THE UNIVERSITY OF

WARWICK

Original citation:

Coetzee, Peter and Jarvis, Stephen A., 1970- (2013) CRUCIBLE : towards unified
secure on- and off-line analytics at scale. In: The 2013 International Workshop on Data-
Intensive Scalable Computing Systems, Denver, Colorado, USA, 18 Nov 2013.
Published in: Proceedings of the 2013 International Workshop on Data-Intensive
Scalable Computing Systems pp. 43-48.

Permanent WRAP url:
http://wrap.warwick.ac.uk/62119

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:

“© held by the owner/author(s). Publication rights licensed to ACM. 2013

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 2013
International Workshop on Data-Intensive Scalable Computing Systems,
http://dx.doi.org/10.1145/2534645.2534649

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your research

http://wrap.warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/62119
http://dx.doi.org/10.1145/2534645.2534649
mailto:publications@warwick.ac.uk

CRUCIBLE: Towards Unified Secure On- and Off-Line
Analytics at Scale

Peter Coetzee, Stephen Jarvis
Performance Computing and Visualisation Group
University of Warwick
Coventry, United Kingdom
p.l.coetzee@warwick.ac.uk,

s.a.jarvis@warwick.ac.uk

ABSTRACT

The burgeoning field of data science benefits from the ap-
plication of a variety of analytic models and techniques to
the oft-cited problems of large volume, high velocity data
rates, and significant variety in data structure and seman-
tics. Many approaches make use of common analytic tech-
niques in either a streaming or batch processing paradigm.

This paper presents progress in developing a framework
for the analysis of large-scale datasets using both of these
pools of techniques in a unified manner. This includes: (1)
a Domain Specific Language (DSL) for describing analyses
as a set of Communicating Sequential Processes, fully inte-
grated with the Java type system, including an Integrated
Development Environment (IDE) and a compiler which builds
idiomatic Java; (2) a runtime model for execution of an an-
alytic in both streaming and batch environments; and (3) a
novel approach to automated management of cell-level secu-
rity labels, applied uniformly across all runtimes.

The paper concludes with a demonstration of the success-
ful use of this system with a sample workload developed in
(1), and an analysis of the performance characteristics of
each of the runtimes described in (2).

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming— Distributed programming, Parallel programming;
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures;

D.3.2 [Language Classifications|: Concurrent, distributed,
and parallel languages; Data-flow languages

General Terms
Algorithms, Languages, Security

DISCS-2013 November 18, 2013, Denver, CO, USA

1. INTRODUCTION

Data Scientists have an increasingly challenging role to play
in generating valuable insights across a variety of business
and research areas. They must make sense of a broader
variety of data than ever before, on an unprecedented scale.
This has motivated significant advances in areas pertaining
to analytics, from streaming analysis engines such as IBM’s
InfoSphere Streams, Backtype’s Storm or Yahoo!’s S4 to an
ecosystem of products built on the MapReduce framework.

When undertaking a piece of analysis, specialists are typi-
cally faced with a difficult decision: do they (1) opt to receive
continuous insight, but limit their capabilities to a functional
or agent-oriented streaming architecture; (2) make use of the
bulk data behemoth, MapReduce, but risk their batch anal-
yses taking hours or even days to return responses; or (3) go
to the effort of maintaining code targeting both? If they are
required to support multiple methodologies, they are faced
with an enhanced engineering challenge: ensuring that the
analysis they perform is both correct and equivalent on all
platforms. These issues are further complicated by deploy-
ment scenarios involving multi-tenant cloud systems, or en-
vironments with strict access control requirements for data.

Our research seeks to alleviate many of the pain points
highlighted above, by demonstrating a Domain Specific Lan-
guage (DSL) and associated runtime environments: CRU-
CIBLE. We show how the CRUCIBLE system (named af-
ter the containers used in chemistry for high-energy reac-
tions) can be used across multiple data sources to perform
highly parallel distributed analyses of data simultaneously
in both streaming and batch contexts, efficiently delivering
integrated results whilst making best use of existing cloud
infrastructure.

Specifically, the contributions of this work are:

e A high-level DSL and associated Integrated Develop-
ment Environment (IDE) Tooling. This is the first
known DSL to be specifically engineered to target both
on- and off-line analytics with equal precedence;

e A suite of runtime environments providing consistent
execution semantics across on- and off-line data, mak-
ing use of best-in-class existing backends;

e A framework for managing cell-level security consis-
tently across runtime environments, enabling the secu-
rity conscious data scientist to trivially manage data
visibility using an easily mastered labelling paradigm.

The remainder of this paper is structured as follows: Section
2 presents a summary of related work; Section 3 introduces

Streams Accumulo

Standalone
Runtime Runtime

Runtime

User Interface Integration Runtime Base

Eclipse Zest

(1D5) (Visualisation) Domain Specific Language

Tool & Operator Library

Processing Element Model

Figure 1: CRUCIBLE Package Layer Cake, with Develop-
ment Environment on the left and Runtime on the right.
Entries in italics are external library dependencies.

the CRUCIBLE system and describes its abstract execution
model; Section 4 offers a detailed examination of the se-
curity labelling approach in CRUCIBLE; Sections 5 and 6
make this abstract model concrete through the introduction
of three runtime environments and a standard library; and
Section 7 gives a performance analysis of the CRUCIBLE
runtimes. Sections 8 and 9 provide some avenues for fur-
thering this research, and conclude the paper.

2. RELATED WORK

Large-scale data warehousing technologies abound in the lit-
erature; many of them are inspired by MapReduce [6] and
Bigtable [4], a suite of Google technologies which spawned
Hadoop [18] and HBase'. In parallel, NSA developed Accu-
mulo?, which added cell-level security, increased fault toler-
ance through the FATE framework, and a novel server-side
processing paradigm [8], called Iterators.

Tools such as Google’s Drill [10], and the Apache Software
Foundation implementation Dremel [13], promise SQL-like
interactive querying over these Bigtable-backed frameworks.
Hive [21] and Pig [16] both aim to permit definition of ana-
lytics over arbitrarily formatted data in Hadoop [18] by in-
venting new query languages (with some definitions required
in Java). Cascading® takes a slightly more engineer-centric
approach to definition of analytics over Hadoop.

Perhaps the most common products in the streaming ana-
lytics space are IBM’s InfoSphere Streams [17], and the open
source Storm*, developed by BackType. Others include Ya-
hoo!’s S4 [14] (now an Apache Incubator project), offering
an agent-based programming model; Esper® for Java and
.NET development; and Microsoft’s StreamInsight [2].

Recent research has begun to look at the problem of up-
lifiting offline analytics into the realm of online processing.
SAMOA [5] aims to resolve issues around Machine Learning
using a streaming processing paradigm. AT&T Research,
as part of their Darkstar project [11], have constructed a
hybrid stream data warehouse solution, DataDepot [9]. The
closest research to CRUCIBLE to date has been in IBM’s
DEDUCE [12] work, which looked at defining a Mapper and
Reducer for MapReduce using SPADE, the programming
language used in early versions of InfoSphere Streams.

CRUCIBLE builds on the most desirable attributes of
these approaches in order to offer a single engineer-friendly
platform for developing secure analytics to be deployed on
state of the art multi-tenancy on- and off-line data process-
ing platforms.

"http://hbase.apache.org/
2http://accumulo.apache.org/
Shttp://www.cascading.org/
‘http://storm-project.net/
Shttp://esper.codehaus.org/

package eg.gen

import crucible.lib.pe.TimedEmitter

import crucible.lib.pe.FileSink

VL

* Generate tick tuples

*/

process Generator extends TimedEmitter {
conf : long Frequency = 10; // ms
output : Timer

0N U W N

=
o ©

}
ok
* Write the count of seen tuples
* to a FileSink, and emit global count
*
/
process CountingWriter extends FileSink {
conf : Filename = '/nfs/tmp/count.txt'
state : {
local int seen = 0
int allSeen = 0

I T = N Wy S
= O 0N U R W =

outputs
input : {
Generator . Timer —> {
seen = seen —+ 1
allSeen .atomic [
allSeen = allSeen + 1
]

val id = Thread:: currentThread.id
Write . emit (

'thread' —> id,

'global' —> allSeen ,

'local' —> seen

[Write, Other];

W oW W WNNNNNNNN
O R H OO KN e AW N

)
if (seen % 10 == 0)
Other.emit ('count' —> allSeen)

w W
SIS

36 }

37 CountingWriter . Write —> super
38 }

39 |}
Listing 1: An Example CRUCIBLE Topology, counting the
frequency of words in an input deck.

3. CRUCIBLE DSL

The CRUCIBLE DSL is built on top of the XText [7] lan-
guage framework. It makes use of XText’s XBase language,
which is an embeddable version of the XTend JVM (Java
Virtual Machine) language. CRUCIBLE’s DSL provides a
syntactic framework for modelling Processing Elements, us-
ing XBase for both PE logic and type declarations.

CRUCIBLE compiles a topology (a collection of intercon-
nected PEs) into idiomatic Java, based on the CRUCIBLE
PE Model (the bottom layer in Figure 1). This is in contrast
to many other JVM languages, such as [15], which directly
generate far less readable bytecode. Compiler support is
used to provide syntactic sugar for access to global shared
state and the security labelling mechanism, both of which
are discussed in more detail later in this section.

Listing 1 contains a sample topology, demonstrating CRU-
CIBLE’s syntax and JVM integration. At a high level, it is
structured similarly to a Java code file; a package declara-
tion, a set of imports, followed by one or more classes. In
the CRUCIBLE DSL, each process models a class, with a
name and an optional superclass. These classes are referred
to as Processing Elements, or PEs for short. The body of a
process is divided into a set of unordered blocks:

e conf - Compile-time configuration constants. The cal-
culation of these may involve an arbitrary expression.

e state - Runtime mutable state; shared globally be-
tween instances of this PE. These variables may be
declared local, in which case no global state is utilised
for their storage (see Section 3.2).

e output / outputs - Declaration of the named output
ports from the process.

e input - A block of key/value pairs mapping the qual-
ified name (in the form ProcessName.OutputName) of
an output to a block of code to execute upon arrival
of a tuple from that port.

3.1 Message Passing

CRUCIBLE PEs communicate using message passing; a call
to OutputName.emit (...) causes all subscribers to that out-
put to receive the same message. No guarantees are given
about the ordering of messages interleaved from different
sources. Messages are emitted as a set of key-value pairs (as
in lines 32-35; this makes use of the XTend Pair binary op-
erator, x —> y, which is syntactic sugar for new Pair<>(x,y)).
At compile time CRUCIBLE performs type inference on all
of the emit calls in the topology to generate a correctly typed
receive method interface on each subscriber.

3.2 Global Synchronisation & State

CRUCIBLE’s global synchronisation and shared state com-
ponents make use of the GlobalStateProvider and Lock-
ingProvider implementations which are injected at run-
time. As discussed previously, state variables exist in global
scope if they are not marked local. Thus, if multiple in-
stances of a PE are run simultaneously, they will share any
updates to their state; these changes are made automat-
ically. This mechanism is applied without any promises
about transactional integrity, which in limited circumstances
is acceptable (e.g., when sampling for ‘a recent value’).

In those circumstances which require distributed locking,
an atomic extension method is provided to lock a given state
element, and apply the given closure to the locked state (as
in lines 28-30). The behaviour of this is similar to Java’s
synchronized keyword, with two key distinctions. The first
of these is that the locking is guaranteed across multiple in-
stances of a PE within a job, even across multiple hosts. The
second key feature is that the atomic method may be ap-
plied to multiple objects by locking a literal list of variables
(e.g., #[x, y, z].atomic[...]), in which case all locks are
acquired before executing the closure. A fixed ordering of
locking and unlocking is applied in order to prevent dead-
lock, as well as a protocol lock to ensure that interleaving of
lock requests on different critical regions do not deadlock.

4. SECURITY LABELLING

CRUCIBLE’s Security Labelling protocol is built on the idea
of cell-level visibility expressions, similar to those described
by Bell and La Padula [3]. An expression is given as a con-
junction of disjunctions across named labels. For example,
the expression “foo & (bar||baz)” requires that a user is au-
thorised to read the foo label, as well as either bar or baz. If
they lack sufficient authorisation, then they are not permit-
ted knowledge of the existence of that cell. This mechanism
is particularly valuable in a multi-tenancy security scenario,
where data with different security caveats or classifications
are processed by a single system.

In CRUCIBLE, this concept is implemented by declar-
ing an empty security label for every variable in the system.
This label is accessible to the user by calling the 1abel exten-
sion method on a variable. A user may add to a label using
the += operator. For example, the label of the x variable

is expanded by either calling x.label += "A | B" (literal
expansion), or x.label += y.label (label reference).

More formally, consider a label function A, and a function
€, for label expansion:

A(a) : Label for identifier a (1)
e(a,b) : A(a) = {Ao(a), A(b)}

Labelling of object-oriented method invocation makes the
assumption that the invocation receiver’s state may be mu-
tated by the supplied arguments. Therefore:

eEc7 dg
(e, f) @
Ai(e) = {Ao(c), A(d), Ale), A(f)}

Assignment of a value to a non-final Java variable (e.g., in
g = h, where h is any expression; not to be confused with
g.label = h.label) is equivalent to clearing the contents
of its label, as all state for that reference is lost:

g=h = Mg =0 3)

c.foo(d,e, f) =

If the right-hand-side of the assignment (h) contains any
identifiers, expansion must occur;

V(i) € h, identifier(i) = €(g,1) (@)
A2(g) = {A(i0)--Alin)}
As many Java objects contain references to mutable state,

when a label for x expands to include the label for y, and y
is later expanded, x’s label must include the additions to y:

Ass: y.label = "' Xo(y) = 0
x.label += 'foo' Xo(z) = {“foo”}
x.doSomething (y) e(z,y)

M(y) = {“bar”}
)\2(33) — {uba,,m,ufooﬂ}

y.label += 'bar'
x.label = 'bar&foo'

LS S N

This labelling requires support from the CRUCIBLE com-
piler to transform invocations of emit (Pair<String,?> ...
tuple) into invocations of emit (Pair<SecurityLabel,Pair
<String,?>> ... tuple). Note that in the Java type sys-
tem this has the same type erasure as the original method.
Concordantly, when generating the method signature for a
receive method (the naming convention for these generated
methods takes the form receive$PEName $OutputName), the
compiler interleaves parameters with their respective labels.
Thus, a signature of:

receive$Proc$Out (String , Integer)
becomes:
receive$Proc3Out (SecurityLabel , String,
SecurityLabel , Integer)

It is important to note that due to CRUCIBLE’s close
integration with the JVM, this mechanism can not be con-
sidered secure for arbitrary untrusted code; it aims to assist
the security-conscious engineer by making it easier to com-
ply with security protocols than to ignore them.

S. CRUCIBLE RUNTIMES

Figure 2 shows how classes in the model interact. Instances
of many of these classes (shaded in Figure 2) are injected at
runtime (using [22]), permitting the behaviour of the topol-
ogy to be integrated with the relevant runtime engine with-
out changes or specialisation in the user code.

DataType

Topology

Stream
Definition

PE

Definition
Output
GlobalState Locking .
Provider ‘ Provider ’ Dispatcher

Figure 2: CRUCIBLE Model Composition diagram, showing
the composition of the core model (white) and the runtime
injectable components (grey).

5.1 Standalone Processing

The first, and simplest, runtime environment is designed for
easy local testing of a CRUCIBLE topology, without any
need for a distributed infrastructure. This Standalone envi-
ronment simply executes a given topology locally, in a single
JVM, relying heavily on Java’s multithreading capabilities.
Locking and global state are provided based on this in-JVM
assumption.

Message passing is performed entirely in-memory, using a
singleton Dispatcher implementation with a blocking con-
current queue providing backpressure [20] in the event that
some PEs are slower than others. This prevents the topology
from using an excessive amount of memory.

5.2 On-Line Processing

IBM’s InfoSphere Streams product forms the basis of CRU-
CIBLE’s streaming (on-line) runtime engine. An exten-
sion to the CRUCIBLE DSL compiler generates a complete
SPL (IBM’s Streams Processing Language) project from the
given topology. This project can be imported into InfoS-
phere Streams Studio; it consists of the required project in-
frastructure (including classpath dependencies), and a single
SPL Main Composite describing the topology. Each Streams
SPL PE is an instance of the CruciblePE class. This class
handles invocation of the receive$... tuple methods, dis-
patch between Streams and the CruciblePEs, and tuple se-
rialisation.

There is a one-to-one mapping between tuples emitted in
CRUCIBLE and tuples emitted in Streams. Each key in
a CRUCIBLE tuple has a defined field in a Streams tuple,
and all keys are transmitted with each emission. Keys are
interleaved with their security labels, such that the label
for a key always precedes it. Tuple values are converted
between Streams and CRUCIBLE using an injected serial-
isation provider; the default implementation of this lever-
ages Kryo® for time and space efficiency reasons [1, 19],
but it would be trivial to add, for example, a Protocol
Buffers”-based implementation if interoperability with ex-
ternal systems were required. Security Labels are not seri-

Shttps://code.google.com/p/kryo/
"http://code.google.com/p/protobuf/

Tngest into Accumulo
(optional)

Tablet 0

Accumulo
Master

CRUCIBLE
Tterators

Y

Tablet 1..n

Results written to
Accumulo Tablets

Legend
Low
Volume .
High > Scanners

—
Volume

Control of Tablet
assignment and Iterator
{con,de}struction

Last RowlD in
Tablet Scan

Figure 3: CRUCIBLE Accumulo Runtime Message Dis-
patch, demonstrating how Scanners are used to pull data
through a collection of custom Iterators to analyse data
sharded across Accumulo Tablets.

alised through Kryo, in order to facilitate their inspection by
debug tooling on the Streams instance. Security Labels are
written as rstring values, while all others are serialised as
a 1list<int8> (representing an immutable array of bytes).
Each of these CruciblePE instances could potentially be
scheduled into separate JVMs running on different hosts,
according to the behaviour of the Streams deployment man-
ager. Manual editing of the SPL e.g., to use SPLMM (SPL
Mixed Mode, using Perl as a preprocessor), can be used to
split a single PE across multiple hosts, as well. The global
synchronisation primitives discussed in Section 3.2 must be
enabled on the runtime to facilitate this parallelism.

5.3 Off-Line Processing

The mapping from CRUCIBLE’s execution model to Accu-
mulo for off-line processing is more involved. In order to
exploit the data locality and inherent parallelism available
in HDFS, while maintaining the level of continuous insight
offered by Streams, the Accumulo runtime makes use of Ac-
cumulo Iterators [8]. An Iterator may scan multiple tablets
in parallel, and will stream ordered results to the Scanner
which invoked the iterator. CRUCIBLE makes use of this
paradigm by spawning a CrucibleIterator for each PE in
the topology, along with a multithreaded Scanner to con-
sume results. Each CrucibleIterator may be instantiated,
destroyed, and re-created repeatedly as the scan progresses
through the data store.

Each CruciblelIterator is assigned to its own table, named
after the UUID of the Job and the PE to which it refers. Val-
ues map onto an Accumulo Key by using a timestamp for the
Row ID, the Source PE of a tuple as Column Qualifier, and
the emitted item’s key as Column Key. Column Visibility
and Security Label are mapped directly onto their Accumulo
equivalents, making efficient use of native constructs.

In this way, the CrucibleIterator can invoke the correct
receive method on a PE, by collecting all (key, value, label)
triples of a given RowID together. By mapping CRUCIBLE
Security Labels onto Accumulo Visibilities, all message pass-
ing data (and final results) are persisted to HDFS with their
correct labels: external Accumulo clients may read that
state, provided they have suitable Authorization(s).

108 108 108
g g 108 |- - 108 |- 10° |- -
+
§ g 104 |- 8 104 |- 104 [8
AE 10° e U 10% | :
100 9= | | ! 0 OO ! ! ! | | |

10! 10% 10% 10* 10° 10°
Problem Size (Tuples)

10! 10% 10% 10* 10° 10°
Problem Size (Tuples)

10! 10% 10® 10* 10° 10°
Problem Size (Tuples)

—e— Standalone
-~ Native Java

—— SPL (Global)
—+— SPL (Local)
--=--Native SPL

—&— Accumulo (Global)
—&— Accumulo (Local)

-+ Native Accumulo

Figure 4: Scalability Comparison of CRUCIBLE Runtimes and Native Implementations.

CRUCIBLE’s AccumuloDispatcher takes tuples emitted
by a PE, and writes them to the tables of each subscriber
to that stream, for the relevant CrucibleIterators to pro-
cess in parallel. The final component is the multithreaded
Scanner, which will restart from the last key scanned, thus
ensuring that the Accumulo-backed job fully processes all
tuples in all tables. This flow is laid out in Figure 3, for
clarity.

6. STANDARD LIBRARY

The final CRUCIBLE component is the standard library.
This includes the injected components necessary for opera-
tion of the runtimes described in Section 5, along with a set
of base PE implementations to simplify creation of CRU-
CIBLE topologies. These provide examples of data ingest
from a variety of sources, such as the various APIs of Flickr
and Twitter, along with primitives to read and write File
data. An XPath PE is valuable for extracting data from
XML. Work is already underway to expand this library to
include operators for parallel JOINs, Bloom-Filters, and se-
rialisation to/from common data formats such as JSON.

This library is implemented in standard Java, and no spe-
cial infrastructure is required to extend it. It is intended
that any users of CRUCIBLE may extend this library with
custom PEs; or publish their own, simply by writing the
relevant Java, conforming to an interface, and making it
available on the deployed classpath. For single use Java op-
erators this may even be done within the CRUCIBLE topol-
ogy’s Eclipse IDE project - the Java compiler will pick this
up and integrate it with CRUCIBLE automatically.

7. EXPERIMENTAL RESULTS

A key part of validating this approach, beyond its functional
correctness, is demonstrating the performance of the var-
ious CRUCIBLE runtimes. As the CRUCIBLE system is
in its early phases of development, we present results from
the pre-optimisation codebase, with a focus on comparing
the scaling behaviour of each CRUCIBLE runtime against
a functionally equivalent native implementation.

7.1 Experimental Setup

A simple CRUCIBLE benchmark topology was written to
count the frequency of letter occurrence in a dictionary (akin
to Listing 1), limited to the top N results, where N is the
problem size. Due to the lack of available support in native
code, CRUCIBLE’s security labelling capabilities have been
omitted from this benchmark.

These results were collected on a small development clus-
ter, consisting of three Tablet Servers, one Master, and three
Streams nodes. Each node hosts two dual-core 3.0GHz Intel
Xeon 5160 CPUs, 8GB RAM, and 2x1GbE interfaces.

7.2 Analysis

The three graphs in Figure 4 shows the results of this test-
ing across the Standalone (Section 5.1), Streams SPL (Sec-
tion 5.2), and Accumulo (Section 5.3) runtimes respectively.
It is clear from these results that the CRUCIBLE runtimes,
in the main, scale proportionally to their native equivalents.
There is a noticeable performance gap for most of the run-
times at present; future work is scheduled to enhance the
per-tuple processing delay in all CRUCIBLE runtimes. The
“Global” and “Local” data series are worth noting, as they
highlight the performance difference between Global (Zoo-
Keeper based) and Local (in memory) shared state providers
(see Section 3.2, and the discussion at the end of Section 5.2).
Some runtimes do not require all of the features of CRU-
CIBLE at all times, and thus it is valuable to be able to
disable performance-hampering features such as these.

While comparing the absolute performance of CRUCIBLE
and the native implementations, it is important to consider
the engineering implications of our approach in CRUCIBLE.
Removing much of the “scaffolding” of other solutions has
enhanced the expressivity of the CRUCIBLE DSL to the
point where the above benchmark was implemented in ~40
lines of code, as opposed to ~260 for the three native imple-
mentations. Furthermore, the CRUCIBLE implementation
can be executed across multiple runtimes, whereas the native
implementations are specific to either on- or off-line environ-
ments. In our experience, the 2-3 days taken to write and
debug the suite of native analytics was reduced to under a
day with CRUCIBLE.

8. FURTHER WORK

There are a number of valuable avenues of further work to
explore. Ultimately, we intend to improve CRUCIBLE’s
usability through the use of improved interfaces for planning
and development of analytics. Alongside that, we intend
to consider two key areas of improvement; the CRUCIBLE
DSL, and the runtime environments.

CRUCIBLE DSL improvements include: (1) New lan-
guage features - topology composition, runtime PE reuse,
cross-job Subscription, etc; and (2) Enhanced in-IDE debug
tooling, through the use of mock data sources, probes, and
visualisations of data flow and security labels.

Further work on the runtimes includes: (1) Performance
enhancements for CRUCIBLE runtimes, including alterna-
tive compilation strategies; (2) Workload-based optimisa-
tion of a topology for alternative architectures; and (3) PE
Fusion and Fission Techniques to enhance data parallelism.

9. CONCLUSIONS

We have demonstrated CRUCIBLE; a scalable system for
implementation of security-conscious analytics over high vol-
ume, velocity, and variety data by allowing users to make
the most of the on- and off-line systems at their disposal.
Three key aspects of CRUCIBLE have been detailed; (1)
a high-level DSL and associated IDE Tooling; (2) a suite
of runtime environments providing consistent execution se-
mantics across on- and off-line data; and (3) a consistent
cross-runtime cell-level security labelling framework.

Our results show that the absolute performance of the
CRUCIBLE runtimes must be improved, but their scalabil-
ity is in line with native implementations. We have demon-
strated the power of basing CRUCIBLE on a DSL; the tight
integration of key language features (in particular security
labelling and atomic operations) enables the implementation
of sample analytics in one sixth the amount of code as an
equivalent suite of native implementations — a substantial
improvement in engineering time, cost, and risk.

The web page http://go.warwick.ac.uk/crucible con-
tains further information on CRUCIBLE.

Acknowledgments

This work was funded under an Industrial EPSRC CASE
Studentship, entitled “Platforms for Deploying Scalable Par-
allel Analytic Jobs over High Frequency Data Streams”. The
lead author thanks their employer for funding the course of
study that led to this paper.

References

[1] T. Aihkisalo and T. Paaso. A Performance Comparison
of Web Service Object Marshalling and Unmarshalling
Solutions. In Proceedings of the 2011 IEEE World
Congress on Services, pages 122-129. IEEE, 2011.

[2] M. Ali. An Introduction to Microsoft SQL Server
StreamlInsight. In Proceedings of the 1st International
Conference and Ezhibition on Computing for Geospa-
tial Research & Applications, page 66, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0031-5.

[3] D. E. Bell and L. J. La Padula. Secure Computer Sys-
tem: Unified Exposition and Multics Interpretation.
Technical report, DTIC Document, 1976.

[4] F. Chang et al. Bigtable: A Distributed Storage System
for Structured Data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[5] G. De Francisci Morales. SAMOA: A Platform for Min-
ing Big Data Streams. In Proceedings of the 22nd In-
ternational Conference on the World Wide Web Com-
panion, pages 777-778. International World Wide Web
Conferences Steering Committee, 2013.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 51(1):107-113, 2008.

[7] S. Efftinge and M. Vélter. oAW xText: A Framework
for Textual dsls. In Proceedings of the Workshop on
Modeling Symposium at Eclipse Summit, 2006.

[8] A. Fuchs. Accumulo - Extensions to Google’s Bigtable
Design. Technical report, National Security Agency,
March 2012.

[9] L. Golab et al. Stream Warehousing With DataDepot.
In Proceedings of the 35th SIGMOD international con-
ference on Management of data, pages 847-854. ACM,
2009.

[10] M. Hausenblas and J. Nadeau. Apache Drill: Interac-
tive Ad-Hoc Analysis at Scale. Big Data, June 2013.

[11] C. R. Kalmanek et al. Darkstar: Using Exploratory
Data Mining to Raise the Bar on Network Reliability
and Performance. In Proceedings of the 7th Interna-
tional Workshop on Design of Reliable Communication
Networks, 2009, pages 1-10. IEEE, 2009.

[12] V. Kumar et al. DEDUCE: At the Intersection of
MapReduce and Stream Processing. In Proceedings
of the 138th International Conference on Faxtending
Database Technology, pages 657-662. ACM, 2010.

[13] S. Melnik et al. Dremel: Interactive Analysis of Web-
Scale Datasets. Proceedings of the VLDB Endowment,
3(1-2):330-339, 2010.

[14] L. Neumeyer et al. S4: Distributed Stream Com-
puting Platform. In Proceedings of the 2010 IEEE

International Conference on Data Mining Workshops
(ICDMW), pages 170 —177, Dec. 2010.

[15] M. Odersky et al. An Overview of the Scala Program-
ming Language. Technical report, Citeseer, 2004.

[16] C. Olston et al. Pig Latin: A Not-So-Foreign Language
for Data Processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1099-1110. ACM, 2008.

[17] R. Rea and K. Mamidipaka. IBM InfoSphere Streams:
Enabling Complex Analytics with Ultra-Low Latencies
on Data in Motion. IBM White Paper, 2009.

[18] K. Shvachko et al. The Hadoop Distributed File Sys-
tem. In Proceedings of the 26th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1-10.
IEEE, 2010.

[19] E. Smith. JVM Serializers Project. URL https://

github.com/eishay/jvm-serializers/wiki.

[20] L. Tassiulas and A. Ephremides. Stability Properties
of Constrained Queueing Systems and Scheduling Poli-
cies for Maximum Throughput in Multihop Radio Net-
works. IEEFE Transactions on Automatic Control, 37
(12):1936-1948, 1992. ISSN 0018-9286.

[21] A. Thusoo et al. Hive: A Warehousing Solution Over
a Map-Reduce Framework. Proceedings of the VLDB
Endowment, 2(2):1626-1629, 2009.

[22] R. Vanbrabant. Google Guice: Agile Lightweight De-
pendency Injection Framework. Apress, 2008.

