Ersch.in: Proceeding®f the 8th Workshopon Workflowsin Supportof Large-ScaleScience SC13
InternationalConferencdor High PerformanceComputing Networking,Storageand Analysis;
Denver,CO,USA—Novembed7 - 21,2013/ JohanMontagnat... (eds.).- NewYork: AMC,2013.

The Demand for Consistent Web-Based Workflow Editors

*
Sandra Gesing
University of Notre Dame, Ctr
for Research Computing &
University of Edinburgh,
Informatics Forum
111 Information Technology
Center
Notre Dame, IN 46556, US

sandra.gesing@nd.edu

Roberto Barbera,
Diego Scardaci
Italian National Institute of
Nuclear Physics
95123 Catania, Italy

- S.112-123- ISBN- 978-1-4503-2502-8

Malcolm Atkinson,
Iraklis Klampanos,
Michelle Galea
University of Edinburgh,
Informatics Forum
Edinburgh EH8 9AB, UK
{malcolm.atkinson,
iraklis.klampanos,
michelle.galea}@ed.ac.uk

Gabor Terstyanszky,
Tamas Kiss
University of Westminster
115 New Cavendish Street,
London W1W 6UW, UK

http://dx.doi.org/10.1145/2534248.2534260

Michael R. Berthold
Universitat Konstanz
FB Informatik &
Informationswissenschaft
Box 712
78457 Konstanz, Germany
Michael.Berthold@uni-
konstanz.de

Peter Kacsuk
Laboratory of Parallel and
Distributed Systems
MTA SZTAKI
Kende Street 13-17, 1111

{roberto.barbera,
diego.scardaci}@ct.infn.it

ABSTRACT

This paper identifies the high value to researchers in many
disciplines of having web-based graphical editors for sci-
entific workflows and draws attention to two technological
transitions: good quality editors can now run in a browser
and workflow enactment systems are emerging that man-
age multiple workflow languages and support multi-lingual
workflows. We contend that this provides a unique oppor-
tunity to introduce multi-lingual graphical workflow editors
which in turn would yield substantial benefits: workflow
users would find it easier to share and combine methods
encoded in multiple workflow languages, the common frame-
work would stimulate conceptual convergence and increased
workflow component sharing, and the many workflow com-
munities could share a substantial part of the effort of de-
livering good quality graphical workflow editors in browsers.
The paper examines whether such a common framework is
feasible and presents an initial design for a web-based ed-
itor, tested with a preliminary prototype. It is not a fait
accompli but rather an urgent rallying cry to explore collab-
oratively a generic web-based framework before investing in
many divergent individual implementations.

Keywords

H.5.3 Group and Organization Interfaces—Information Sys-
tems, web-based workflow editors, workflow composition,

*Corresponding author

terstyg@wmin.ac.uk,
t.kissOwestminster.ac.uk

112

Budapest, Hungary

kacsuk@sztaki.hu

workflow languages and concepts, workflow interoperability

1. INTRODUCTION

In this paper we argue the case for a community effort
to define, develop and support a web-based generic workflow
editing system for scientific and data-intensive applications.
This is timely because of emerging technological trends:

1. recent advances in W3C standards mean that it is now
feasible to provide easily accessible good quality graph-
ical editors in browsers [10]; and

2. systems that are capable of handling and enacting work-
flows written in multiple workflow languages are now
available [50].

The investment will be worthwhile because of three main
reasons. Firstly, there is a growing use of workflows, par-
ticularly in research, as a means of making methods repeat-
able, enabling their incremental improvement, and allow-
ing methods to be shared, re-used, repurposed or validated.
Secondly, there is also a proliferation of workflow languages,
as a result of contemporaneous research, targeting various
communities and different enactment models. Lastly, there
is not yet a standard underpinning scientific workflow lan-
guages in sight, which could be processed via a wide range
of different workflow systems. The development of such a
standard and its integration in workflow systems would ne-
cessitate a vast amount of work on each supporting work-
flow system. Consequently, researchers will benefit from
adapting and combining methods that are encoded in dif-
ferent workflow languages; we call the combined workflow
a ‘multi-lingual meta workflow’. Projects, such as SHIWA
and ER-Flow, deliver multi-lingual meta-workflow enact-
ment [50] (currently >10 workflow systems with submission
to many Distributed Computing Infrastructures (DCls)).
The authors represent the ER-Flow, KNIME, and Dispel
workflow systems and the Catania Science Gateway Frame-
work and have user communities that require web-based ed-
itors.

Konstanze©nline-Publikations-Syste(KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-26486%

http://nbn-resolving.de/urn:nbn:de:bsz:352-264865

Many of today’s workflow systems use editors implemented
as applications that have to be installed on users’ worksta-
tions. This inhibits uptake as potential users may be re-
luctant or unable to install and manage such software, and
rarely do it for more than one workflow language. Con-
versely, there is rapid uptake of facilities made available
via browsers, where the explicit installation of software and
many security issues are avoided. Developing good quality
editors that run in the full gamut of popular browsers on a
range of devices is a major undertaking. The following bene-
fits will be obtained by developing a generic system, capable
of handling and authoring a range of workflow languages.

1. Users will be better able to transfer skills between
workflow languages, and to edit multi-lingual meta
workflows within the one editor.

2. The common framework will encourage convergence of
concepts, leading to greater ability to share workflows,
components and libraries and methods.

3. Development costs of versatile and effective web-based
editors will be amortised across workflow communities
increasing the sustainable quality of editing systems.

A critical mass of implementation and adoption is necessary
to achieve these benefits. That depends on a framework
that accommodates a sufficient spectrum of workflow lan-
guages and has sufficient commonality that the consistency
and amortisation materialises. We believe that by drawing
on previous work we can initiate such a framework. The
matter is urgent as we know that many workflow language
developers are beginning work on web-based editors specific
to their language. Once those are well developed the op-
portunity for amortising development will be lost. Once
they are in common use it will be harder to introduce an
alternative as users will have become accustomed to their
particularities. This is therefore an urgent rallying cry for
collaboration across research communities to drive an open-
source project that will rapidly achieve that critical mass.

The framework adopts the model-view-controller (MVC)
pattern for interactive systems. Here the model captures
the properties of each workflow language, each community’s
mechanisms for sharing, such as access to registries of ser-
vices and data, and the details of each workflow instance.
The properties of a language will be specified once per lan-
guage by a specialist in that workflow language, and the
sharing mechanisms will be shaped and pre-populated at
that stage. The view provides a manipulable visualisation
of the model, e.g., of a particular workflow instance that
is being created, edited or submitted. The controller con-
tains parameters that govern the transformations between
the model and the view. In part, it is set by workflow lan-
guage experts as they install their language in the frame-
work, so that the familiar look-and-feel encourages users to
adopt the web-based system. In part, it is set by user pref-
erences, e.g., determining which aspects of a workflow are
visible, how nesting, scale and complexity are managed, as
well as conventional control of sharing, colour, authorship,
etc.

The web-based generic editor will support a number of
capabilities for typical users, including import and export of
workflows; copying, creation, editing, saving and discard of
mono-lingual and multi-lingual workflows; management of a
workflow’s lifecycle; and interaction with registries for shar-
ing and use of predefined libraries of components. The scope

113

of the generic workflow editor should be carefully limited to
achieve the 80 : 20 trade-off, 80% of benefits for 20% of the
effort and complexity. For example:
1. quirky details in existing editors cannot be replicated;
2. the editor will not ‘understand’ a workflow’s semantics
— only selected composition constraints; and
3. hence, translation between workflow languages will not
be attempted.

There is an additional caveat—the interfaces with enact-
ment services and security still require analysis. However,
a minimal submit-run-collect-results model will need to be
supported immediately and more sophisticated incremental
monitored enactments will be needed for debugging and dy-
namic control.

Section 2 illustrates the driving technological trends and
the current breadth of workflow use and implementation.
Section 3 introduces the framework which is capable of sup-
porting the required generic functionality. We concentrate
mainly on the model but show how the view and controller
can be derived from this in a straightforward way. Sec-
tion 4 presents work-in-progress on GeWWE, a prototype of
the proposed generic GUI framework, and illustrates how
this generic framework can be used for several workflow lan-
guages. We conclude with a summary of contributions and
our vision as to how the workflow community can convert
this idea into a widely used generic workflow editing sys-
tem. The appendices and a web-page, bit.1ly/WBWFE, pro-
vide readers with more detail including the full schema and
invite discussion of the way forward.

2. BACKGROUND

This section introduces the terminology used in the paper,
describes a workflow lifecycle, from inception to execution,
and highlights our focus—that of workflow definition, and
the tools used for that purpose. It also touches on the in-
creasing requirement for interoperability between workflows
and workflow systems, and the pivotal role that registries of
workflows and workflow components play in this.

2.1 Workflow concepts and lifecycle

A scientific workflow is a set of interrelated computational
and data-handling tasks designed to achieve a specific goal.
It is often used to automate processes which are frequently
executed, or to formalise and standardise processes. A work-
flow may be used to define and run computational experi-
ments or to conduct recurrent processes on observational,
experimental and simulation data. Scripting languages and
graphical notation may be used to represent the tasks in a
workflow, and the dependencies between them—this is dis-
cussed in more detail in Section 2.2.

A Workflow Management System (WfMS) is a software
system that facilitates the management of workflows from
their initial definition to their enactment. A WfMS enables
the exploration and analysis of scientific data by enabling the
quick (re-)design of experiments defined as workflows; and,
by providing easy selection and integration in a workflow of
the required resources — data, algorithms and computation.

The major components of a WEMS correspond to the dif-
ferent phases of a workflow lifecycle depicted in Figure 1.
Different WfMSs implement the four phases of a workflow
lifecycle listed below with varying degrees of sophistication.

Workflow composition — the specification of the tasks and

their interrelationships that denote the workflow, using graph-
ical or text-based editors. If generic elements or partial
specifications have been used, the result is called an ‘ab-
stract’ workflow. ‘ Components’, the building blocks of work-
flows, are made available (stored and described) through
‘registries’ or ‘repositories’ (interchangeable terms). Work-
flows may be used as conventional components, as compos-
ite building blocks for multi-lingual meta workflows, or as
an initial template for a new workflow.

Resource mapping — the (sometimes automated) identifi-
cation of specific versions of tasks and allocation of resources
to those tasks to be used during enactment, resulting in a
‘concrete’ workflow. ‘Resources’ include data sources, data
storage and computational facilities, such as a laptop, desk-
top, local cluster, grids, clouds and high-performance com-
puting (HPC) centres. They also include application code
and web services. They are listed in ‘regisiries’ and may be
selected during workflow composition.

Ezecution and monitoring — of a concrete workflow. This
comprises deployment of the relevant code and data onto
computational resources, their activation, and the collection
of results. Successful completion of one subset of tasks may
trigger further deployment and activation of tasks that were
awaiting their results. Streaming enactment models deploy
all of the tasks for concurrent activation. The software or-
ganising this is often called a ‘workflow execution engine’.

Provenance capture — from each stage of the workflow life-
cycle enables provenance information to be made available
to aid workflow and component re-use, to optimise resource
allocation, job scheduling and exception handling.

-
— resource
Resource updates — |
information information
use & ragistrane
i 4 abstract
workfiow
" inf " mapping
e ——
provenance : execution
s e ﬂm
- >

Figure 1: Workflow lifecycle adapted from [17].

Our work on web-based generic workflow editors currently
focusses on workflow composition and resource mapping.

2.2 Workflow composition and languages

WIMSs often provide a graphical user interface to help
users define their workflows by composing graphs, with nodes
in a graph generally representing the tasks in a workflow,
and edges between nodes representing dependencies between
tasks.

114

The graphical notation used by an editor varies from sys-
tem to system, from relatively simple directed acyclic graphs
(DAGs), to more expressive notations, such as Petri nets and
UML activity diagrams, that can depict choice, iteration
and concurrency in a workflow. Taverna’s workbench [31],
for instance, offers the facility to design a workflow in the
form of a DAG, Grid-Flow’s [28] editor uses Petri nets, and
Askalon [19] uses UML activity diagrams. KNIME supports
DAG-like workflows with the possibility of partial execution
to test as you build [11].

The languages used to capture these graphical represen-
tations, or used directly by a user via a textual editor to
define a workflow, also vary. Many are XML-based, and
include Taverna’s t2flow, Pegasus’ [37] DAX, and Askalon’s
AWDL; Grid-Flow’'s GFDL, used to desecribe data, programs
and processes, is a declarative language that borrows heav-
ily from SQL, while Meandre’s [2] scripting ZigZag language
is modelled on Python.

These workflow descriptions are often further compiled
into another language, one used to communicate with the
underlying execution engine for deployment of a workflow.
For instance, ZigZag files are compiled to .mau (Meandre
archive unit) files which are executed by a Meandre engine,
and Pegasus’ DAX files are transformed into .dag (DAG-
Man) files for execution on a Condor DAGMan [14] engine.
Removing one layer of communication is Dispel [4,42], a lan-
guage used for both describing an initial workflow defined
by a user, and for communicating with an execution engine.
KNIME directly interprets its XML representation.

It is not always the case that a WEMS offers both appro-
priate textual/graphical editors, and a suitable execution
environment for the problem in hand. Hence, there have
been a few attempts to mix-and-match between systems’
composition tools and execution engines. For instance, Pe-
gasus allows the creation of a DAX file via direct XML def-
inition, or DAX generation APIs in Java, Perl and Python
(a simple Pegasus GUI exists but is generally used for sys-
tem demo purposes only). This approach is not necessar-
ily the easiest one, however, for creating workflows consist-
ing of hundreds of computations to be executed over dis-
tributed environments; Wings' [23] graphical interface has
therefore been used to compose such workflows, and then
pass them for distributed execution onto a Pegasus engine,
or Apache OODT, a software architecture for providing ac-
cess to distributed resources [52]. Similarly, Triana’s graph-
ical environment [49] was extended for the GriPhyN and
Open-Science Grid projects to allow the generation of Pega-
sus execution files [48]: and, Apache Airavata’s [41] graphi-
cal client, called XBaya, can also be used to export defined
workflows into other languages such as Taverna's t2flow and
Pegasus’ Condor DAGMan.

In general and increasingly, the proliferation of different
WIMSs with their proprietary workflow languages and graph-
ical and textual editors, coupled with a lack of standard-
isation of scientific workflow models, presents a challenge
to the sharing of knowledge and experience in the form of
workflows. A generic web-based workflow editor catering
for different workflow languages and for multi-lingual meta-
workflow editing, with the versatility to facilitate existing
working practices, is a step towards increased sharing. This
effect will be increased if the collaboration in developing
a generic editor leads to consistency in the ways in which
workflow languages and registries are accessed.

2.3 Workflow interoperability

The challenge of an ever growing diversity of workflow
languages has long been recognised, see for example [16,
22]. A range of models motivate fundamental differences,
e.g., differentiating between master-worker models where the
workflow execution engine is the focus and controller — P-
GRADE/ gUse [20] for example, versus peer-to-peer mod-
els which achieve orchestration as an emergent behaviour
— Dispel for example. Other diversity emerges from imple-
mentation strategies, e.g., those that assume a common file
infrastructure from those that do not. There is also signif-
icant variation in the level of abstraction, the support for
the four phases of Figure 1 and linguistic style. The great-
est cause of diversity is that many of the workflow languages
started in a particular discipline and with communities that
already adopted particular data services and programming
languages. Those systems often develop a large investment
in primitive components for their community and a sig-
nificant collection of workflows supporting current working
practices. Analysis of many existing workflow systems, in
science and business, has yielded 40 control-flow patterns,
40 data patterns and 43 resource patterns [53]. A generic
editor cannot directly cover such diversity and we there-
fore introduce a category level in the conceptual model that
permits each workflow language to specify the patterns it
supports— see Section 3.

There will remain strong forces for multiple workflow lan-
guages for the foreseeable future. The infeasibility of moving
communities onto new technologies because of their intellec-
tual investment collides with the high-cost of rebuilding the
libraries of components and workflows. This comes to the
fore when experienced people move communities or when
researchers combine methods from different communities.

To address this confrontation Elmroth et al. identified com-
mon structures in workflow systems that could underpin
integration or translation across workflow languages [18].
They identified three dimensions of variation: workflow-
execution environment, model of computation, and workflow
language, and three levels at which these should be consid-
ered: activity, sub-workflow and workflow, thereby parti-
tioning the overall challenge into manageable parts. The
SHIWA project investigated two strategies [35,40] for work-
flow integration:

1. develop a catalogue of the functional elements of work-

flow languages and translate via this between languages;

2. provide a common management and enactment envi-

ronment for a set of workflow languages and provide
for enactments that use more than one.

The latter strategy led to an effective system that today
supports more than ten workflow languages with the help
of the ER-Flow project [50]. A workflow engine for mul-
tiple languages could sit behind a multi-lingual graphical
workflow editor and the ER-Flow project is involved via the
authors.

2.4 Workflow sharing and registries

Workflow-based systems/infrastructures require reposito-
ries or registries from which to retrieve components of inter-
est for execution, modification or study. Depending on the
requirements around which different systems are designed,
such repositories may contain workflow building components,
workflows, information about resources, required data, etc.

115

In most cases, a workflow system, and from the user’s per-
spective its editor, is expected to interact with multiple
repositories or registries, seamlessly.

There are a number of workflow systems for e-Science,
each with their design decisions and target audiences. Here,
we briefly outline a few examples of their repositories. A
web-based platform for importing and sharing workflows as
well as derivative or related digital research objects is myEx-
periment [47]. As a sharing platform, myExperiment also re-
lies on external repositories, most notably BioCatalogue [12]
and recently others, through the myGrid collaboration [24].
Even though not dictated by design, myExperiment is best
integrated with the Taverna workflow system [31], which in
turn integrates processing elements or processes as web ser-
vices. BioCatalogue is a catalogue of bioinformatics-related
web services, which can be used when composing Taverna
(or other, e.g., KNIME) workflows and can be viewed and
interacted with from workflow editors.

Two repositories representing different approaches to work-
flow management that cover different stages of a workflow’s
lifecycle are SHIWA [50] and Wf4Ever [9]. SHIWA ad-
dresses the challenge of workflow interoperability, support-
ing workflows from different environments. Users make use
of SHIWA services, including a central repository of work-
flows created by different WfMSs, to compose and execute
meta-workflows through the SHIWA portal. Wf4Ever on
the other hand focuses on workflow preservation and digital-
experiment reproducibility. Wf4Ever exposes APIs allowing
access to the digital object store, a generic store includ-
ing workflows and related services, such as recommendations
and workflow transformation.

SCI-BUS [35] offers a repository with a user-interface-
oriented approach. The repository presents gUSE workflows
wrapped in portlets deployable in portal frameworks based
on the JSR168/JSR286 [1,45] standard. Internally, the life-
cycle of a workflow is managed via a portlet. Its users are
supported with user interfaces tailored to its application.

The repositories and systems discussed above take a higher-
level view of workflow composition, as registrable compo-
nents are generally assumed to be readily enactable in their
own right, within their respective contexts. In contrast to
that, there are workflow repositories which expose individ-
ual workflow components which, while they cannot be run
on their own, they are used for composing enactable work-
flows at a finer granularity. An example of such a reg-
istry is the VERCE Dispel registry [38], which is designed
to contain Dispel language [4] components, predominantly
data-stream processing elements, as well as complete Dispel
workflows currently targeted at seismology. Kepler has a
large repertoire of available components, which it calls ‘ac-
tors’, covering both file-based tasks and stream-based pro-
cessing [7]. Another system which follows a similar, fine-
grained approach is KNIME, an open-source, enterprise-
oriented workflow-based workbench addressing data analysis
and transformation. It offers over 2,000 re-usable workflows
and workflow fragments in its enterprise-extension reposi-
tory, as well as allowing sharing via myExperiment and the
use of web services, such as those in BioCatalogue.

The multitude of approaches, briefly introduced above,
demonstrates that the design of generic tools should take
into account the different requirements addressed regarding
component granularity and computing resources as well as
the “non-functional” attribution for use and modification,

Zero or one entity

Orie and only one

Zero or many

One or many

Figure 2: Entity relationship diagram for the model perspective of the generic workflow editor.

permissions and provenance. However, the ability to de-
scribe components and workflows in libraries has developed
a repertoire of models for workflows — see for example [15].

3. A SINGLE DATA MODEL FOR MULTI-
PLE WORKFLOW CONCEPTS

Many diverse WfMSs are in use in numerous communi-
ties. The conceptual and technological diversity has led to
numerous workflow languages varying in syntax and seman-
tics. The main challenge for a generic web-based workflow
editor has been to design a single model that is sufficiently
comprehensive for integrating the diversity of workflow lan-
guages, concepts, components and representations without
being overly complex. We identify three user roles and note
that each role contributes information predominately to par-
ticular parts of the model that we introduce below.

Workflow language importer will be an expert in that
language who configures basic entities and is responsible
for providing the language properties (levels Workflow Lan-
guage and Category of Figure 2), setting up the standard
look and feel (i.e., mapping categories and classes to visual
forms in the controller) and establishing the default list of
registries thereby pre-populating the Class level and estab-
lishing an initial set of mWorkflowInstances.

Workflow creator is an expert in a particular workflow lan-
guage and some domain of use of that language. They are
enabled to process all steps for the whole lifecycle of edit-
ing a workflow including altering graphical representations,
thereby producing from secratch or from prior templates, new
mWorkflowInstances and all their associated Instance level

116

information, and optionally new composite classes, that may
also be submitted to a registry for reuse. They may also set
some specific controller properties for their products.
Workflow editor is a typical user from a domain apply-
ing the workflows. They will view and parameterise mWork-
flowInstances, and then submit them. They may set view-
ing preferences in the controller and store versions of their
submitted workflows and results a la VisTrails [8, 39].

The design of the workflow editor follows the MVC pattern.
To make explicit the roles of entities in the model, entities
belonging to the model (M) perspective are prefixed with m.
Figure 2 represents the model (M) perspective of the logi-
cal information needed by the workflow editor. A number
of relationships with mTextInstance have been suppressed
for clarity. These allow the representation of names, an-
notation, comments, parameters, and scripts, to be speci-
fied and controlled. There are two main parts to the model
perspective: firstly, workflows and languages, and secondly,
registries and external resources. Workflows and languages
include the entities for defining the logical flow of a work-
flow and distinct workflow instances, registries and exter-
nal resources provide information about available workflow
components and constructs, and accessible computation and
data resources. Where applicable, workflow constructs may
be bundled as packages that would be loaded as pallets of
usable icons in the editor’s view perspective. The logical
distinction between the two parts derives from the prove-
nance of the data stored in the entities. Users are enabled
to compose workflows from configured workflow languages
with information provided in the workflow editor. In con-

-

v 3 26
‘BeConnactipnCategory INT mConnecionCategory INT connectionCategory
» mayBranch BOOL & connectionCategoryName VARCHAR 45)
» mulfsegmentsd BOOL »

& #neType VARCHAR(12) 3
« IneThickness FLOATS

J WneStyle YARCHAR(12)

> ineNumber INTa

+ markBanches BOOL L controlsVisOfConnectionCategory

»BranchhtarkerBLX FLOAT4
DranchidarkerBLY FLOAT4

» ranchiane TRX FLOATA

»DranchMarker TRY FLOATS

» markCrossings BOOL.

> connectionLayer INT4

colour VARCHAR(12] |
- - ~

Figure 3: Entity relationship fragment illustrating model, view and controller perspectives.

trast, registries and external resources contain information,
which is typically set up by an expert with knowledge about
addresses and interfaces of systems outside of the workflow
editor. Information in these registries is accumulated from
many sessions by many users working either via the web-
based generic editor or via today’s tools. The goal is to of-
fer a generic interface for diverse registries—eventually this
should be underpinned by a standard registry API. Thus,
users are enabled to conveniently connect to and use multi-
ple registries.

The conceptual model for the entities of workflows and
languages has four layers. In the first, a workflow language is
introduced with, in the second layer, all categories of compo-
nents that can be used in potential workflows, for each lan-
guage. mProcessCategory, for example, defines the types of
processes dependent on the workflow language, e.g. a Job in
gUSE or a PrimitivePE, CompositePE or FunctionalPE (where
PE denotes Processing Element) in Dispel. In the third layer,
the classes of the components for each category are repre-
sented while the fourth layer contains the specific instances
of all of the classes in any workflow instance that is being
edited. Fortunately, as we are only editing the graph, not
interpreting it, the model does not have to capture all of the
semantics of the various workflow languages; it only needs
to discriminate nodes and edges that need to be treated dif-
ferently in each installed language. It needs to differentiate
nodes or edges when they need to be rendered differently or
when the available editing actions are different. For exam-
ple, a processing node that is primitive does not have the
possibility of being opened to show its expansion, whereas
a composite node (or meta node) can be opened to show its
expansion in any of its available forms — this enables recur-
sive composition of workflows to be viewed and edited.

There is not space to fully describe elements in the view
(V) and controller (C) perspectives — readers are referred
to bit.ly/WBWFE. The view entities are required to repre-
sent only the model entities at the class and instance lev-
els that have been or are being viewed. They are mostly
homomorphic with the model perspective, with the corre-
sponding name except with prefix v. A good example of

17

where their form is more complex is in the representation
of connections, as shown in Figure 3. Here, a set of not-
necessarily-connected line segments (so that curved paths,
manhattan paths, data-distribution trees, iteration and par-
alellisation may all be visualised) denote a mConnectionIn-
stance. By default, the generation of the visual form is
controlled by a controller entity higher in the conceptual
tree, here a cConnectionCategory, that specifies the rules
for all connections in that category. But the actual values in
the view perspective may be set during upload from another
representation or by a user manipulating the auto-generated
form. Each v entity needs to reference its corresponding m
entity and retain user-set or uploaded viewing information,
such as size, icons and instance positions, connection routes,
colouring, shading, fonts and line styles.

The elements of the controller (C) perspective have prefix
c and for the most part, the corresponding names. They are
only needed for the category level, as they describe the map-
pings for all entities consistent with the category to which
they are linked. They may be created at a lower level to
describe exceptional behaviour. They describe a two-way
mapping between the model and view perspectives and what
a user is permitted to change. For example, they specify the
actions on hover, click and double-click, and the set of en-
abled operations shown on right click for their referenced
entities. Their language-specific values are set by a work-
flow language importer, and their other values are set as
user preferences. The handling of meta elements is a good
example. They might highlight all of their input and output
paths and immediately connected elements on click, might
show a succinct description on hover, and might expand to
expose their internal implementation on double-click, and
offer a full repertoire of available operations on right click.
Such potential behaviour will be described in a correspond-
ing controller entity. More information about the entities
can be found in Appendix A. The functions supported by
the editor will include:

1. import from, and export to, the currently supported
representations of a given workflow language;
2. creation, authoring and saving instances of workflows;

composition and amendment of potentially multi-lingual
meta workflows;

management of each workflow’s lifecycle, from abstract
to concrete forms, enactment and discard;

interaction with repositories used for sharing; and

use of packages of predefined components and sub-
workflows.

ot

The prototype GeWWE (Generic Web-based Workflow Ed-
itor) in its current form is focused on the lifecycle of the
editing process of workflows (see Fig. 4). Here the stages
of workflows’ lifecycles are more fine-grained than just ab-
stract and concrete. An abstract workflow closely matches
its visual representation. The successive stages of a concrete
workflow are logical flow, instantiated workflow and ready-
to-process workflow. In some workflow languages some of
these stages may be elided by automated completion.

Ready-to-process workflow
Visual representatien

.

Ay

O

EDIM2 EDIM2

instantiated workflow

=i

Figure 4: Lifecycle of editing a workflow.

The visual representation — GeWWE is a graphical editor,
which allows users to select graphical nodes, the processes,
and graphical connections with diverse forms and character-
istics. The logical flow in the workflow is rudimentary and
defined via the graph.

The logical flow — processes are associated with each other
via connections between connectors. Connectors represent
the input and output of a process and each connector is
bound to one process instance whereas a process may be
bound to several connectors.

The instantiated workflow — is one whose processes, con-
nectors and connections are populated with full definitions.

The ready-to-process workflow — if an instantiated work-
flow includes complete descriptions of all of the exact pro-
cesses, inputs, outputs and external resources to be used,
then the workflow is in a ready-to-process state.

The result of a fully performed lifecycle is a ready-to-
process workflow, which can be exported to a submission
interface of a suitable workflow engine. The submission and
the monitoring of a workflow is part of the submission inter-
face. The latter is not yet part of GeWWE but envisaged
for further development. The lifecycle of editing a workflow
can also be started by importing into GeWWE a workflow
at any stage of completion including ready-to-run, which
can then be changed by a user or adapted for different in-

Logical representation

118

puts, outputs or external resources. GeWWE preserves the
source of a workflow in the chosen workflow language as if
the workflow has been edited via the original WEMS. Users
are able to insert and edit for each node the source of the
process, related connectors and connections.

4. STATUS AND EXAMPLES

A first prototype of the workflow editor has been devel-
oped as proof-of-concept. GeWWE is web-based and ap-
plies the VAADIN [27] framework deployed in a servlet con-
tainer, e.g., Apache Tomcat [51]. VAADIN allows us to
build server-side and client-side web applications in com-
bination very efficiently. It supports Google Web Toolkit
(GWT) [29] libraries and translates Java to JavaScript on
the client side. To build workflow graphs with drag-and-
drop mechanisms, we chose the powerful JavaScript library
jsPlumb [34]. GeWWE has been developed as a combina-
tion of a server-side and client-side web software with the
data used in the workflow editor being stored in a MySQL
database [30]. The data is managed on the server-side using
Hibernate [33]. Thus, the choice of the underlying database
is flexible and another relational database could be used.

4.1 Example workflow language installations

In its current state, GeWWE rudimentarily supports three
workflow languages: Dispel, gUSE [35] in XML format, and
Galaxy [25] workflows in JSON format. We use simple ex-
amples and only discuss the editor issues; as the normal
power and tutorial guides for the languages still apply. As
the first step to demonstrate the model’s generic applicabil-
ity, these three workflow languages, which we already work
with, were chosen for several reasons:

1. they are used in diverse communities,

2. the registry interface can be tested with Dispel, and

3. they exhibit significantly different enactment models,

levels of abstraction and syntactic forms.

e Dispel and Galaxy support users with a kind of
toolbox. Dispel offers pre-configured processing
elements in three distinct categories and Galaxy
offers pre-configured tools.
gUSE and Galaxy support DAG-based workflows
and interpret each process as a single job, whereas
Dispel activates the whole graph and runs the
tasks concurrently with data streaming between
the processes.
gUSE and Galaxy support the import and ex-
port of workflow instances, whereas Dispel de-
notes workflows in textual form designed for both
human and machine comprehension.

The following figures illustrate examples for each workflow
system chosen to be sufficiently simple for exposition here.

4.2 Status

Figure 8 illustrates the basic layout of GeWWE. Users
can switch between the main groups of functionality via the
menubar. The options include opening, saving and deleting
workflows. On the left side, workflow languages, registries,
process classes and resources can be selected. Icons denoting
different process classes can be chosen and inserted via drag-
and-drop onto the right side and connected with each other
by drawing arcs between their displayed connectors.

In the near future, the visualisation of connectors and the

"yes erday's even s"

Figure 5: A data-streaming Dispel workflow—first
executing an SQL expression, transforming the
query results as they arrive and streaming results
to the user—see Appendix B.

4

Figure 6: A gUSE workflow downloading a PDB
file, splitting the stored complex into its receptor
and ligand parts and performing a docking step.

options for structured text will be implemented. It will then
be possible to edit processes, their parameters, and their in-
puts and outputs. Extended export and import features will
be developed. The aim is not only to create and accept files
in a pre-configured workflow language but also to check them
with a suitable parser (that has been registered as a handler
for the language) for syntactic correctness. These parsers
will also be applied for checking manually inserted struc-
tured text to interpret it as a workflow or process. When a
process is a composite or meta node, users will be able to
double click on its icon and see an expansion representing its
internal composition—this applies recursively and expanded
nodes may be collapsed to their summary icon. GeWWE al-
lows users to connect any components loaded from registries
in a workflow—this includes, in principle, components from
different languages. Eventually verification of the compati-
bility of connected components and other composition rules
should be incorporated in the editor to give users early warn-
ing of potential errors and prevent the construction of com-
positions for which there is as yet no enactment system.
Dispel, for example, is stream oriented. To connect a Dispel
process with a gUSE or Galaxy process, the output of Dispel
has to be inserted into a file to serve as input for a gUSE or
Galaxy process. Vice versa, an output file has to be handed
over as a data stream to a Dispel process.

Whereas we concentrate in the first step on editing work-
flows and importing and exporting them from and to suit-
able workflow management systems, we intend to add an
interface for directly receiving workflows from W{MSs and
submitting workflows to WfMSs. The assumption is that the
WI{MSs support an external interface, e.g. via web services.

In addition to the features of the workflow editor, an au-
thentication and authorisation concept has to be integrated
into the editor; at least sufficient to satisfy requirements for
using resources and registries. On the one hand there are the
different user roles (workflow language importer, workflow
creator, workflow editor), on the other hand the integration

19

Filter sequences by lenath 38

Fastalle

FASTAto Tanular 3
Convert these soousncas

autpur (rabular)

Input datasst ¥

auraur . R e
autput (fasta)

Figure 7: A Galaxy workflow for reading an input
dataset in FASTA format, filtering the sequences by
length and converting the output to a simple text
file formatted for the import into Excel.

of external systems, such as registries, data and compute
resources, relies on diverse security technologies. There has
been no security standard evolved for cloud computing so
far but most of the established grid middlewares and grid
file systems rely on X.509-based certificates [32] or Shibbo-
leth [43] for authentication. Batch systems again are mostly
using role-based login-and-password mechanisms. Thus, the
workflow editor has to offer an easily extendable interface
for different security concepts.

It will frequently be the case that the web-based editing
will be accessed as a portlet in a science gateway. For ex-
ample, it might be used as part of one of the 19 science
gateways supported by SCI-BUS, in which case the editor
would need to exploit and work well with the existing user
identification and authentication system. Another exam-
ple of such a requirement emerges with the Catania Science
Gateway Framework (CSGF) [3,6], which already complies
with the EGLeu [44] portal policies [36] using Shibboleth
and SAML [46] on top of a JSAGA [13, 26] platform for
organising execution on multiple kinds of DCIs. The editor
would need to be capable of functioning in such a predefined
context.

5. CONCLUSION AND OUTLOOK

This paper was triggered by our own need for a web-based
(i.e:, run in any browser) graphical editor for the workflow
languages we use. That in turn led to a survey of colleagues
with other workflow languages, where we found a similar
need existed. In many cases, they had work underway to
build such an editor or they were planning such work. For
example, KNIME currently requires a downloaded client for
workflow editing; its web-based interactive workflow execu-
tion portal would benefit from a versatile workfow editor.

As we commenced our design we also noted that a full
implementation would take substantial effort to build and
maintain, and we spotted that commonality between solu-
tions would have significant advantages: consistency for end
users, a potential for convergence encouraging greater re-
use of components and methods, and widely shared effort
in development and maintenance making sophisticated web-
based workflow editing more feasible and sustainable. The
urgent need for action was evident—one-off solutions were
already under development.

This posed the question, “Is a common framework for web-
based workflow editing feasible and will it realise these ben-
efits?”. Drawing on previous experience of characterising
workflows and their components in the ADMIRE [5] and
SHIWA projects, and partitioning the design using the MVC
pattern, we were able to propose a common logical model
which we believe has the capacity to handle editing of all
workflows, meeting their diversity and their communities’

Wkl

Workflow language

¥ open e

| Save - DISPEL -
F Saveas 1 Registry

| Delete ¥ - DISPEL registry -
Processes : Processes

Selinsert - SQlinsert .y
External Resources Exernal Resources
compute resource - compute resourcel_’)

Processes

(a) The menubar with drop-down menus for the main
modes of editor operation.

Processes

— -
)

(b) On the left a menu setting preferences for a Dispel workflow and
for selected pallets of classes of components and on the right space

showing a simple workflow.
Figure 8: The basic layout of GeWWE.

preferences. We partition the model into a mapping appro-
priate for a group of users that identifies resources and com-
ponents they may use and a larger logical domain covering
the workflows themselves. The latter is structured into four
layers for power and comprehensibility. They progressively
introduce a workflow language, the categories of component,
connection, connector and text each language discriminates,
introduces the specific classes of each of these that users
may actually copy into a workflow they are editing, and
then a final layer of instances which contain all the specific
information about those copies. It is also structured into
four logical columns: processes, which contain algorithms,
text which names, denotes parameters or representations in
other languages, connections that carry data from one pro-
cess to another and also represent dependencies and timing
constraints, and connectors that characterise the interfaces
with processes. We argue that this is logically simple and
sufficient for the required diversity. By arranging for the
view and controller perspectives to be homomorphic with
parts of the model perspective, minimal additional complex-
ity is introduced.

We set out to test the hypothesis that this model was
sufficient using GeWWE;, a prototype implementation of the
envisaged common framework. As yet we are not able to
demonstrate the accommodation of workflow language styles
and of interaction with enactment services. Otherwise, the
model has stood up well to initial tests. We anticipate that
the generic editor will be used in the context of many science
gateways, for example the VERCE (seismology), EFFORT
(rock physics and volcanology) [21], SCI-BUS and CSGF
science gateways. As indicated above, there is a challenge
to fit in these contexts, as they become more complex and
as they adopt different security practices.

We have deliberately exposed these ideas to criticism and
comment as early as possible. This means we have less evi-
dence, but it also means we are not trying to sell a particular
solution to the form and implementation of web-based work-
flow editors. Instead, we put forward the model as an open
invitation for others to discuss:

1. whether the proposed common framework would be

120

worthwhile, and
2. whether the model is appropriate for a large spectrum
of workflows and their operational environments?

We hope there will be an emerging consensus on the former
question, and that a community discussion will then drive
refinement and further testing of the model and of the frame-
work’s implicit architecture. The following steps should be
undertaken.
1. Complete and accurate mappings of several workflow
languages into the model.
2. Development of a reasonably complete repertoire of
the envisaged editing functions.
3. Analysis of submission and monitoring interfaces.
4. Consideration of modelling language-specific composi-
tion rules to give early error warnings.
5. Investigation of how best to support flexibly security
without imposing it on all users.
6. Review of the model and framework in the light of the
above five steps.

We believe that this will be best achieved by an open inter-
national collaboration developing an open-source software
product, and would be delighted to hear from any reader
interested in contributing — see bit.ly/WBWFE.

Acknowledgment

The initial research was funded by the NeSC Research Plat-
form grant EP/F057695/1 from the UK EPSRC. Thanks
also go to Dr Paul Martin, Data-Intensive Research Group,
University of Edinburgh, Dr Dave Snelling, Fujitsu Labs Eu-
rope and Dr Liew Chee Sun, University of Malaya for their
insightful and valuable comments.

6. REFERENCES
[1] A. Abdelnur and S. Hepper. JSR 168: Portlet
Specification.
http://www.jcp.org/en/jsr/detail?id=168, 2003.
[2] B. Acs, X. Llora, L. Auvil, B. Capitanu, D. Tcheng,
M. Haberman, L. Dong, T. Wentling, and M. Welge.

[9]

(10]

(11]

(12]

(13]
(14]

(15]

A general approach to data-intensive computing using
the Meandre component-based framework. In
Proceedings of the 1st International Workshop on
Workflow Approaches to New Data-centric Science,
WANDS 10, pages 8:1-8:12, New York, NY, USA,
2010. ACM.

V. Ardizzone, R. Barbera, A. Calanducci,

M. Fargetta, E. Ingra, I. Porro, G. L. Rocca,

S. Monforte, R. Ricceri, R. Rotondo, D. Scardaci, and
A. Schenone. The decide science gateway. J. Grid
Comput., 10(4):689-707, 2012.

M. Atkinson. Data-Intensive Thinking with DISPEL.
In THE DATA BONANZA: Improving Knowledge
Discovery for Science, Engineering and Business,
chapter 4, pages 61-122. John Wiley & Sons Inc.,
2013.

M. P. Atkinson, C. S. Liew, M. Galea, P. Martin,

A. Krause, A. Mouat, O. Corcho, and D. Snelling.
Data-intensive architecture for scientific knowledge
discovery. Distributed and Parallel Databases,
30:307-324, 2012.

R. Barbera and et al. Catania Science Gateway
Framework.
http://wuw.catania-science-gateways.it, 2013.
D. Barseghian, I. Altintas, M. B. Jones, D. Crawl,

N. Potter, J. Gallagher, P. Cornillon, M. Schildhauer,
E. T. Borer, E. W. Seabloom, and P. R. Hosseini.
Workflows and extensions to the Kepler scientific
workflow system to support environmental sensor data
access and analysis. Fcological Informatics, 5:42-50,
2010.

L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, and
H. T. Vo. VisTrails: Enabling interactive
multiple-view visualizations. In In IEEE Visualization
2005, pages 135142, 2005.

K. Belhajjame, O. Corcho, D. Garijo, J. Zhao,

P. Missier, D. Newman, R. Palma, S. Bechhofer,

E. Garcia, G.-P. J. Manuel, G. Klyne, K. Page,

M. Roos, J. E. Ruiz, S. Soiland-Reyes,

L. Verdes-Montenegro, D. D. Roure, and C. Goble.
Workflow-centric research objects: First class citizens
in scholarly discourse. In Proceedings of the Second
International Conference on the Future of Scholarly
Communication and Scientific Publishing, 2012.

R. Berjon, S. Faulkner, T. Leithead, E. Navarra,

E. O’Connor, S. Pfieffer, and Hickson, I. (Eds). HTML
5.1: A vocabulary and associated APIs for HTML and
XHTML. Technical report, W3C, 2013.

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,

T. Kotter, T. Meinl, P. Ohl, K. Thiel, and

B. Wiswedel. KNIME - the konstanz information
miner. SIGKDD Ezplorations, 11(1), 2009.

J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent,

J. Orlowski, M. Roos, K. Wolstencroft, S. Aleksejevs,
R. Stevens, S. Pettifer, R. Lopez, and C. Goble.
BioCatalogue: a universal catalogue of web services
for the life sciences. Nucleic Acids Research, 2010.
CCIN2P3. JSAGA. http://grid.in2p3.fr/jsaga,
2013.

Condor Team. Condor DAGMan manual. Technical
report, University of Wisconsin-Madison, 2008.

O. Corcho. Sharing and Reuse in Knowledge

121

[16]

[17]

18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

Discovery. In THE DATA BONANZA: Improving
Knowledge Discovery for Science, Engineering and
Business, chapter 8, pages 181-192. John Wiley &
Sons Inc., 2013.

V. Curcin and M. Ghanem. Scientific workflow
systems - can one size fit all? In Cairo International
Biomedical Engineering Conference, CIBEC 08, pages
1-9, December 2008.

E. Deelman, D. Gannon, M. Shields, and 1. Taylor.
Workflows and e-Science: An overview of workflow
system features and capabilities. Future Generation
Computer Systems, 25(5):528-540, May 2009.

E. Elmroth, F. Herndndez, and J. Tordsson. Three
fundamental dimensions of scientific workflow
interoperability: Model of computation, language, and
execution environment. Future Generation Computer
Systems, 26(2):245-256, February 2010.

T. Fahringer, R. Prodan, R. Duan, J. Hofer,

F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,

M. Siddiqui, H.-L. Truong, A. Villazon, and

M. Wieczorek. ASKALON: A Development and Grid
Computing Environment for Scientific Workflows. In
I. J. Taylor, E. Deelman, D. B. Gannon, and

M. Shields, editors, Workflows for e-Science, pages
450-471. Springer London, 2007.

Z. Farkas and P. Kacsuk. P-GRADE portal: A generic
workflow system to support user communities. Future
Generation Computer Systems, 27(5):454-465, 2011.
R. Filgueira et al. EFFORT (Exploring Failure
Forecasting in Real Time).
http://effort.is.ed.ac.uk:8080/, 2013.

Y. Gil, E. Deelman, M. Ellisman, T. Fahringer,

G. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau,
and J. Myers. Examining the challenges of scientific
workflows. Computer, 40(12):24-32, December 2007.
Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and

J. Kim. Wings for Pegasus: Creating large-scale
scientific applications using semantic representations
of computational workflows. In Proceedings of the
Nineteenth Conference on Innovative Applications of
Artificial Intelligence, TAAI 07, pages 1767-1774.
AAAI Press, July 2007.

C. Goble et al. myGrid. http://wuw.mygrid.org.uk,
2013.

J. Goecks, A. Nekrutenko, J. Taylor, and G. Team.
Galaxy: A comprehensive approach for supporting
accessible, reproducible, and transparent
computational research in the life sciences. Genome
Biology, 11(8):R86, 2010.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann,

P. Kleijer, A. Merzky, J. Shalf, and C. Smith. A
Simple API for Grid Applications (SAGA). Technical
Report GFD.90, Open Grid Forum, 2011.

M. Grénroos. Book of Vaadin. Oy I'T Mill Ltd, 2010.
Z. Guan, F. Hernandez, P. Bangalore, J. Gray,

A. Skjellum, V. Velusamy, and Y. Liu. Grid-Flow: a
Grid-enabled scientific workflow system with a
Petri-net-based interface. Concurrency and
Computation: Practice and Fxperience, 18:1115-1140,
2006.

M. Hahn. The Google Web Toolkit: a deeper look and
Extensions for GWT.

http://www.dark-bit.de/wp-content/uploads/
2009/07/paper_marcel_hahn_final.pdf, 2008.
[30] S. Hinz et al. MySQL. http://dev.mysql.com, 2013.
[31] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble,
M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
Acids Research, 34:729-732, 2006.
[32] I. T. U. (ITU). ITU-T Recommendation X.509.
http://www.itu.int/rec/T-REC-X.509/en, 1988.
[33] JBoss Community. Hibernate.
http://wuw.hibernate.org/, 2013.
[34] JBoss Community. jsPlumb.
http://jsplumbtoolkit.com/doc/home, 2013.
P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann,
A. Balaské, K. Karéczkai, and 1. Marton.
WS-PGRADE/gUSE Generic DCI Gateway
Framework for a Large Variety of User Communities.
J. Grid Comput., 10(4):601-630, 2012.
D. Kelsey. EGI-InSPIRE VO Portal Policy. https://
documents.egi.eu/public/ShowDocument?docid=80,
2010.
J. Kim, E. Deelman, Y. Gil, G. Mehta, and
V. Ratnakar. Provenance trails in the Wings/Pegasus
system. Concurrency and Computation: Practice and
Ezperience, 20(5):587-597, April 2008.
I. Klampanos. Supporting Collaborative Scientific
Workflow Development: The Dispel Information
Registry. http://research.nesc.ac.uk/files/
Registry-0SDC13.pdf, 2013.
D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire,
and C. T. Silva. VisComplete: automating suggestions
for visualization pipelines. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1691-1698, 2008.
D. Krefting, T. Glatard, V. Korkhov, J. Montagnat,
and S. Olabarriaga. Enabling Grid Interoperability at
Workflow Level. In Proceedings of Grid Workflow
Workshop 2011, volume 826. CEUR Workshop
Proceedings, 2012.
S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin,
M. E. Pierce, C. Mattmann, R. Singh, T. Gunarathne,
E. Chinthaka, R. Gardler, A. Slominski, A. Douma,
S. Perera, and S. Weerawarana. Apache airavata: a
framework for distributed applications and
computational workflows. In SC-GCE, pages 21-28,
2011.
P. Martin and G. Yaikhom. Definition of the DISPEL
Language. In THE DATA BONANZA: Improving
Knowledge Discovery for Science, Engineering and
Business, Parallel and Distributed Computing, series
editor Albert Y. Zomaya, chapter 10, pages 203-236.
John Wiley & Sons Inc., 2013.
R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and
K. Klingenstein. Federated Security: The Shibboleth
Approach. EDUCAUSE Quarterly, 27(4):12-17, 2004.
S. Newhouse et al. European Grid Infrastructure.
http://wuw.egi.eu, 2013.
M. Nicklous and S. Hepper. JSR 286: Portlet
Specification 2.0.
http://wuw.jcp.org/en/jsr/detail?id=286, 2008.
[46] OASIS. Security Assertion Mark-up Language.

(35]

(36]

37]

(38]

42]

(43]

(44]

(45]

122

[47]

[48]

[49]

[50]

[51]
[52]

[53]

http://saml.xml.org, 2013.

D. D. Roure, C. Goble, and R. Stevens. The design
and realisation of the "YExperiment Virtual Research
Environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561-567, 2009.
M. Rynge. Pegasus 4.2 on the Open Science Grid.
http://pegasus.isi.edu/presentations/2013/
Pegasus-4.2-08G-2013.pdf.

I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual
Grid Workflow in Triana. Journal of Grid Computing,
3:153-169, 2005. 10.1007/s10723-005-9007-3.

G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, Akos
Balaskd, and Z. Farkas. Enabling Scientific Workflow
Sharing through Coarse-Grained Interoperability.
Journal of Future Generation Computing Systems,
submitted 2013 (under review).

The Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/tomcat-6.0-doc/.

The Apache Software Foundation. Apache OODT.
http://oodt.apache.org, 2013.

W. van der Aalst and A. ter Hofstede. Workflow
Patterns. http://www.workflowpatterns.com, 2013.

APPENDIX

A.

MODELS TO REPRESENT WORKFLOWS

The table gives brief definitions of the logical entities in

the model perspective (as shown in Figure 2) to which all
workflows are mapped, hence each has prefix m. The related
view and controller logical models are straightforwardly re-

lated as described in Section 3 and bit.ly/WBWFE.

Table: Roles of entities in the model perspective (Figure 2)

Entity Describes

Registries and external resources

mRegistry External descriptions of computa-
tional resources, data sources, li-
braries, workflow components, tools,
and web services.

mExternalResource Available compute and data resources.

mPackage Collections of components.

Workflows and languages

mWorkflowLanguage

Workflow Languages
Each workflow language installed.

mTextCategory

mConnectionCategory

mConnectorCategory
mProcessCategory

Category

Major roles for text, e.g., plain, script,
structured, XML.

How data are passed, e.g., as param-
eters, files, streams, and control flow,
e.g., split, join pair, or condition.
Types of input and output to a process.
Categories of process, e.g., application,
inline function, web service or stream
processor.

mTextClass

mConnectionClass

mConnectorClass

mProcessClass

Class

A role for text, e.g., class name, in-
stance identifier, input parameters, de-
scription, annotation.

A specific pattern of data transport
and flow control, e.g., deliver output
file to destinations and start them.

A specific form of connection termina-
tion on a process boundary, e.g., pa-
rameter input or data-stream output.
Behaviour and algorithm that this pro-
cess applies, e.g., DBQuery, Merge.

Entity Describes Id Model Entity content / role
Instance m012 mProcessClass Result /defines an m002, descrip-
mTextInstance Acts in exactly one of = 20 roles, in- tion and mechanism
cluding: {naming, identifying, describ- m013 mTextClass Dispel script instances m004 / de-
ing or annotating} a {process, connec- notes a workflow
tion, connector or workflow} or provid- m014 mTextClass Identifier instances m005 / names
ing a parameter or script. m015 mTextClass Literal instances m006 / used for
mConnectionInstance An instance of a connection class, with stream literals
a given connector or .Plﬂiﬂ text as mn016 mConnectionClass Stream instances m007 / streams
source and > 1 destination connectors. p017 mConnectorClass Input instances m008 / for input
mConnectorInstance A particular connector on a process in- p018 mConnectorClass Output instances m009 / output
stance at an end of a connection. m019 mProcessInstance sql instance of m010 / does query,
mWorkflowInstance The whole workflow on which the ed- streams result
itor is acting or a sub-workflow corre- 550 pprocessinstance tran instance of m011 / transforms
sponding to an expansion of a compos- dataras it aftives
e .or meta-node process. m021 mProcessInstance res instance of m012 / sends stream
mProcessInstance An instance of a process class. to user
m022 mWorkflowInstance Workflow / whole of example
B. EXPANSION OF DISPEL WORKFLOW m023 mWorkflowInstance Workflow / expansion of m011
We now illustrate the use of the model entities for the =2t sTexplustance xlnlasétzan ce of m013 / expansion of
Dlspe! example in Figure 5. The textual representation in 095 mTexrtinstance Instance of m013 / expansion of
the Dispel language follows. m023
m026 mConnectorInstance Instance of m017 / input to sql
. package paper.seismology { //set context m027 mConnectorInstance Instance of m017 / input to sql
3 use dispel.db.SQLQuery; / /import SQLQuery m028 mConnectorInstance Instance of m018 / output from sql
a use paper.Transform; / /import Transform m029 mConnectorInstance Instance of m017 / input to tran
4 use dispel.lang.Results; / fimport Results m030 mConnectorInstance Instance of m018 / output from
. = tran
6 SQLQuery sql = new SQLQuery; // new instance m031 mConnectorInstance Instance of m017 / input to res
4 Transform tran = new Transform; // new instance m032 mConnectorInstance Instance of m017 / input to res
8 Results res = new Results; // new instance m033 mTextInstance “source”, Instance of m014 /identi-
9 fies m026
10 sql.data => tran.input; // data flow sql to tran m034 mTextInstance ‘}gxprqssion”, Instance of m014
11 tran.output => res.input; // data flow tran to res identifies m027
12 |- "org.emsc.seismicevents" -| m035 mTextInstance “data”, Instance of m014 /identifies
13 => sql.source; //URI of data resource m028
14 |- "SELECT ... FROM ... WHERE ..." m036 mTextInstance “input”, Instance of m014 /identifies
15 -| => sql.expression; // supply the query m029 and m031
16 |- "yesterday’s events" -| m037 mTextInstance “output”, Instance of m014 /identi-
17 => res.name; //name results fies m030
18 m038 mTextInstance “name”, Instance of m014 /identifies
19 submit res; // submit for enactment m032
20 } m039 mTextInstance “org.emsc.seismicevents”, Instance
of m015 /stream literal
m040 mTextInstance “SELECT .. . FROM .. .
We then tabulate the top-level entities that would be used WHERE . . .7, Instance of m015
to denote that workflow with abbreviated content and omit- ‘{ stream ht’era.l . "
ting all relationships. The instances of entities are ordered =3l wisathinienca yesterday’s events”, Instance o
in b f the logical 1 T 9 t that f q m015 /stream literal
izfef‘zl;l:e: hta\?e (l))i]:n a\?c})lg:; whlegrlll r;oss?l;(l;:p 'IPh: Idmi—;v:; 1042 mComnectioninstance Il(l)sztg nee of m016 / from m039 to
: = m
tomatically created by the system and reflects the order of m043 mConnectionInstance Instance of m016 / from m040 to
the creation of the entities. m027
IIc;‘StamiSIs gfl‘n};del entities representing D/isl:’ell example m044 mConnectionInstance Instance of m016 / from m028 to
odel Entity content / role m029
m001 nmWorkflowLanguage “Dispel” m045 mConnectionInstance Instance of m016 / from m030 to
m002 mProcessCategory primitivePE /implementation hid- m031
den — may be in any language m046 mConnectionInstance Instance of m016 / from m041 to
m003 mProcessCategory compositePE / implementation, in- m032
ner workflow may be opened m047 mTextInstance “SQLQuery”, Instance of m014 /PE
m004 mTextCategory Dls;l)(tfell workflow / whole or part identifier m019
workilows m048 mTextInstance “sql”, Instance of m014 /instance
m005 mTextCategory Identifier / identifies anything ident,iﬁer m019
m006 mTextCategory String / denotes parameters m049 mTextInstance “Transformer”, Instance of m014
m007 mConnectionCategory Stream / one connection type /PE identifier m020
m008 mConnectorCategory Input / any input data stream m050 mTextInstance “tran”, Instance of m014 /instance
m009 mConnectorCategory Output / output data stream identifier m020
m010 mProcessClass SQLQuery /defines an m002, descrip- m051 mTextInstance “Results”, Instance of m014 /PE
tion and mechanism identifier m021
m011 mProcessClass Transformer / defines an m003 de- m052 mTextInstance “res”, Instance of m014 /instance

scription and expansion

identifier m021

123

	Text1: Ersch. in: Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science : SC13 International Conference for High Performance Computing, Networking, Storage and Analysis ; Denver, CO, USA — November 17 - 21, 2013 / Johan Montagnat ... (eds.). - New York : AMC, 2013. - S. 112-123. - ISBN - 978-1-4503-2502-8

http://dx.doi.org/10.1145/2534248.2534260
	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-264865

