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Abstract

The development of dynamic VRML worlds can benefit from
object-oriented methodologies. This paper proposes a class hierar-
chy for modeling a physical simulation and illustrates several
methods of realizing that object model. The implementations pre-
sented explore the uses of VRML pmto~pe and Script nodes, Java,
and the extemat authoring interface in describing behavior.

CR Categories and Subject Descriptors: 1.3.6[ Methodology
and Techniques ] Languages; 1.3.7 [ Three-Dimensional Graphics
and Realism]: Vbttsal Reality; D.1.5 Object Oriented Program-
ming

Additional Keywords VRML, Java, JavaScript, External Author-
ing Interface, Prototype, Script

1 INTRODUCTION

The Virtual Reality Modeling Language 2.0 Specification [1] seeks
to create a scene description that combines geometries, links,
inlines, sounds, images, and code managed in a hierarchical for-
mat. Whh the scene graph responsible for representing such a ver-
satile domain of data it is not surprising that management of the
VRML scene graphis one of the most difficult problems facing the
VRML author.

The VRML 2.0 Specification sought to createa node structurethat
would facilitate optimization for traversal and added behavioral
mechanics such as routes, Script nodes, and an external authoring
interface that a VRML viewer is to export to the Web browser.
Regardless of the method that authors use to add behaviors to their
scenes, they must structure and understand their scene graph.
Either authors must create routes between the appropriate fields in
the scene, or they must use a supported scripting language to
retrieve the appropriate fields from the nodes of interest.

Unfortunately, most VRML files require very deep hierarchies to
obtain the placement, articulation, inline, and level of detail hierar-
chies needed to develop complex scenes. Compounded with the
many parameters required to describe geometries, it is difficult to
examine a VRML file and understand the relevant structure. If the
author has created a human figure that he wishes to reticulate, be
may be interested only in the roration fields of the Tiartsfortns rep-
resenting joints. Here, the many other fields and values in the
scene are merely noise.

This complexity is magnified by the fact that compelling VRML
content requires a wide rangeof skills; thusa world is frequently
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the product of a team. Worlds are often created by a group of indi-
viduals who specialize in modeling, code, images, or sound. If one
member of a team is responsible for the code governing behaviors
and another memtx?r of the team modifies the scene structure, the
code cart be made obsolete. Because the current Java and JavaS-
cnpt access methods to the scene graph are based on fetching
nodes and the fields of those nodes, any changes to the scene may
break the code accessing that scene. Anatogies exist for other spe-
cialists’ interactions, each pointing to the fact that the behavior of
complex workis is precariously dependent on the scene graph
structure.

1.1 Object-Oriented Design

When faced with similar issues in more conventiortrd progrrtm-
ming languages, developers have used object-oriented design to
make systems more readily understandable and extensible. The
term “object-oriented” is used to describe systems in which soft-
ware is organized into a collection of objects that incorporate both
data structure and behavior [4]. VRML seems particularly suitable
to such methodologies, as it seeks to describe objects and events in
a real or imaginary world.

The properties of object-oriented systems that are explored in this
paper include abstraction, encapsulation, inheritance, and extensi-
bility.

1.1.1 Abstraction

Abstraction is the act of dividing a system into disctetc classes and
determining the roles of each. Object classes should be as inde-
pendent of implementation as possible. This approach creates a
more intuitive understanding of how the system will solve the
problem and how system components will interact.

1.1.2 Encapsulation

After an abstraction has been created, the developer determines
what logic and data are associated with each class. The class
should provide an interface that reflects the interactions described
in the abstraction phase. This process of hiding the details of
implementation fkom the outside world is known as encapsulation.
The developer may then modify the implementation internal to the
class without needing to modify the way other logic interacts with
that class, keeping such changes localized.

1.1.3 Inheritance

In a well designed object model, classes arc often general enough
that they provide a wide range of possible uses within a system.
Instead of creating one very complex class, it is sometimes useful
to create a family of related classes, each encapsulating the logic
associated with its particular use.

A subclass is a class that inherits the interface and functionality of
its superclass and augments the class by adding to, or overloading,
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the properties of that class. The resulting family of classes is often
referred to as the class hierudy.

1.1.4 Extensibility

The real benefits of object-oriented design become apparent when
the developer needs to maintain the system. Incremental develop-
ment has been improved due to the localization offered by encap-
sulation. In an ideal object model, modifications, optimization,
and fixes rarelycross class boundaries. When new functionality is
added, the logic that interfaces with a particularobject should be
able to interface automatically with any subclass of that object.
Thus, object-oriented methodologies can be beneficial for both
incrementaland radical changes to a system.

1.2 VRML Prototype Node

The prototype node in the VRML 2.0 Specification helps authors
manage scene complexity by providing a method for defining
higher-level objects. The prototype definition consists of an arbi-
trarily complex VRML hierarchy and a list of fields, eventIns, and
eventOuts that constitute the interface to that hierarchy. Each field
or event in the prototype’s interface must be an alias of a field or
event in its describing hierarchy. To use a prototype, it must be
either defined in the file, or listed as an external prototype, in
which case the definition is found at the specified URL.

By choosing how to divide scene graphs into reusable prototype
nodes, the author has created an abstraction. Because functionality
in VRML is encoded in the nodes, the act of creating this prototype
has encapsulated both the data and functionality of its describing
scene graph. By exposing only those fields that the author
intended through the prototype’s interface, he has created an object
that may be reused more intuitively.

Addressing a problem alluded to earlier, the author could create a
prototype definition with the scene graph of a fully articulated
human figure, exposing only the rotations of the joint Transform
nodes. The author may now create several human figures, instanti-
ating each as if it were a single primitive node in the VRML Spec-
ification.

1.3 VRML Script Node

The Script node allows authors to add behaviors to the scene.
Script nodes contain programmatic logic that translates input
events into output events. By routing events from sensors to the
Script node, and from the Script node to elsewhere in the scene
graph, the author can add customized functionality to their world.

The Script node contains a list of eventIns, fields, eventflxs, and a
URL at which the logic can be found. In order to be compliant,
browsers must support at least Java and JavaScript in the body of a
Script node [1]. In order to use Java in the body of the Script node,
the URL must point to a Java class that inherits from the Script
class. By overloading methods such as initialize, pmcessEvento,
processEventso, and eventd%ocessedo, the developer defines the
desired actions of the Java Script node.

1.4 External Authoring Interface

scene by providing methods to add and remove routes, to fetch
nodes, and to read or write field values in those nodes.

It is sometimes necessary to use the external authoring interface
instead of Script nodes to describe the desired behavior. If the
author wishes to create an HTML page with controls that modify
the VRML scene, the external authoring interface is the only exist-
ing method for effecting the scene graph.

2 PURPOSE

Research on the topic of applying object-oriented approaches to
VRML development began during the development of a site to
describe chaos and complexity. The goal was to create a Web site
at which visitors could experimentally discover the timdamentals
of chaos theory. By exploring interactive systems such as gravita-
tional simulations and flocking algorithms, the experimenter could
analyze how simple objects can display a complex aggregate
behavior.

VRML is the ideal medium for this type of simulation, as it allows
full examination of the system. The experimenter will be able to
mvigate a star system filled with gravitational bodies or walk
around a room filled with flocking agents. When creating the logic
necessary to develop such a system, it is in the author’s best inter-
est to create reusable assets.

This paper explores methods in which the author can combine the
encapsulating abilities of the prototype and the behavioral
mechanics offered by VRML to create reusable objects. Three
methods are presented, and the limitations of each are discussed.

3 CLASS HIERARCHY

The first observation is that in both the gravitational and flocking
experiments, the author desires a three dimensional geometry rep
resenting every body in the experiment. In both cases, the author
also desires that the bodies obey some simple Newtonian laws of
physics. Lastly, a desired feahue in each experiment is that each
body plot its course through time.

Applying object oriented methodologies, the author creates a class
of object, called Newtonian for instance, that encapsulates the
attributes of mass, velocity, position, and force. This class also
encapsulates functionality for updating velocity and position based
on the force exerted on the mass and for plotting the path of the
body through time.

The author can then create Attractor and Flocker as subclasses of
Newtonian. The Attractor and Flocker need only encapsulate how
to determine their forces based on a gravitational attraction or
swarming tendencies respectively. If Attractors are attracted to
any Newtonian, the author can create worlds mixed with Attractors
and Ffockers, each interacting with the other despite their differ-
ences.

Lastly, the author defines a Container class to manage the Newto-
nian. This class facilitates the traversal of each Newtonian so that
it can evaluate on each time change and maintains the list of New-
tonian instances that each subclass of Newtonian requires to per-
form its interactions.

The VRML Specification defines a Java interface that a browser is
to export so that the scene graph can be manipulated by external
Java applets [2]. The Browser class rdlows modifications to the
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4.1 Particle Prototype
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Figure 1: Newtonian Class Hierarchy

This object model implies that the code required to update velocity
and position based on force and time is kinked to the Newtonian
class. When using numeric approximations for solving differential
equations, the author must often try number of methods, as more
accurate methods tend to be slower. Because of this clean encap-
sulation, the author can change the solution methods for the force
equation in the Newtonian class without any modification to its
subclasses or to the Container class.

The extensibility of the object model becomes apparent when the
author chooses to add introduce a new object class to the simula-
tion, perhaps by adding a Spring object to comect any two Newto-
nian together. To do this, the author could create a new class
capable of imparting a force on Newtonian based on its spring
constant, the distance between the Newtonirms, and the spring’s
rest length. The author can now create a spring between any two
nodes that inherit from Newtonian, perhaps pushing attracting
bodies apart or tethering a flocking agent to a heavy weight.

4 NESTING VRML PROTOTYPES

In the first method proposed for realizing the class hierarchy, the
author uses the encapsulating abilities of the prototype and behav-
ioral abiIities of JavaScript to create suitable VRML nodes. A Par-
ticle prototype is defined and used to create a Newtonian prototype
capable of describing a mass acted upon by a force. Attractor and
Flocker prototypes are then created, each containing a Newtonian
instance in its describing hierarchy. By processing events and
propagating them to their encapsulated Newtonian prototype, the
Attractor and Flocker prototypes build on the functionality pro-
vided by the Newtonian.
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Figure 2: Particle Prototype Implementation

The Particle prototype encapsulates a Script node, a Transform,
and a shape that describe a body that can create a path that tracks
its changes in position. Its interface includes an eventIn, a field,
and an eventOut describing the attributes of position, body, and
whether or not the trail should be extended on the next positionIn
event.

This separation is necessary because Script nodes do not support
exposed fields. To provide the same functionality, each attribute
used by a Script node needs an eventIn to be triggered by external
stimuli, a field to store the value, and an eventOtat to propagate
changes elsewhere in the scene. Technically, because the code in
the Script can access the last value propagated through an event,
the field is not needed. This separation serves to simplify the dis-
tinction between storage of the attribute and propagation of the
change in that attribute.

The Body attribute could have been deserihed by an exposed field,
as ParticleScript currently does nothing with the value except
propagate it to the children of the Transform. Particle does not
need logic to react to changes in its child list, but related proto-
types may. Because their body attribute will alias to a field, an
eventIn, and an eventOut on a Script node, Particle is defined in
the same manner. External logic can therefore trigger bodyh
event on any member of this set of similar prototypes. This type of
adherence to a common prototype interface is what will provide a
type of prototype subclassing.
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4.2 Newtonian Prototype
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Figure 3 Newtonian Prototype Implementation

The implementation of the Newtonian prototype consists of the
Newto~anScript and a Particle prototype instance. Newtonian
builds on the abstraction offered by Particle, adding functionality
for solving the force equation. To accomplish this task, the New-
tonian interface exposes fields and events for mass, position,
velocity, force, and body. Again, each attribute requires an even-
tfn, a field, and an eventOut.

The Newtonian prototype has an MFNodc attribute that maintains
a list of Newtonirm (or subclass) prototype instances. This is not
required for the Newtonian’s timctionality but will be required by
both the Flocker and Attractor prototypes. The listln event is
defined to do nothing in the Script node. The field and events are
provided so that Attractor and Flocker may inherit a common
interface for their list of Newtonian to act upon.

NewtonianScript updates its internal storage of mass, position,
velocity, or force on an eventIn, and propagates this change by
sending the new value through the corresponding eventOut. As is
common in simulations, behavior is a function of time. on a
timeln event, NewtonianScript solves the force equation and
updates its representation of velocity and position. Subclass proto-
types will therefore be responsible for setting the force attribute
before the Newtonian’s evaluation to achieve their characteristic
behaviors.

The position value is propagated to the Particle prototype so that
the Newtonian’s body can appear at the appropriate location. The
position and velocity eventOuts are then triggered, making the val-
ues readable by logic outaide the prototype implementation.

4.3 Subclass Prototypes
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Figure 4 Attractor Prototyw Implementation

Each subclass prototype interface includes at least the same fields
and events that the Newtonian did, as if it inherited them. It is
important to do this so that any externat logic trying to interact
with an Attractor or Flocker can trigger the same eventIns that the
Newtonian had, allowing it to interact homogeneously with all
sutdaases of Newtonian. Unfortunately, there is no syntax in
VRML to extend another prototype’s field lisL so the author must
maintain the subclass prototype interfaces manually.

Any fields not needed for the added functionality of the subclass
prototype are aliases of the fields of the Newtonian prototype
instance. Those attribute fields and events required for the sub-
class’s behavior are aliases of the subclass Script. Any changes to
attributes that are local to that subclass update the subclass script’s
local storage, and must then be forward propagated to its encapsu-
lated Newtonian prototype. A massIn event changes the nrass field
in the subclass Script, and is then forward propagated through the
massForward eventOut to the Newtonian prototype, where the
nrass field of the Newtonian’s Script is also updated. Without for-
ward propagation, the subclass prototype would perform its calcu-
lations based on the correct mass, but the NewtonianScript within
the Newtonian prototype would evaluate the effects of force with
its default mass, and the calculation would be incorrect.

The author may wish to change Newtonian so that it can modify its
mass over time, perhaps to simulate radioactive decay. To handle
such a change, the subclass Scripts have eventh called massBack-
ward. A route is created from the Newtonian prototype’s ma,rsOut
event into nrassBackwarrL This route is needed so that when han-
dling this second eventh, the logic sets the local field and triggers
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the eventOut instead of forward propagating. This act of updating
attributes from superclass to subclass will be referred to as back-
ward pmpagadon. Note that backward propagation is not needed
for attributes that are not used at that level in the prototype hierar-
chy but are necessary even if the superclass does not yet modify
the value of that attribute. This machinery aids localization. If the
Scripts within the subclass prototypes already handle backward
propagation, modifications made to Newtonian should be safe.

Forward propagation could be optimized through the use of the
JavaScript interface for setting eventIns directly. If the subclass
Script hadan SFNode field that pointt?dto the superclass prototype
(this can be done with DEF / USE), forward propagation could be
implemented by setting the eventln’s value in the Script’s logic.
This is functiomlly equivalent to the Script setting its own
eventOut and routing this eventOut to the superclass prototype’s
attribute eventh.

Backward propagation could also be optimized, but it would
require an SFNode field on the Newtonian prototype to maintain a
reference to any surrounding subclass prototype, and the backward
propagation eventlns for each attribute in the Script node would
have to be part of the subclass prototype’s exposed interface.
Routing to these eventIns would confuse the logic of the subclass,
so backward propagation should be achieved using routes, with all
of the machinery encapsulated by the prototype.

The subclass prototypes function by catching the timeIn event, for-
ward propagating a behavioral force to the encapsulated Newto-
nian, then forward propagating the timeln event. In this way, the
author is certain that the Newtonian prototype does not update
velocity and position until after the subclass prototype has updated
the force. When it is finished evaluating, the Newtonian triggers
eventOuts for position and velocity. The Newtonian’s positwnOut
event is routed to each subclass’s backward propagation eventIn,
and therefore updates the subclass Script’s position and triggers
the subclass Script’s positionOut event.

4.4 Container Prototype
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Figure 5: Container Prototype Implementation

Finally, the Container prototype is defined. The Container man-
ages a list of nodes, some of which maybe Newtonian. The Con-
tainer’s describing scene graph consists of a Group whose children
may include Newtonian (or subclass) prototype instances and a
Script node. Because the prototypes are under the Container, it can
manage the propagation of both time and of the Newtonian list to
each Newtonian in that list programmatically.

Any time a node is added to or removed from the list of the Con-
tainer class, ContainerScript iterates through the child list and
compiles a list of those prototypes inheriting from Newtonian.
The result is cached in the newtoniarhkt field, and is propagated
to each member of that list. A route is dynamically created from
the listOut of each Newtonian to the listln of the ContainerScript,
empowering each prototypeto add or remove members to the sim-
ulation.

4.5 Analysis

The author has created abstractions that encapsulate the data and
functionality associated with performing each class’s task by nest-
ing prototype definitions. By taking advantage of the event model,
subclass proto~pes are able to reuse the Newtonian’s functional-
ity.

Although this method yielded functional abstractions, it is difficult
to implement. Attributes are duplicated in every prototy~ of the
nested hierarchy. This causes data flow problems, as values must
be forward propagated during initialization or during a subclass
modification, and values must be backward propagated during any
superclass set. Object interactions rarely decompose so cleanly,
making the forward and backward propagation framework intrac-
table.

VRML is an event-driven language because the execution of logic
occurs as a result of an eventhr being triggered. Thus, execution
flow is as dependent upon the event model as data flow. This com-
plicates communication between VRML objects as well as execu-
tion within an object.

In more traditional object oriented languages, the subclass can
redefine the methods of its superclass. To implement the analogy
of “overloading” in VRML, each prototype would require an SF-
Node field whose value is the outermost prototype definition of the
instance. This outermost prototype must receive notification any
time an eventOut is meant to cause execution so that the outermost
event handler receives the event. Combined with the logic for for-
ward and backward propagation, even the simplest systems
become unbearably complex using this method.

The problem is that nesting prototype definitions is not tndy srrb-
classing. In a real subclass, there exists one unique representation
for an attribute or method. In this object-based VRML approach,
nested prototypes are masquerading as a single object. Not only is
the state of the object duplicated throughout the class hierarchy,
but communication within the hierarchy of a single instance is
asynchronous in nature and difficult to orchestrate.

5 PUTTING JAVA IN THE SCRIPT NODES

In order to address the difficulties in using nested prototype defini-
tions to achieve t@ctionaf inheritance, this second method of
object oriented development takes advantage of the object oriented
nature of the Java programming language [4]. ‘l’heclass hierarchy
is defined by creating subclasses of the Java Script class. Proto-
types are then defined to encapsulate the relationship between the
Script node and the VRML scene graph.
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5.1 Script Classes
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Figure 6: Java Script Class Hierarchy

The first class is NewtonianScript, which has an input, field, and
output for each attribute on the class. The initialize method
caches fields and everttouta so that NewtonianScript has access to
the Java wrapper for each without searching each time they are
needed. After this is done, field values are propagated to the
eventOuts of the Script class, which correspond to the eventOuts
of the Script Node. These are in turn afiased to the eventOuts of
the Newtonian class prototype.

The processEvento method is defined so that any eventIn sets the
corresponding field value. No evaluation or propagation to an
eventOut occurs until after all events have been triggered, and the
processedEventso method is invoked. ProcessedEventso deter-
mines if time was one of the attributes that changed. If it has, com-
puteForceQ, applyForceo, and updateEventOutso are invoked.

NewtonianScript does not mcdify the force attribute in compute-
Forceo. This method is redefined by subclasses to determine the
force on the Newtonian baaed on various behaviora. The apply-
Forceo method is the one in which force and time are used to
update velocity and position. Finally, updateEventOuts is called,
propagating the fieId changes out of the Script, and therefore out of
the Newtonian prototype.

5.2 Prototype Definitions

Withthe behavior summtized in each VW object’s Script, the
creation of the respective prototypes is simple. The Newtonian
and Container prototype definitions are identical to those presented
in the previous method, with the exception that the Script nodes
point to their respective Java classes. The Newtonian subclass
prototype implementationsare similar to those of Newtonian, but
Flocker augmentsits interfaceby adding its behavioral attributes.

5.3 Analysis

The system resulting fkom this approach is more robust, more effi-
cient, and easier to understand that the previous approach. The
author mav now add subclasses to Newtonian bv extendhw New-
tonianScri~t, adding code for attributes unique-to that s&rclass,
and redefining computeForceo to impart a force based on the
desired behavior. A prototype definition must then be written
around the new Script, extending the interface of its superclass
prototype.

This method does not suffer from the issues that the first had with
communication within a class, but it is still dependent upon the
prototype structure for communication between separate objects.
The execution model within AttractorScript is easy to understand,
but it must still iterate through a list of Newtonian prototypes to
determine their locations. The Java code within a Script node is
umble to directly access the Java object within another Script
node. The code in AttractorScript may only communicate with the
VRML scene graph using the Java scene interface. Thus, the class
hierarchy must still be reflected in the prototype structure.

To illustrate this point, consider the result if each prototype named
its positionOut event differently. The result is that the compute-
Forceo methods of AttractorScript and F’lockerScript could not
find the ‘positionOut’ event of the Newtonian prototypes in their
list to grab their positions. Each prototype that introduced a new
name would require the author to rewrite these two methods add-
ing a tieldnarne to look for.

Because communication between objects is performed through the
proto~ interfaces, execution must still occur as a function of the
event model. The use of Java in the Script node alleviated the
problems with communication within an object, but offers nothing
to amend the difficulties of orchestrating execution and data flow
between nodes.

6 JAVA AND THE EXTERNAL INTERFACE

In the last proposedmethod, Java classes are written that encapsu-
late the logic necessary to perform the physical simulation. A sep-
arate class hierarchy is then created to encapsulate the display
logic needed to illustrate the system. Through the separation of
simulation and display logic, the resulting objects are easier to
understand and more extensible.

Attractor needs no additional attributes, and merely overloads
computeForceo to impart a force based on gravitational attraction.
Flocker adds attributes for an agent’s attraction to the center of the
flock, and the agent’s personal radius. The Flocker overloads ini-
tialize{) processEventso, and updateEventOutso to add support
for these new attributes, and overloads prepareValueso to impart a
force based on flocking tendencies.
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6.1 Functional Classes
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Figure 7: The Functional Class Hierarchy

The Newtonian class contains data members representing time,
mass, position, velocity, force, a tist of Newtonian to interact
with, and a list of Manifestation objects responsible for the display
of that Newtonian. The class contains access methods for each
data member, and methods for performing the force calculation.

The setTlmeo method should not have the ‘side effect’ of chang-
ing position and velocity, so the updateo method is introduced.
Updateo accepts a time value, and invokes setlimeo, compute-
Force{), applyForceO, then updateManifestationso. Compute-
Forceo does nothiig in the Newtonian base class, but is
overloaded by Attractor and Flocker to compute forces based on
gravity or swarming respectively. The applyForceo method is
defined to apply the force to the Newtonian, updating the class’s
data members.

If a Newtonian (or subclass thereof) has an empty list of associated
Manifestation objects, updateManifestationso will do nothing, and
updateo will merely cause the Newtonian to update its internal
state. Otherwise, each Manifestation’s showo method is invoked.
Each Manifestation object may invoke the access methods of the
Newtonian to query values, and may render them in any way that
the author desires.

6.2 Manifestation Classes

The Manifestation class is responsible for making the properties of
its associated Newtonian understood by the viewer. Subclasses of
the Manifestation class encapsulate the logic necessary to render
Newtonian to a Java drawing area, a VRML scene graph, or per
haps to Cosmo3D (Silicon Graphics’ 3D Java library).
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Figure 8: The Manifestation Class Hierarchy

Each subclass of Manifestation will contain the data members and
access methods needed to maintain its associated Newtonian and
the information for rendering to ita particulu medium. The drawo
method queries the Manifestation’s Newtonian to tind salient
information, and performs the logic unique to that subclass for dis-
playing that information to the viewer. By tiowing each Newto-
nian to have several Manifestations, we have made it possible to
display the results of a single simulation in multiple windows, in
several rneda.

VrrnlManifestation’s constructor creates an instance of the Pruticle
prototype that will represent its associated Newtonian and adds it
to the scene using the browser’s scene access methods. Similarly,
its destructor removes the Particle from the scene. The drawo
method haa only to get the position from its associated Newtonian,
and send the value to the positionb event of its Particle prototype.
In this way, the VrmlManifestation class acts as liaison between
the timctional Java classes and the VRML scene.

6.3 Container Class

Figure 9: The ContainerClass

If the developer had wanted every Newtonian that was created to
be part of the simulation, each Newtonian’s list of peers could be
shred across all instances of the class. The Newtonian’s constmc-
tor could automatically append it to a global list of all Newtonian,
eliminating the need for a Container class.

By introducing the container class, however, a single executing
applet can maintain several independent containers, each of which
is an independent simulation. More interestingly, subclasses of the
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Container could allow for more experimental designs, such as hav-
ing two sets of Newtonian, each of which interacts with members
from the other set, but not its own.

AddNewtoniano accepts an instance of a Newtonian as a parame-
ter, and adds it to the Container’s list of managed Newtonirms.
The Container then iterates through its managed Newtonian, call-
ing the setNewtonianListo method on each so that they have a
complete list of bodies to interact with. RemoveNewtoniano has
similar logic for removing a body from the simulation. The
WdXeo method accepts a time value, and iterates through the list
passing the new time value to the updateo method of each Newto-
nian.

6.4 Execution

In order to execute Java code, the developer must create a class
that inherits from Applet, and overloads methods such as inito or
draw{) to customize the object. The inito method is invoked when
the object is first created, so it is the common place to put setup
information.

In a simple simulation, inito begins by retrieving the browser
object present on the page so that it may be passed to each Vrml-
Manifestation object of a Newtonian. Inito then creates the Con-
tainer object that will manage all of the members of the simulation.
Severaf Newtonian, Flockers, and Attractors are then instanced,
and the code cafls their access methods to set initial conditions on
each. Each Newtonian (or subclass) instance is then given a Vrrnf-
Manifestation object, and added to the Container. Finally, the
applet enters a loop in which time values are fed to the Container.
These time updates are handed to each Newtonian in turn, causing
their VmrlManifestation to animate the bodies visible in the
VRML browser.

There is no structure imposed on the logic outside of the VRML
scene graph. Other simulation applets could search the VRML
graph for Newtonian, Attractor, or Flockcr prototype wrappers
around Particles and generate the simulation and initial conditions
from the VRML file. In this way, the author could modify the
experiment without recompiling Java bytecodes.

6.5 Discussion

This method of realizing the proposed object model is the most
extensible presented in this paper. In previous approaches, the
functionality was written in a VRML context and was therefore
limited to that medium. By creating a distinction between the
functional classes and the display classes, the author has created a
valuable asset that can be reused for VRML or elsewhere. Java
provides a clean inheritance model, and the procedural style of
execution simplifies execution and data flow.

The property sacrificed when using this approach is that a proto-
type definition no longer encapsulates all of the logic needed to
implement a Newtonian, Attractor, or Flocker. In either of the two
previous approaches, these prototypes could be used by others if
they simply declared the author’s prototypes as external. In this
approach, it is more diftictdt to determine where salient logic is
contained. The logic for plotting a Particle’s course through time
is found in the prototypes of the scene graph, but in order to create
a full simulation, they must copy the relevant and classes and sim-
ulation applet from the author.

7 FUTURE WORK

There were no VRML viewers matureenough to test many of the
proposed techniques when this paper was written,so the Web site
is a work in progress. The ideas presented in this paper are the
result of exploring various methods of realizing one system. With
each new problem comes a unique desired object model, and new
interactions will undoubtedly suggest new roles for VRML proto-
typing, scripting, and applet to browser interactions.

Severaf of the complexities discussed in this paper inspire exten-
sions to VRML, and these may someday find a home in the specifi-
cation. One such change is the need for an inheritance sematic that
would allow a prototype to build upon the interface of another.
Another desirable feature is support for synchronization, particu-
larly in the external authoring interface. Without the ability to
temporarily disable rendering in the VRML viewer the system will
be rendered when only some of the particles have been updated.
These intermediate states are inconsistent, and it is unacceptable
that they are displayed.

8 CONCLUSION

Authors can benefit from using object oriented methodologies
when developing worlds. The author does not need to create an
entire class hierarchy before concepts like abstraction become
valuable. The Particle prototype is a simple abstraction that uses
JavaScript, but it has proven to be invaluable throughout the
implementations explored.

VRML was not written to be a full object oriented language, thus it
seems that Java is the appropriate language in which to write an
object’s functional class hierarchy. Java classes may act upon the
scene from within a Script node, or externally through the author-
ing interface.

Placing Java in the Script node has the advantage that the Script
node’s interactions with the scene graph can be encapsulated by a
prototype definition, creating a reusable abstraction. Unfortu-
nately, the VRML objects constructed in this way must still rely on
the event model for interactions. Deveoping Java classes that act
upon the scene graph using the external authoring interface can
provide highly reusable assets, but lacks the highly encapsulated
properties offered by the Script node embedded in a prototype def-
inition.
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