skip to main content
10.1145/2534303.2534312acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Continuum: a spatiotemporal data model to represent and qualify filiation relationships

Published:05 November 2013Publication History

ABSTRACT

This work introduces an ontology-based spatio-temporal data model to represent entities evolving in space and time. A dynamic phenomenon generates a complex relationship network between the entities involved in the process. At the abstract level, the relationships can be identity or topological filiations. The existence of an identity filiation depends on whether the object changes its identity or not. On the other hand, topological filiations are based exclusively on the spatial component, like in the case of growth, reduction, merging or splitting. When combining identity and topological filiations, six filiation relationships are obtained, forming a second abstract level. Upper-level filiation relationships provide better semantic vocabulary to describe the modeled phenomena, thus allowing the implementation of spatial, temporal and identity constraints. In this paper, we present a method based on identity and topological filiation relationships, to improve the capabilities of standard knowledge bases using Semantic Web technologies. Our method enables us to check the consistency of spatio-temporal and semantic data. An example is given in the field of urban growth to show the capabilities of the model.

References

  1. Del Mondo, G., Rodríguez, M. A., Claramunt, C., Bravo, L., Thibaud, R. Modeling consistency of spatio-temporal graphs. Data & Knowledge Engineering, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Del Mondo, G., Stell, J. G., Claramunt, C., Thibaud, R. A Graph Model for Spatio-temporal Evolution. Journal of Universal Computer Science (2010), 1452--1477.Google ScholarGoogle Scholar
  3. Muller, P. Topological spatio-temporal reasoning and representation. Computational Intelligence (2002), 420--450.Google ScholarGoogle Scholar
  4. Stell, J. G., Del Mondo, G., Thibaud, R., Claramunt, C. Spatio-temporal Evolution as Bigraph Dynamics. Belfast, Maine, USA, 2011.Google ScholarGoogle Scholar
  5. Hornsby K., Egenhofer, M. Identity-based change: a foundation for spatio-temporal knowledge representation. International Journal of Geographical Information Science (2000), 207--224.Google ScholarGoogle ScholarCross RefCross Ref
  6. Strobl, C. Dimensionally Extended Nine-Intersection Model (DE-9IM). In Encyclopedia of GIS Springer. 2008.Google ScholarGoogle Scholar
  7. Randell, D. A., Cui, Z. and Cohn, A. G. A spatial logic based on regions and connection. In Knowledge Representation and Reasoning (San Mateo 1992), 165--176.Google ScholarGoogle Scholar
  8. Yuan, M. Use of a Three-Domain Representation to Enhance GIS Support for Complex Spatiotemporal Queries. Transaction in GIS (1999), 137--159.Google ScholarGoogle Scholar
  9. Worboys, M. Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science (2005).Google ScholarGoogle Scholar
  10. Egenhofer, M. J. Toward the semantic geospatial web. In In Proceedings of the 10th ACM international symposium on Advances in geographic information systems (2002), 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Koubarakis, M., Kyzirakos, K. Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In Proceedings of the Extended Semantic Web Conference (2010), 425--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Perry, M. A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data. 2008.Google ScholarGoogle Scholar
  13. Pelekis, N., Theodoulidis, B., Kopanakis, I., Theodoridis, Y. Literature review of spatio-temporal database models. The Knowledge Engineering Review (2004), 235--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Peuquet, D. J. Making space for time: Issues in space-time data representation. GeoInformatica, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hobbs, J. R., Pan, F. An ontology of time for the semantic web. In ACM Transactions on Asian Language Information Processing (2004), 66--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O'Connor, M. J., Das, A. K. A Method for Representing and Querying Temporal Information in OWL. Biomedical Engineering Systems and Technologies (2011), 97--110.Google ScholarGoogle Scholar
  17. Welty, C., Fikes, R. A Reusable Ontology for Fluents in OWL. In In Formal Ontology in Information Systems: Proceedings of the Fourth International Conference (2006), 226--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Frasincar, F., Milea, V., Kaymak, U. tOWL: Integrating Time in OWL. In Semantic Web Information Management (2009), 225--246.Google ScholarGoogle Scholar
  19. Milea, V., Frasincar, F., Kaymak, U. The tOWL Temporal Web Ontology Language. In The 20th Belgian-Netherlands Conference on Artificial Intelligence (2008).Google ScholarGoogle Scholar
  20. Theodoulidis, C. I. and Loucopoulos, P. The Time Dimension in Conceptual Modelling. In Information Systems. 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Allen, J. F. Maintaining knowledge about temporal intervals. In Communications of the ACM (1983), 832--843. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nadi, S. Delavar, M. R. Spatio-Temporal Modeling of Dynamic Phenomena in GIS. In ScanGIS (2003), 215--225.Google ScholarGoogle Scholar
  23. Karmacharya, A., Cruz, C., Boochs, F., Marzani, F. Use of Geospatial Analyses for Semantic Reasoning. Knowledge-Based and Intelligent Information and Engineering Systems, 6276 (2010), 576--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Battle, R., Kolas, D. Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semantic Web (2012), 355--370.Google ScholarGoogle Scholar
  25. Batsakis, S., Petrakis, E. G. M. SOWL: A Framework for Handling Spatio-temporal Information in OWL 2.0. Rule-Based Reasoning, Programming, and Applications, 6826 (2011), 242--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stumme, G., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Sure, Y., Volz, R. & Zacharias, V. The Karlsruhe view on ontologies. University of Karlsruhe, Institute AIFB., 2003.Google ScholarGoogle Scholar
  27. Artale, A., Franconi, E. Temporal Description Logics. In Dov Gabbay, Michael Fisher and Lluis Vila, ed., Handbook of time and temporal Reasoning in Artifical intelligence. MIT Press, 2000.Google ScholarGoogle Scholar
  28. Baader, F., Nutt, W. Basic description logics. In Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, ed., In The description logic handbook. Cambridge University Press, New York, NY, USA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Continuum: a spatiotemporal data model to represent and qualify filiation relationships

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            IWGS '13: Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming
            November 2013
            102 pages
            ISBN:9781450325325
            DOI:10.1145/2534303

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 November 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader