and inserted via drag-
and-drop onto the right side and connected with each other
by drawing arcs between their displayed connectors.

In the near future, the visualisation of connectors and the

118





(a) The menubar with drop-down menus for the main
modes of editor operation.

(b) On the left a menu setting preferences for a Dispel workflow and
for selected pallets of classes of components and on the right space
showing a simple workflow.

Figure 8: The basic layout of GeWWE.

preferences. We partition the model into a mapping appro-
priate for a group of users that identifies resources and com-
ponents they may use and a larger logical domain covering
the workflows themselves. The latter is structured into four
layers for power and comprehensibility. They progressively
introduce a workflow language, the categories of component,
connection, connector and text each language discriminates,
introduces the specific classes of each of these that users
may actually copy into a workflow they are editing, and
then a final layer of instances which contain all the specific
information about those copies. It is also structured into
four logical columns: processes, which contain algorithms,
text which names, denotes parameters or representations in
other languages, connections that carry data from one pro-
cess to another and also represent dependencies and timing
constraints, and connectors that characterise the interfaces
with processes. We argue that this is logically simple and
sufficient for the required diversity. By arranging for the
view and controller perspectives to be homomorphic with
parts of the model perspective, minimal additional complex-
ity is introduced.

We set out to test the hypothesis that this model was
sufficient using GeWWE, a prototype implementation of the
envisaged common framework. As yet we are not able to
demonstrate the accommodation of workflow language styles
and of interaction with enactment services. Otherwise, the
model has stood up well to initial tests. We anticipate that
the generic editor will be used in the context of many science
gateways, for example the VERCE (seismology), EFFORT
(rock physics and volcanology) [21], SCI-BUS and CSGF
science gateways. As indicated above, there is a challenge
to fit in these contexts, as they become more complex and
as they adopt different security practices.

We have deliberately exposed these ideas to criticism and
comment as early as possible. This means we have less evi-
dence, but it also means we are not trying to sell a particular
solution to the form and implementation of web-based work-
flow editors. Instead, we put forward the model as an open
invitation for others to discuss:

1. whether the proposed common framework would be

worthwhile, and
2. whether the model is appropriate for a large spectrum

of workflows and their operational environments?

We hope there will be an emerging consensus on the former
question, and that a community discussion will then drive
refinement and further testing of the model and of the frame-
work’s implicit architecture. The following steps should be
undertaken.

1. Complete and accurate mappings of several workflow
languages into the model.

2. Development of a reasonably complete repertoire of
the envisaged editing functions.

3. Analysis of submission and monitoring interfaces.
4. Consideration of modelling language-specific composi-

tion rules to give early error warnings.
5. Investigation of how best to support flexibly security

without imposing it on all users.
6. Review of the model and framework in the light of the

above five steps.

We believe that this will be best achieved by an open inter-
national collaboration developing an open-source software
product, and would be delighted to hear from any reader
interested in contributing – see bit.ly/WBWFE.

Acknowledgment

The initial research was funded by the NeSC Research Plat-
form grant EP/F057695/1 from the UK EPSRC. Thanks
also go to Dr Paul Martin, Data-Intensive Research Group,
University of Edinburgh, Dr Dave Snelling, Fujitsu Labs Eu-
rope and Dr Liew Chee Sun, University of Malaya for their
insightful and valuable comments.

6. REFERENCES
[1] A. Abdelnur and S. Hepper. JSR 168: Portlet

Specification.
http://www.jcp.org/en/jsr/detail?id=168, 2003.

[2] B. Ács, X. Llorà, L. Auvil, B. Capitanu, D. Tcheng,
M. Haberman, L. Dong, T. Wentling, and M. Welge.

120



A general approach to data-intensive computing using
the Meandre component-based framework. In
Proceedings of the 1st International Workshop on
Workflow Approaches to New Data-centric Science,
WANDS ’10, pages 8:1–8:12, New York, NY, USA,
2010. ACM.

[3] V. Ardizzone, R. Barbera, A. Calanducci,
M. Fargetta, E. Ingrà, I. Porro, G. L. Rocca,
S. Monforte, R. Ricceri, R. Rotondo, D. Scardaci, and
A. Schenone. The decide science gateway. J. Grid
Comput., 10(4):689–707, 2012.

[4] M. Atkinson. Data-Intensive Thinking with DISPEL.
In THE DATA BONANZA: Improving Knowledge
Discovery for Science, Engineering and Business,
chapter 4, pages 61–122. John Wiley & Sons Inc.,
2013.

[5] M. P. Atkinson, C. S. Liew, M. Galea, P. Martin,
A. Krause, A. Mouat, O. Corcho, and D. Snelling.
Data-intensive architecture for scientific knowledge
discovery. Distributed and Parallel Databases,
30:307–324, 2012.

[6] R. Barbera and et al. Catania Science Gateway
Framework.
http://www.catania-science-gateways.it, 2013.

[7] D. Barseghian, I. Altintas, M. B. Jones, D. Crawl,
N. Potter, J. Gallagher, P. Cornillon, M. Schildhauer,
E. T. Borer, E. W. Seabloom, and P. R. Hosseini.
Workflows and extensions to the Kepler scientific
workflow system to support environmental sensor data
access and analysis. Ecological Informatics, 5:42–50,
2010.

[8] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, and
H. T. Vo. VisTrails: Enabling interactive
multiple-view visualizations. In In IEEE Visualization
2005, pages 135–142, 2005.

[9] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao,
P. Missier, D. Newman, R. Palma, S. Bechhofer,
E. Garćıa, G.-P. J. Manuel, G. Klyne, K. Page,
M. Roos, J. E. Ruiz, S. Soiland-Reyes,
L. Verdes-Montenegro, D. D. Roure, and C. Goble.
Workflow-centric research objects: First class citizens
in scholarly discourse. In Proceedings of the Second
International Conference on the Future of Scholarly
Communication and Scientific Publishing, 2012.

[10] R. Berjon, S. Faulkner, T. Leithead, E. Navarra,
E. O’Connor, S. Pfieffer, and Hickson, I. (Eds). HTML
5.1: A vocabulary and associated APIs for HTML and
XHTML. Technical report, W3C, 2013.

[11] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kötter, T. Meinl, P. Ohl, K. Thiel, and
B. Wiswedel. KNIME - the konstanz information
miner. SIGKDD Explorations, 11(1), 2009.

[12] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent,
J. Orlowski, M. Roos, K. Wolstencroft, S. Aleksejevs,
R. Stevens, S. Pettifer, R. Lopez, and C. Goble.
BioCatalogue: a universal catalogue of web services
for the life sciences. Nucleic Acids Research, 2010.

[13] CCIN2P3. JSAGA. http://grid.in2p3.fr/jsaga,
2013.

[14] Condor Team. Condor DAGMan manual. Technical
report, University of Wisconsin-Madison, 2008.

[15] O. Corcho. Sharing and Reuse in Knowledge

Discovery. In THE DATA BONANZA: Improving
Knowledge Discovery for Science, Engineering and
Business, chapter 8, pages 181–192. John Wiley &
Sons Inc., 2013.

[16] V. Curcin and M. Ghanem. Scientific workflow
systems - can one size fit all? In Cairo International
Biomedical Engineering Conference, CIBEC ’08, pages
1–9, December 2008.

[17] E. Deelman, D. Gannon, M. Shields, and I. Taylor.
Workflows and e-Science: An overview of workflow
system features and capabilities. Future Generation
Computer Systems, 25(5):528–540, May 2009.

[18] E. Elmroth, F. Hernández, and J. Tordsson. Three
fundamental dimensions of scientific workflow
interoperability: Model of computation, language, and
execution environment. Future Generation Computer
Systems, 26(2):245–256, February 2010.

[19] T. Fahringer, R. Prodan, R. Duan, J. Hofer,
F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and
M. Wieczorek. ASKALON: A Development and Grid
Computing Environment for Scientific Workflows. In
I. J. Taylor, E. Deelman, D. B. Gannon, and
M. Shields, editors, Workflows for e-Science, pages
450–471. Springer London, 2007.

[20] Z. Farkas and P. Kacsuk. P-GRADE portal: A generic
workflow system to support user communities. Future
Generation Computer Systems, 27(5):454–465, 2011.

[21] R. Filgueira et al. EFFORT (Exploring Failure
Forecasting in Real Time).
http://effort.is.ed.ac.uk:8080/, 2013.

[22] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer,
G. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau,
and J. Myers. Examining the challenges of scientific
workflows. Computer, 40(12):24–32, December 2007.

[23] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and
J. Kim. Wings for Pegasus: Creating large-scale
scientific applications using semantic representations
of computational workflows. In Proceedings of the
Nineteenth Conference on Innovative Applications of
Artificial Intelligence, IAAI ’07, pages 1767–1774.
AAAI Press, July 2007.

[24] C. Goble et al. myGrid. http://www.mygrid.org.uk,
2013.

[25] J. Goecks, A. Nekrutenko, J. Taylor, and G. Team.
Galaxy: A comprehensive approach for supporting
accessible, reproducible, and transparent
computational research in the life sciences. Genome
Biology, 11(8):R86, 2010.

[26] T. Goodale, S. Jha, H. Kaiser, T. Kielmann,
P. Kleijer, A. Merzky, J. Shalf, and C. Smith. A
Simple API for Grid Applications (SAGA). Technical
Report GFD.90, Open Grid Forum, 2011.

[27] M. Grönroos. Book of Vaadin. Oy IT Mill Ltd, 2010.

[28] Z. Guan, F. Hernandez, P. Bangalore, J. Gray,
A. Skjellum, V. Velusamy, and Y. Liu. Grid-Flow: a
Grid-enabled scientific workflow system with a
Petri-net-based interface. Concurrency and
Computation: Practice and Experience, 18:1115–1140,
2006.

[29] M. Hahn. The Google Web Toolkit: a deeper look and
Extensions for GWT.

121



http://www.dark-bit.de/wp-content/uploads/

2009/07/paper_marcel_hahn_final.pdf, 2008.

[30] S. Hinz et al. MySQL. http://dev.mysql.com, 2013.

[31] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble,
M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
Acids Research, 34:729–732, 2006.

[32] I. T. U. (ITU). ITU-T Recommendation X.509.
http://www.itu.int/rec/T-REC-X.509/en, 1988.

[33] JBoss Community. Hibernate.
http://www.hibernate.org/, 2013.

[34] JBoss Community. jsPlumb.
http://jsplumbtoolkit.com/doc/home, 2013.

[35] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann,

Á. Balaskó, K. Karóczkai, and I. Marton.
WS-PGRADE/gUSE Generic DCI Gateway
Framework for a Large Variety of User Communities.
J. Grid Comput., 10(4):601–630, 2012.

[36] D. Kelsey. EGI-InSPIRE VO Portal Policy. https://
documents.egi.eu/public/ShowDocument?docid=80,
2010.

[37] J. Kim, E. Deelman, Y. Gil, G. Mehta, and
V. Ratnakar. Provenance trails in the Wings/Pegasus
system. Concurrency and Computation: Practice and
Experience, 20(5):587–597, April 2008.

[38] I. Klampanos. Supporting Collaborative Scientific
Workflow Development: The Dispel Information
Registry. http://research.nesc.ac.uk/files/
Registry-OSDC13.pdf, 2013.

[39] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire,
and C. T. Silva. VisComplete: automating suggestions
for visualization pipelines. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1691–1698, 2008.

[40] D. Krefting, T. Glatard, V. Korkhov, J. Montagnat,
and S. Olabarriaga. Enabling Grid Interoperability at
Workflow Level. In Proceedings of Grid Workflow
Workshop 2011, volume 826. CEUR Workshop
Proceedings, 2012.

[41] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin,
M. E. Pierce, C. Mattmann, R. Singh, T. Gunarathne,
E. Chinthaka, R. Gardler, A. Slominski, A. Douma,
S. Perera, and S. Weerawarana. Apache airavata: a
framework for distributed applications and
computational workflows. In SC-GCE, pages 21–28,
2011.

[42] P. Martin and G. Yaikhom. Definition of the DISPEL
Language. In THE DATA BONANZA: Improving
Knowledge Discovery for Science, Engineering and
Business, Parallel and Distributed Computing, series
editor Albert Y. Zomaya, chapter 10, pages 203–236.
John Wiley & Sons Inc., 2013.

[43] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and
K. Klingenstein. Federated Security: The Shibboleth
Approach. EDUCAUSE Quarterly, 27(4):12–17, 2004.

[44] S. Newhouse et al. European Grid Infrastructure.
http://www.egi.eu, 2013.

[45] M. Nicklous and S. Hepper. JSR 286: Portlet
Specification 2.0.
http://www.jcp.org/en/jsr/detail?id=286, 2008.

[46] OASIS. Security Assertion Mark-up Language.

http://saml.xml.org, 2013.

[47] D. D. Roure, C. Goble, and R. Stevens. The design
and realisation of the myExperiment Virtual Research
Environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561–567, 2009.

[48] M. Rynge. Pegasus 4.2 on the Open Science Grid.
http://pegasus.isi.edu/presentations/2013/

Pegasus-4.2-OSG-2013.pdf.

[49] I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual
Grid Workflow in Triana. Journal of Grid Computing,
3:153–169, 2005. 10.1007/s10723-005-9007-3.

[50] G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, Ákos
Balaskó, and Z. Farkas. Enabling Scientific Workflow
Sharing through Coarse-Grained Interoperability.
Journal of Future Generation Computing Systems,
submitted 2013 (under review).

[51] The Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/tomcat-6.0-doc/.

[52] The Apache Software Foundation. Apache OODT.
http://oodt.apache.org, 2013.

[53] W. van der Aalst and A. ter Hofstede. Workflow
Patterns. http://www.workflowpatterns.com, 2013.

APPENDIX

A. MODELS TO REPRESENT WORKFLOWS
The table gives brief definitions of the logical entities in

the model perspective (as shown in Figure 2) to which all
workflows are mapped, hence each has prefix m. The related
view and controller logical models are straightforwardly re-
lated as described in Section 3 and bit.ly/WBWFE.

Table: Roles of entities in the model perspective (Figure 2)
Entity Describes

Registries and external resources
mRegistry External descriptions of computa-

tional resources, data sources, li-
braries, workflow components, tools,
and web services.

mExternalResource Available compute and data resources.
mPackage Collections of components.

Workflows and languages
Workflow Languages

mWorkflowLanguage Each workflow language installed.

Category
mTextCategory Major roles for text, e.g., plain, script,

structured, XML.
mConnectionCategory How data are passed, e.g., as param-

eters, files, streams, and control flow,
e.g., split, join pair, or condition.

mConnectorCategory Types of input and output to a process.
mProcessCategory Categories of process, e.g., application,

inline function, web service or stream
processor.

Class
mTextClass A role for text, e.g., class name, in-

stance identifier, input parameters, de-
scription, annotation.

mConnectionClass A specific pattern of data transport
and flow control, e.g., deliver output
file to destinations and start them.

mConnectorClass A specific form of connection termina-
tion on a process boundary, e.g., pa-
rameter input or data-stream output.

mProcessClass Behaviour and algorithm that this pro-
cess applies, e.g., DBQuery, Merge.

122




	Text1: Ersch. in: Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science : SC13 International Conference for High Performance Computing, Networking, Storage and Analysis ; Denver, CO, USA — November 17 - 21, 2013 / Johan Montagnat ... (eds.). - New York : AMC, 2013. - S. 112-123. - ISBN - 978-1-4503-2502-8http://dx.doi.org/10.1145/2534248.2534260
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-264865


