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Abstract. We introduce a novel variant of logical relations that maps types not
merely to partial equivalence relations on values, as is commonly done, but rather
to a proof-relevant generalisation thereof, namely setoids. The objects of a setoid
establish that values inhabit semantic types, whilst its morphisms are understood
as proofs of semantic equivalence.
The transition to proof-relevance solves two well-known problems caused by the
use of existential quantification over future worlds in traditional Kripke logical
relations: failure of admissibility, and spurious functional dependencies.
We illustrate the novel format with two applications: a direct-style validation
of Pitts and Stark’s equivalences for “new” and a denotational semantics for a
region-based effect system that supports type abstractionin the sense that only
externally visible effects need to be tracked; non-observable internal modifica-
tions, such as the reorganisation of a search tree or lazy initialisation, can count
as ‘pure’ or ‘read only’. This ‘fictional purity’ allows clients of a module soundly
to validate more effect-based program equivalences than would be possible with
traditional effect systems.

1 Introduction

The last decade has witnessed significant progress in modelling and reasoning about
the tricky combination of effects and higher-order language features (first-class func-
tions, modules, classes). The object of study may be ML-, Java-, or assembly-like, but
the common source of trickiness is the way effectful operations may bepartially en-
capsulated behind higher-order abstractions. Problems insemantics and verification of
effectful languages are often addressed using a range of common techniques that in-
cludes separation and Kripke logical relations (KLRs). Theparticular problem motivat-
ing the development of the proof-relevant form of KLR introduced here is that of giving
a semantics to effect systems that accounts for partial encapsulation, though the general
construction is more broadly applicable. As we will see, direct semantic reasoning in
our model (as opposed to generic reasoning based on refined types) also allows many
of the trickiest known equivalences concerning encapsulated store to be proved.

Effect systems [16] refine conventional types by tracking upper bounds on the side-
effects of expressions. A series of papers, by ourselves andothers [19,5,4,6,30], have
explored the semantics of effect systems for mutable state,addressing not merely the
correctness of analyses, but also the soundness of effect-dependent optimizations and
refactorings. An example is the commutation of stateful computationsM andN, sub-
ject to the condition that the sets of storage locations potentially written byM andN are
disjoint, and that neither potentially reads a location that the other writes. Our primary
interest is not syntactic rules for type assignment, but rather semantic interpretations
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of effect-refined types that can justify such equivalences.Types provide a common in-
terface language that can be used in modular reasoning aboutrewrites; types can be
assigned to particular terms by a mixture of more or less sophisticated inference sys-
tems, or by deeper semantic reasoning.

A key notion in compositional reasoning about state is that of separation: invari-
ants depending upon mutually disjoint parts of the store. Intuitively, if each function
with direct access to a part preserves the corresponding invariant, then all the invariants
will be preserved by any composition of functions. Disjointness is naively understood
in terms of sets of locations. A memory allocator, for example, guarantees that its own
private datastructures, memory belonging to clients, and any freshly-allocated block
inhabit mutually disjoint sets of locations. Since the introduction of fractional permis-
sions, separation logics often go beyond this simple model,introducing resources that
are combined with a separating conjunction, but which are not literally interpreted as
predicates on disjoint locations. Research on ‘domain-specific’ [20], ‘fictional’ [13,18],
‘subjective’ [22], or ‘superficial’ [21] separation aims tolet custom notions of sepa-
rable resource be used and combined modularly. This paper presents a semantics for
effect systems supporting fictional, or ‘abstract’, notions of both effects and separation.

We previously interpreted effect-refined types for stateful computations as binary
relations, defined via preservation of particular sets of store relations. This already pro-
vides some abstraction. For example, a function that reads areference, but whose result
is independent of the value read can soundly be counted as pure (contrasting with mod-
els that instrument the concrete semantics). Our models also validated the masking rule,
allowing certain non-observable effects not to appear in annotations. But here we go fur-
ther, generalizing the interpretation of regions to partial equivalence relations (PERs).
This allows, for example, a lookup function for a set ADT to beassigned a read-but-
not-write effect, even if the concrete implementation involves non-observable writes to
rebalance an internal datastructure. Roughly, there is a PER that relates two heaps iff
they contain well-formed datastructures representing thesame mathematical set, and
the ADT operations respect this PER: looking up equal valuesin related heaps yields
equal booleans, adding equal values in related heaps yieldsnew related heaps, and so
on. A mutating operation need only be annotated with a write effect if the updated heap
is potentially in a different equivalence class from the original one. In fact, we further
improve previous treatments of write effects, via a ‘guarantee’ condition that explic-
itly captures allowable local updates. Surprisingly, thisallows the update and remove
operations for our set ADT to be flagged withjust a write effect, despite the fact that
the final state of the set depends on the initial one, exploiting the idempotence of the
updates and validating many more useful program transformations.

Moving to PERs also allows us to revisit the notion of separation, permitting distinct
abstract locations, or regions, to refer to PERs whose footprints overlap, albeit non-
observably, in memory. A module may, for example, implementtwo distinct logical
references using a single physical location containing a coding (e.g. 2i3 j) of a pair
(i, j) of integers. Or a resource allocator can keep logically separated tokens tracking
each allocated resource, acting as permissions for deallocation, in a shared datastructure
such as a bitmap or linked list (a well-known problem in modular separation [21]). The
innovation here is a notion of independence of PERs, capturing the situation where
intersection of PERs yields a cartesian product of quotients of the heap.
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(TεQ)w = QPER({( f , f ′) | h, h′ |= w⇒
∀R∈ Rε(w).hRh′ ⇒ h1Rh′1∧
∃w1.(w1(r) , ∅ ⇒ r ∈ als(ε)) ∧ h1, h′1 |= w ⊗ w1∧

h1 ∼w1 h′1 ∧ (v, v′) ∈ Qw⊗w1

where (h1, v) = f h and (h′1, v
′) = f ′h′})

Fig. 1: Earlier Kripke logical relation, extract

The ideas sketched above are intu-
itively rather compelling, but formally
integrating them into the form of KLR
we had previously used for effect sys-
tems turns out to be remarkably hard.
Figure 1 shows a (tweaked) extract from
an earlier paper [4]. Here a worldw is
just a finite partial bijection between locations, with region-coloured links;h, h′ |= w
simply means that for each link (l, l′) ∈ w, l ∈ dom(h) and l′ ∈ dom(h′). Two compu-
tations f , f ′ : H ⇁ H × V, whereH,V are sets of heaps and values, respectively, are
in the relation (TεQ)w, whereε is an effect and the relationQ interprets a result type, if
they preserve all heap relationsR in a set depending onε andw, and there existssome
disjoint world extensionw1 such that the new heaps are equal on the domain ofw1, and
the result values areQ-related at the extended worldw ⊗ w1.

The problematic part is the existential quantification overworld extensions – the
∃w1 on the third line – allowing for the computations to allocatefresh locations. This
pattern of quantification occurs in many accounts of generativity, but the dependence of
w1 on bothh andh′ creates serious problems if one generalizes from bijections to PERs
and tries to prove equivalences. Roughly, one has to consider varying the initial heap
in which one computation, sayf ′, is started; the existential then produces adifferent
extensionw2 that is not at all related, even on the side off where the heap stays the
same, to thew1 with which one started. The case of bijections, whereh1 depends only
on h (not onh′), allows one to deduce sufficient information about the domain of w1

from the clauseh1, h′1 |= w ⊗ w1, but this breaks down in the more abstract setting.

To fix this problem, we here take the rather novel step of replacing the existential
quantifier in the logical relation by appropriate Skolem functions, explicitly enforcing
the correct dependencies. In the language of type theory, this amounts to replacing an
existential with aΣ-type. A statement like (f , f ′) ∈ Tε~A� is no longer just a proposi-
tion, but we rather have a “set of proofs”Tε~A�( f , f ′) which in particular contains the
aforementioned Skolem functions. We use an explicit version of the exact-completion
[10,8] akin to and motivated by “setoid” or groupoid interpretations of type theory
[17,3,33] to make these ideas both rigorous and more general.

Passing from relations to proof-relevant setoids also solves other problems. Existen-
tial quantification fails to preserve admissibility of relations, needed to deal with general
recursion, and also fails to preserve ‘PERness’. The ‘QPER(·)’ operation in Figure 1
explicitly applies an admissible and (variant) PER closureoperation; this works tech-
nically, but is very awkward to use. We do not need such a closure here. Step indexing
[2,30] and the use of continuations [27] can also deal with admissibility. However, step-
indexing is inherently operational, whilst continuationslose sufficient abstraction to
break some program equivalences, including commuting computations. Our third way,
using setoids, is pleasantly direct. Finally, allocation effects are handled differently from
reading and writing by the relation in Figure 1, being wired into the quantification rather
than treated more abstractly by relation preservation. Oursetoid-based formulation uses
uniform machinery to treat all effects.

We start by reviewing some preliminary definitions on syntaxand semantics of
programs in Section 2. Section 3 introduces setoids, which is the setting in which we
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specify in Section 4 the typed semantics and introduce the notion of abstract effects. In
Section 5 we describe proof-relevant logical relations, prove the fundamental theorem
and define observational equivalence. Section 6 demonstrates a number of program
equivalences that can be shown by using proof-revelant logical relations. We conclude
and discuss future work in Section 7.
Note: We have elided many proofs, details of constructions and examples. This longer
version of the paper includes some of this material in an appendix.

2 Syntax and Semantics

We will interpret effect-refined types over a somewhat generic, untyped denotational
model for stateful computations in the category of predomains (ω-cpos). We also in-
troduce a meta-language [24], providing concrete syntax for functions in the model.
We omit the standard details of interpreting CBV programming languages via such a
metalanguage, or proofs of adequacy, relating the operationally induced observational
(in)equivalence to (in)equality in the model.
Denotational model We assume predomainsV andH modelling values and heaps,
respectively. As much of the metatheory does not rely on the finer details of how
these predomains are defined, we axiomatise the properties we use. Firstly, we as-
sume the existence of a set of (concrete) locationsL and for eachh ∈ H a finite set
dom(h) ⊆ L. We also assume a constant∅ ∈ H, the empty heap. Ifh ∈ H, l ∈ dom(h),
thenh(l) ∈ V. If v ∈ V, h ∈ H, l ∈ dom(h) thenh[l 7→v] ∈ H; finally new(h, v) yields
a pair (l, h′) wherel ∈ L andh′ ∈ H. These three operations are continuous, in par-
ticular, h ≤ h′ ⇒ dom(h) ⊆ dom(h′) and the following axioms hold: dom(∅) = ∅,
dom(h[l 7→v]) = dom(h), (h[l 7→v])(l′) = if l = l′ then v elseh(l′), and ifnew(h, v) = (l, h′)
then dom(h′) = dom(h)∪{l} andl < dom(h) andh′(l) = v. GivenV this abstract datatype
can be implemented in a number of ways, e.g., as finite maps. Wedefine the domain of
computationsC to be partial continuous functions fromH toH×V, the bottom element
being the everywhere undefined function.

We assume thatV embeds tuples of values, i.e., ifv1, . . . , vn ∈ V then (v1, . . . , vn) ∈
V and it is possible to tell whether a value is of that form and inthis case to retrieve the
components. We also assume thatV embeds continuous functionsf : V → C, i.e., if
f is such a function thenfun( f ) ∈ V and, finally, locations are also values, i.e. ifl ∈ L
thenloc(l) ∈ V and one can tell whether a value is a location or a function. A canonical
example of such aV is the least solution to the predomain equation withC = H⇁ H×V
andV ≃ int(Z) + fun(V→ C) + loc(L) + V∗.
SyntaxThe syntax of untyped values and computations is:

v ::= x | () | c | (v1, v2) | v.1 | v.2 | rec f x = t
t ::= v | let x⇐ t1 in t2 | v1 v2 | if v then t1 else t2 |!v | v1 := v2 | ref(v)

Here,x ranges over variables andc over constant symbols, each of which has an asso-
ciated interpretationVcW ∈ V; these include numeralsn with VnW = int(n), arithmetic
operations and so on.rec f x = t defines a recursive function with bodye and re-
cursive calls made viaf ; we useλx.t as syntactic sugar in the case whenf < f v(t).
Finally, !v (reading) returns the contents of locationv, v1 := v2 (writing) updates lo-
cationv1 with valuev2, andref(v) (allocating) returns a fresh location intialised with
v. The metatheory is simplified by using “let-normal form”, inwhich the only elimina-
tion for computations is let, though we sometimes nest computations as shorthand for
let-expanded versions in examples.

4



SemanticsThe untyped semantics of valuesVvW ∈ V→ V and termsVtW ∈ V→ C are
defined by an entirely standard mutual induction, using least fixed points to interpret
recursive functions, projection from tuples for variablesand so on.

Types Types are given by the grammar:τ ::= unit | int | A | τ1 × τ2 | τ1
ε
→ τ2,

whereA ranges over semantically defined basic types (see Def. 11). These contain ref-
erence types possibly annotated with regions and abstract types like lists, sets, and even
objects, again possibly refined by regions. The metavariableε represents aneffect, that
is a subset of some fixed set of elementary effects about whichwe say more later. The
core typing rules for values and computations are shown in Figure 2. We do not bake
in type rules for constants and effectful operations but, for a given semantic interpre-
tation of types, we will be able to justify adding further rules for these primitives and,
more importantly, for more complex expressions involving them. (The rules given here
incorporate subeffecting; we expect our semantics to extend to more general subtyping.)
EquationsFigure 3 outlines a core equational theory for the metalanguage. The full the-
ory includes congruence rules for all constructs (like thatgiven forrec), all the usual
beta and eta laws and commuting conversions for conditionals as well as forlet. We
give a semantic interpretation of typed equality judgements which is sound for observa-
tional equivalence. As with typings, further equations involving effectful computations
may be justified semantically in a particular model and addedto the theory. The core
theory then allows one to deduce new semantic equalities from already proven ones.
The equations are typed: a derivationD of Γ ⊢ t = t′ : τ & ε is canonically associated
with typing derivationsD.1 andD.2 of Γ ⊢ t : τ & ε andΓ ⊢ t′ : τ & ε, respectively
(but note we can semantically justify extending the type rules). The interpretation ofD
will be a proof object certifying that the interpretations of D.1 andD.2 are semantically
equal which then implies (Theorem 3) typed observational equivalence oft andt′.

Γ ⊢ n : int Γ, x : τ ⊢ x : τ
Γ ⊢ v : τ
Γ ⊢ v : τ & ∅

Γ ⊢ e : τ & ε1 ε1 ⊆ ε2

Γ ⊢ e : τ & ε2

Γ ⊢ v : τ1 × τ2
Γ ⊢ v.i : τi

Γ ⊢ v1 : τ1
ε
→ τ2 Γ ⊢ v2 : τ1

Γ ⊢ v1 v2 : τ2 & ε Γ ⊢ () : unit
Γ ⊢ v : int Γ ⊢ e1 : τ & ε Γ ⊢ e2 : τ & ε

Γ ⊢ if v then e1 else e2 : τ & ε

Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2
Γ ⊢ (v1, v2) : τ1 × τ2

Γ ⊢ e1 : τ1 & ε Γ, x:τ1 ⊢ e2 : τ2 & ε
Γ ⊢ let x⇐e1 in e2 : τ2 & ε

Γ, f :τ1
ε
→ τ2, x:τ1 ⊢ e : τ2 & ε

Γ ⊢ rec f x = e : τ1
ε
→ τ2

Fig. 2: Core rules for effect typing

2.1 Some example programs

Dummy allocationDefinedummyas~λ f .λx.let d⇐ref(0)in f x�, sodummy( f ) be-
haves likef but makes an allocation whose result is discarded. We will beable to show
thatdummy( f ) displays no more abstract effects thanf , so that whatever program trans-
formation f can participate in,dummy( f ) can as well.
MemoisationLet memobe the memoizing functional
~λ f .let x⇐ref(0) in let y⇐ref( f 0) in
λa.if eq a!x then !y else let r⇐ f a in x := a; y := r; r�

5



Γ ⊢ t : τ & ε
Γ ⊢ t = t : τ & ε

Γ ⊢ t = t′ : τ & ε
Γ ⊢ t′ = t : τ & ε

Γ ⊢ t = t′ : τ & ε Γ ⊢ t′ = t′′ : τ & ε
Γ ⊢ t = t′′ : τ & ε

Γ ⊢ v = v′ : τ
Γ ⊢ v = v′ : τ & ∅

Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2
Γ ⊢ (v1, v2).i = vi : τi

Γ, f : τ1
ε
→ τ2, x:τ1 ⊢ t = t′ : τ2 & ε

Γ ⊢ (rec f x = t) = (rec f x = t′) : τ1
ε
→ τ2

Γ ⊢ v : τ1 × τ2
Γ ⊢ v = (v.1, v.2) : τ1 × τ2

Γ ⊢ v : τ1 & ε Γ, x : τ1 ⊢ t : τ2 & ε
Γ ⊢ let x⇐vin t = t[v/x] : τ2 & ε

Γ, f : τ1
ε
→ τ2, x:τ1 ⊢ t : τ2 & ε Γ ⊢ v : τ1

Γ ⊢ (rec f x = t) v = t[v/x, (rec f x = t)/ f ] : τ2 & ε

Γ ⊢ t1 : τ1 & ε Γ ⊢ t2 : τ2 & ε Γ, x : τ2, y : τ1 ⊢ t3 : τ3 & ε
Γ ⊢ let x⇐ (let y⇐ t1 in t2) in t3 = let y⇐ t1 in let x⇐ t2 in t3 : τ3 & ε

Fig. 3: Basic equational theory (extract)

wheret1; t2 = let ⇐ t1 in t2 is sequential composition andeq is an integer equality

constant. We can justify the typingmemo: (int
∅
→ int)

∅
→ (int

∅
→ int), saying that iff is

observationally pure,memo f, is too, and so can participate in any program equivalence
relying on purity. This was not justified by our previous model [4].
Set factory The next, more complicated, example is a program that can create and
manipulate sets implemented as linked lists.

If l ∈ L andh ∈ H andU is a finite set of integers andP is a finite subset ofL define
S(l, h,U,P) to mean that inh locationl points to a linked list of integer values occupying
at most the locations inP (the “footprint”) and so that the set of these integer valuesis U.
So, for example, ifh(l) = loc(l1) andh(l1) = (int(1), loc(l2)) andh(l2) = (int(1), int(0))
thenS(l, h, {1}, {l1, l2}) holds.

For each locationl define functionsmeml, addl, reml so thatmeml(int(i)) checks
whetheri occurs in the list pointed to byl, returningint(1) iff yes, and—for the fun of
it—removes all duplicates in that list and relocates some ofits nodes. Thus, in particular,
if meml(int(i))(h) = (h1, v) then if S(l, h,U,P) one hasS(l, h1,U,P′) for someP′ where
P′ ⊆ P∪ (dom(h1) \ dom(h)) andv = int(1) iff i ∈ U.

The functionaddl adds its integer argument to the set, andreml removes it, each
possibly making “optimizations” similar tomeml.

Now consider a functionsetfactoryreturning upon each call a fresh locationl and
a the tuple of functions (meml, addl, reml). We will be able to justify the following se-
mantic typing forsetfactory:

setfactory: ∀r.(int
rdr
→ int) × (int

wrr
→ unit) × (int

wrr
→ unit) & alr

which expresses thatsetfactory() allocates in some (possibly fresh) regionr and returns
operations that only readr (the first one) or write inr (the second and third one) even
though, physically, all three functions read, write, and allocate.

Thus, these functions can participate in corresponding effect-dependent program
equivalences, in particular, two successivememoperations may be swapped and dupli-
cated; identical updates may even be contracted.
Interleaved Dummy allocationConsider the following example, which looks similar
to the Dummy example above, but where the dummy allocation happens after a proper
allocation:
e1 = let p⇐ref(0) in let d⇐ref(0)in e; !p and e2 = let p⇐ref(0) in e; !p.

Hered is not free ine, butp may be free. This simple difference leads to many problems
when attempting to prove their equivalence. We sketch them below to also motivate our
technical solution introduced formally in the following Sections.
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As normally done the evolution of the heaps can be formally captured by using
Kripke models, where, intuitively, a world contains the setof locations allocated by
programs. Whenever there is an allocation, we advance from the current worldw to a
world w1, which contains some fresh locations. However, we do not have control over
this evolution. In our example, assume that the programs above start at the same world
w. The allocation of the proper location,p, in e1 and in e2 will yield two different
extensionsw→ w1 andw→ w′1, where some concrete locations,l1 andl2, are allocated
respectively. In fact,w1 andw′1 may even contain other locations that are not used by
the computations. For proving the equivalence between these programs, we need a way
to capture thatl1 andl2 are equivalent, without requiring to identify the other locations
not used by computations.

w

w1

x <<①①①①
w′1

x′bb❋❋❋❋

w u′
<<①①①①u

bb❋❋❋❋

Fig. 4: Pullback square.

Our solution is to usepullback squaresas proofs. Their
shape is depicted in Figure 4. wherew andw are called, respec-
tively, thelow pointandapexof the square. It helps to interpret
w as a superset ofw1 ∪ w′1, that is, a world containing all the
locations mentioned inw1 andw′1, even the locations not used
by computations, whilew = w1 ∩ w2 (modulo renaming of lo-
cation names) is a world containing only the locations that need
to be identified. Intuitively, the low point is the part of theproof
showing that resulting heaps of computations are equivalent. This is formalized by Def-
inition 13. In the example above, the low point is a world where l1 andl2 are shown to
be equivalent. The remaining locations inw1 andw′1 that are not used by computations
may be ignored, that is, not be contained inw. The apex,w, on the other hand, is the
part of the proof showing that the correspondingvaluesresulting from computations,
!p in the example above, are indeed equivalent (see again Definition 13).

3 Setoids

We define thecategory of setoidsas the exact completion of the category of predomains,
see [10,8]. We give here an elementary description using thelanguage of dependent
types. Asetoid Aconsists of a predomain|A| and for any twox, y ∈ |A| a setA(x, y) of
“proofs” (thatx andyare equal). The set of triples{(x, y, p) | p ∈ A(x, y)}must itself be a
predomain and the first and second projections must be continuous. Furthermore, there
are continuous functionsrA : Πx ∈ |A|.A(x, x) andsA : Πx, y ∈ |A|.A(x, y)→ A(y, x) and
tA : Πx, y, z.A(x, y) × A(y, z)→ A(x, z). If p ∈ A(x, y) we may writep : x ∼ y or simply
x ∼ y. We also omit| − | wherever appropriate. We remark that “setoids” also appearin
constructive mathematics and formal proof, see e.g., [3], but the proof-relevant nature
of equality proofs is not exploited there and everything is based on sets (types) rather
than predomains. A morphism from setoidA to setoidB is an equivalence class of pairs
f = ( f0, f1) of continuous functions wheref0 : |A| → |B| and f1 : Πx, y ∈ |A|.A(x, y)→
B( f0(x), f0(y)). Two such pairsf , g : A → B areidentifiedif there exists a continuous
functionµ : Πa ∈ |A|.B( f (a), g(a)).

Proposition 1. The category of setoids is cartesian closed; moreover, if D is a setoid
such that|D| has a least element⊥ and there is also a least proof⊥ ∈ D(⊥,⊥) then there
is a morphism of setoids Y: [D→ D] → D satisfying the usual fixpoint equations.
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3.1 Pullback squaresA morphismu in a categoryW is a monomorphism ifux= ux′

implies x = x′ for all morphismsx, x′. A commuting squarexu = x′u′ of morphisms
is a pullback if wheneverxv = x′v′ there is uniquet such thatv = ut andv′ = u′t. We
write ^x x′

u u′ or w ^x x′
u u′w

′ (whenw(′)
= dom(x(′))) for such a pullback square. We call the

common codomain ofx andx′ theapexof the pullback writtenw, while the common
domain ofu, u′ the low point of the square writtenw. A pullback squarexu = x′u′

is minimal if whenever f x = gx and f x′ = gx′ then f = g, in other words,x and
x′ arejointly epic. A pair of morphismsu, u′ with common domain is a span, a pair of
morphismsx, x′ with common codomain is a co-span. A category has pullbacks if every
co-span can be completed to a pullback square.

Definition 1 (Category of worlds).A categoryW is acategory of worldsif it has pull-
backs and every span can be completed to a minimal pullback square and all morphisms
are monomorphisms.

Example 3.1 The category of sets and injections is a category of worlds. Given f :

X → Z andg : Y → Z, we form their pullback asX
f−1

←−− f X ∩ gY
g−1

−−→ Y. This is

minimal whenf X ∪ gY = Z. Conversely, given a spanY
f
←− X

g
−→ Z, we can complete

to a minimal pullback by

(Y \ f X) ⊎ f X
[in1,in3◦ f−1]
−−−−−−−−−→ (Y \ f X) + (Z \ gX) + X

[in2,in3◦g−1]
←−−−−−−−−− (Z \ gX) ⊎ gX

where [−,−] is case analysis on the disjoint unionY = (Y \ f X) ⊎ f X.
Given an arbitrary categoryC, the category of worldsWC has objects pairs (X, f )

whereX is a set andf : X → |C| is anX-indexed family ofC-objects. A morphism
from (X, f ) to (Y, g) is an injective functionu : X → Y and a family of isomorphisms
ϕx : f (x) ≃ g(u(x)). The first components of the pullbacks and minimal pullbacks are
constructed as in the previous example. ⊓⊔

We write r(w) for w ^1 1
1 1w and s( ^x x′

u u′ ) = ^x′ x
u′ u and t( ^x x′

u u′ , ^
y y′

v v′) = ^
zx ut

z′y′ v′t′ where
z, z′, t, t′ are chosen so that all four participating squares are pullbacks.

3.2 Setoid-valued functorsA functorA from a category of worldsW to the category
of setoids comprises as usual for eachw ∈ W a setoidAw and for eachu : w → w′ a
morphism of setoidsAu : Aw→ Aw′ preserving identities and composition. Ifu : w→
w′ anda ∈ Aw we may writeu.a or evenua for Au(a) and likewise for proofs inAw.
Note that (uv).a = u.(v.a).

Definition 2. We call a functorpullback-preserving(p.p.f.) if for every pullback square
w ^x x′

u u′w
′ with apexw and low pointw the diagram Aw ^Ax Ax′

Au Au′Aw′ is a pullback in Std.
This means that there is a continuous function of type
Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→ Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

Thus, if two valuesa ∈ Aw anda′ ∈ Aw′ are equal in a common worldw then this can
only be the case because there is a value in the “intersectionworld” w from which both
a, a′ arise. Intuitively, p.p.f.s will become the denotations ofvalue types.

3.3 Fibred setoids In order to provide meanings for computation types we need a
weaker variant of p.p.f., namely,fibred setoids. These lack the facility of transporting
values along world morphisms but instead allow the proof-relevant comparison of val-
ues at different worlds provided the latter are related by a pullback square.
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Definition 3. A fibred setoidover a category of worldsW is given by a predomain
Tw for everyw ∈ W and for every pullback squarew^w′ and elements a∈ Tw and
a′ ∈ Tw′ a set T̂ (a, a′) so that the set of tuples(a, a′, q) with q ∈ T^(a, a′) is a
predomain with continuous projections.

Next, we need continuous operations r, s, t so that r(a) ∈ Tr(w)(a, a) when a∈ Tw
and s(q) ∈ T s(^)(a′, a) when q∈ T^(a, a′) and t(q, q′) ∈ Tt(^,^′)(a, a′′) when q∈
T^(a, a′) and q′ ∈ T^′(a′, a′′).

In addition, for any two isomorphic pullback squares^ and^′ betweenw andw′

there is a continuous operation of typeΠa ∈ Tw.Πa′ ∈ Tw′.T ^( ,
a a

′)→ T ^
′ a
( ,

a′).

Finally, for each pullback squarê = w ^x x′
u u′w

′ with apexw and low pointw there
is a continuous function of type
Π t ∈ Tw.Π t′ ∈ Tw′.T^(t, t′)→ Σt ∈ Tw.T ^u 1

1 u(t, t) × T ^u′ 1
1 u′(t, t

′)

Note the similarity of the last operation to pullback-preservation.
Example 3.2 If A is a p.p.f., we obtain a fibred setoidS(A) as follows:S(A)w = Aw
and ifw ^x x′

u u′w
′ with apexw, define the proof setS(A) ^x x′

u u′(a, a
′) = Aw(x.a, x′.a′). ⊓⊔

Definition 4. A morphismf from fibred setoid T to fibred setoid T′ is an equivalence
class of pairs of continuous functions f0 : Πw.Tw→ T′w and f1 : Πw,w′.Πw^w′.Πa ∈
Tw.Πa′ ∈ Tw′.T^(a, a′)→ T′^( f0(w, a), f0(w′, a′)).

Two such pairs f, f ′ are identified if there exists a continuous function that assigns
to eachw and a∈ Tw a proofµ(a) ∈ Tr(w)( f0(w, a), f ′0(w, a)).

3.4 Contravariant functors and relations The role of the next concept is to give
meaning to abstract stores.

Definition 5. A contravariant functorS from a category of worldsW to the category
of setoids comprises for eachw ∈ W a nonemptysetoidSw and for each morphism
u : w0→ w a setoid morphismSu : Sw→ Sw0 such that u7→ Su preserves identities
and composition.

If σ ∈ Sw andu : w0 → w we writeσ.u or σu for Su(σ). Note thatσ.(uv) = (σ.u).v.
Intuitively, σ.u can be interpreted as the abstract heap obtained by forgetting locations
in σ that have been “allocated” by the world evolution specified by u, namely, those
appearing inw and not inw0.

Definition 6. A contravariant functorS preservesminimal pullbacksif wheneverw ^x x′
u u′w

′

with apexw and low pointw is aminimal pullback squarethen the diagramSw ^Su Sx
Su′ Sx′Sw′

is a pullback in Std.

This means in particular that ifσ ∈ Sw, σ′ ∈ Sw′ andσ.u ∼ σ′.u′ then there exists a
“pasting”σ ∈ Sw such thatσ.x ∼ σ andσ.x′ ∼ σ′ andσ is unique up to∼. Moreover
the passage from the given data toσ and the witnessing proofs is continuous.

Definition 7. A relationR on such a contravariant functorS consists of an admissible
subset Rw ⊆ Sw×Sw such that(σ, σ′) ∈ Rw and u: w0→ w implies(σ.u, σ′.u) ∈ Rw0

and if p : σ ∼ σ1 and p′ : σ′ ∼ σ′1 then(σ1, σ
′
1) ∈ Rw, as well.

It would be natural to let relations be proof-relevant as well, but we refrain from
doing so at this stage for the sake of simplicity.
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4 Computational model

We use a setoid interpretation in order to justify nontrivial type-dependent observa-
tional equivalences for the language above. This interpretation is parametric over an
instantiation, defined below.

Definition 8. An instantiationcomprises the following data.
• a category of worldsW;
• a full-on-objects subcategoryI of inclusions(in other words, a subset of the mor-
phisms closed under composition and comprising the identities) with the property that
every morphism u can be factored as u= f i and u= jg with f, g isomorphisms and i, j
inclusions;
• a contravariant, minimal-pullback-preserving, functorS from W to the category of
setoids;
• for eachw ∈ W a relation w⊆ H × Sw subject to the axiom thath w σ and
u ∈ I (w0,w) impliesh w0 σ.u;
• a set of elementary effectsE and for each effectε a setR(ε) of relations onS. As usual,
one defines effects as sets of elementary effects and extendsR to all effects byR(∅) =
“all relations onS (in the sense described in Section 3.4)” andR(ε) =

⋂
ε0∈ε
R(ε0).

We give two examples of instantiations. The appendix contains a third example,
mirroring our previous model [5].

4.1 Sets of locationsIn the first one, calledsets of locations, worlds are finite sets
of (allocated) locations (taken fromL) and their morphisms are injective functions with
inclusions being actual inclusions. Abstract stores are given bySw = {h | dom(h) ⊇ w}
with Sw(h, h′) = ⋆, always, andSu given by renaming locations.

We puth w h′ wheneverh = h′. We only have one elementary effect here,al,
representing the allocation of one or more fresh names. Notethat if R is a relation onS
thenRw is either total or empty and ifu : w → w′ thenRw′ , ∅ ⇒ Rw , ∅. A relation
R is inR(al) if for every inclusionu : w → w′ one also hasRw , ∅ ⇒ Rw′ , ∅, thusR
is oblivious to world extensions.

4.2 Abstract locations To formulate the second instantiation, calledHeap PERs, we
need the concept of anabstract locationwhich generalises physical locations in that
it models a portion of the store that can be read from and updated. Such portion may
comprise a fixed set of physical locations or a varying such set (as in the case of a linked
list with some given root). It may also reside in just a part ofa physical location, e.g.,
comprise the two low order bits of an integer value stored in aphysical location. Fur-
thermore, the equality on such abstract location may be coarser than physical equality,
e.g., two linked lists might be considered equal when they hold the same set of elements,
and there may be an invariant, e.g. the linked list should contain integer entries and be
neither circular nor aliased with other parts of the heap. This then prompts us to model
an abstract location as a partial equivalence relation (PER) on heaps together with two
more components that describe how modifications of the abstract location interact with
the heap as a whole. Thus, next to a PER, an abstract location also contains a bunch of
(continuous) functions that modelwriting to theabstract location. These functions are
closed under composition (thus form a category) and are idempotent in the sense of the
PER modelling equality.
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Thirdly, a “footprint” which is a heap-dependent set of physical locations which
overapproximates the effect of “the guarantee” so as to enable the creation of fresh
abstract locations not knowing the precise nature of the other abstract locations that are
already there. (These footprints are very similar to accessibility maps, first introduced
for reasoning in a model of state based on FM-domains [7].)

Definition 9. Anabstract locationl (on the chosen predomainH) consists of the follow-
ing data:

– a nonempty, admissible partial equivalence relation (PER)lR onH modelling the
“semantic equality” on the bits of the store thatl uses (a “rely-condition”);

– a setlG of continuous functions onH closed by composition, modelling the functions
that “write only on l” leaving other locations alone (a “guarantee condition”);

– a continuous functionlF : Πh ∈ H.P(dom(h)) describing the “footprint” of the
abstract location (where the ordering on the powersetdom(h) is of course discrete).

subject to the conditions
– if ι ∈ lG and(h, h′) ∈ lR then(ι(h), ι(h′)), (ι(h), ι(ι(h))), (ι(h′), ι(ι(h′))) ∈ lR,
– if ∀l ∈ lF (h).h1(l) = h(l) and ∀l ∈ lF (h′).h′1(l) = h′(l) then (h, h′) ∈ lR implies

(h1, h′1) ∈ lR; thuslR “looks” no further than the footprint;
– if ι ∈ lG and ι(h) = h1 thendom(h) ⊆ dom(h1) and l ∈ dom(h) \ lF (h) implies

l < lF (h1) andh(l) = h1(l).
Two abstract locationsl1, l2 are independent if

– for i = 1, 2 andι(h) = h1 for ι ∈ lGi one has(h, h) ∈ lRi , (h, h
′) ∈ lR3−i ⇒ (h1, h′) ∈ lR3−i

and l ∈ dom(h) \ lF3−i(h) thenl < lF3−i(h1);
– If (h1, h1) ∈ lR1 and(h2, h2) ∈ lR2 there existsh such that(h, h1) ∈ lR1 and(h, h2) ∈ lR2 .

(Amounting toh/(lR1 ∩ l
R
2) being a cartesian product ofh/lR1 andh/lR2 .)

If l1, l2 are independent, we form a joint locationl1 ⊗ l2 by (l1 ⊗ l2)R
= l

R
1 ∩ l

R
2 and

(l1 ⊗ l2)G
= (lG1 ∪ l

G
2 )∗ and(l1 ⊗ l2)F(h) = lF1 (h) ∪ lF2 (h).

If l ∈ L is a concrete location, we can define an abstract counterpartby putting
lR = {(h, h′) | h(l) = h′(l)} andlG is the set with a write function for each value that may
be stored inl. For instance, ifl stores booleans, thenlG contains the functionswritetrue
andwritefalse, wherewritetrue(h) = h′ such thath′(l) = true and for all other locations
l′ , l, h′(l′) = h(l′). Whenl1 , l2 then the induced abstract locations are independent.

The next example illustrates that abstract locations may beindependent although
their footprints share some concrete locations. Fix a concrete locationl and define two
abstract locationsl1 and l2 both with footprint consisting of the locationl. Moreover,
(h, h′) belong, respectively, to the rely of locationli (i = 1, 2) if h(l) andh′(l) are both
integers whosei-th significant bit agrees. The “guarantee”lGi might then contain func-
tions that set thei-th bit to some fixed value and leave the other bits alone. It iseasy to
see thatl1, l2 are independent.

Thirdly, let l1, l2 be two distinct concrete locations and for heaph and finite in-
teger setsU1,U2 defineP(h,U1,U2) to mean that inh the locationsl1, l2 point to non-
overlapping integer lists withsetsof elementsU1 andU2. Now define abstract locationli
by lRi = {(h, h

′) | ∃U1,U2.P(h,U1,U2)∧P(h′,U1,U2)} andlFi (h) = “locations reachable
from li” if l points to a well-formed list of integers inh and∅ otherwise. The guarantee
componentlGi contains all the (idempotent) functionsι that leave the locations not in
the footprint ofli alone. Thatι(h) = h′, such thath′(l′) = h(l′) for all l′ ∈ dom(h) \ lFi .
Again, l1 andl2 are independent.
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The role of the footprintslF is to provide a minimum amount of interaction with
physical allocation. Ifl is an abstract location andh0 the current heap so that (h0, h0) ∈ lR

then we may, e.g., allocate (h1, l) = new(h0, int(0)), and define an abstract locationl1 by
l
R
1 = {(h, h′) | h(l) = h′(l) ∈ int(Z) ∧ l < lF(h) ∧ l < lF (h′)}
l
G
1 = {ι | ι(h) = h1⇒ ∀l′ , l.h(l′) = h1(l′)}
l
F
1 (h) = {l}

We now know thatl andl1 are independent and, furthermore, (h1, h1) ∈ (l ⊗ l1)R.

Definition 10. Abstract locationsl1, . . . , ln are mutually independent if they are pair-
wise independent and whenever(hi, hi) ∈ li for i = 1 . . .n then there ish such that
(hi , h) ∈ li for i = 1 . . .n.

Lemma 1. Abstract locationsl1, . . . , ln+1 are mutually independent iffl1, . . . , ln are mu-
tually independent andln+1 is independent ofl1 ⊗ · · · ⊗ ln.

4.3 Heap PERsWe are now ready to formulate the second instantiationHeap PERs.
We assume an infinite set ofregions Regs. A world w comprises a finite set of mutually
independent abstract locations (writtenw) and as in the case of flat stores a tagging
of locations with regions fromRegslocation. We writel ∈ w(r) to mean thatl ∈ w is
tagged withr. We defineSw = {h ∈ H | ∀l ∈ w.(h, h) ∈ lR} andSw(σ, σ′) = {⋆} ⇐⇒
∀l ∈ w.(σ, σ′) ∈ lR andSw(σ, σ′) = ∅ otherwise. Again,h w σ iff h = σ.

A morphism fromw to w′ is given by an injective functionu0 : w→ w′ and a pair of
partial continuous functionsu1, u2 : H ⇁ H. Intuitively, the functionu1 is used to map
the heaps in the PERs of locations inw to w′ according to the renaming of locations
specified inu0, while u2 does the same but fromw′ to w. Formally,∀σ, σ′ ∈ Sw.∀l ∈
w.(σ, σ′) ∈ lR ⇒ (u1(σ), u1(σ′)) ∈ u0(l)R ∧ (u2(u1(σ)), σ) ∈ lR and∀σ, σ′ ∈ Sw′.∀l ∈
w.(σ, σ′) ∈ u0(l)R⇒ (u2(σ), u2(σ′)) ∈ lR∧(u1(u2(σ)), σ) ∈ u0(l)R. The same is valid for
guarantees of locations, by replacing·R by ·G. Now,Su(σ) = u2(σ). Such a morphism
u is an inclusion ifu0 is an inclusion andu1, u2 are the identity function.

The elementary effects track reading, writing, and allocating at the level of regions:
wrr (writing within regionr), rdr (reading from within regionr), alr (allocating within
regionr). The sets of relations onSmodelling elementary effects are then given by
R ∈ R(rdr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀l ∈ w(r).(σ, σ′) ∈ lR

R ∈ R(wrr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀l ∈ w(r).∀ι ∈ lG.(ι(h), ι(h′)) ∈ Rw

R ∈ R(alr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀w1.∀u ∈ I (w,w1).(w1 \ w ⊆ w1(r))⇒ ∀σ1, σ
′
1 ∈ Sw1.

(σ1.u ∼ σ ∧ σ′1.u ∼ σ
′ ∧ (σ1, σ

′
1) ∈
⋂
l∈w1\w l

R)⇒ (σ1, σ
′
1) ∈ Rw1

Thus, a relationR ∈ R(rdr) ensures that locations being read contain “equal” (in the
sense oflR) values; a relationR ∈ R(wrr) is oblivious to writes to any abstract location
in r, and a relationR ∈ R(alr) is oblivious to extensions of the current world provided
that it only adds abstract locations in regionr, that the initial contents of these newly
allocated locations are “equal” in the sense of (−)R and that nothing else is changed.

5 Proof-relevant Logical Relations

Given an instantiation, e.g. one of the above examples, we interpret types (and typing
contexts) as p.p.f. overW and types with effect as a fibred setoid overS(W). A term
in contextΓ ⊢ e : τ & ε will be interpreted as a morphism~e� from S(~Γ�) to Tε~τ�
whereTε takes p.p.f. and effects to fibred setoids and is given below in Definition 13.

12



Derivations of equations will be interpreted as equality proofs between the correspond-
ing morphisms and can be used to deduce observational equivalences (Theorem 3).

This, however, requires a loose relationship of the setoid interpretation with the
actual meanings of raw terms which is given by realization relationsA. Their precise
format and role are described in the following two definitions.

Definition 11. A semantic typeis a pair (A,A) where A is a p.p.f. (onW) andA
w is an

admissible subset ofV × Aw for eachw ∈ W such that for every inclusion u: w → w′

one has that vA
w v implies vA

w′ u.v. A semantic computationis a pair (T,T) where
T is a fibred setoid overW andT

w is an admissible subset ofC × Tw for eachw.

Definition 12. Let (Γ,Γ) and(A,A) be semantic types and let(T,T) be a semantic
computation. If e: S(Γ) → T is a morphism of fibred setoids and f: V → C then we
write f Γ⊢T e to mean that for some representative( f0, f1) of f one has that whenever
η Γw γ then f0(η) T

w e(γ) holds for all worldsw.

The following definition, corresponding to that in Fig. 1, iswhere the machinery
introduced above pays off. In particular, it defines the semantics of computations, where
proofs, i.e., pullback squares, are constructed.

Definition 13. Let A be a semantic type andε an effect. A semantic computation TεA
is defined as follows:

• (Objects) Elements of(TεA)w are pairs(c0, c1) of partial continuous functions where
c0 : Sw⇁ Σw1.I (w,w1) ×Sw1 × Aw1

andc1 is as follows. If R∈ R(ε) and(σ, σ′) ∈ Rw thenc1(R, σ, σ′) either is undefined
andc0(σ) andc0(σ′) are both undefined or else c1(R, σ, σ′) is defined and thenc0(σ)
and c′0(σ′) are both defined, sayc0(σ) = (w1, u, σ1, a) and c0(σ′) = (w′1, u

′, σ′1, a
′).

In this case,c1(R, σ, σ′) returns a pair( ^x x′
v v′ , p) wherew1 ^

x x′
v v′w

′
1 such that xu= x′u′.

Furthermore, p∈ Aw(x.a, x′.a′) and, finally,(σ1.u, σ′1.u
′) ∈ Rw wherew andw are low

point and apex of^x x′
v v′ .

• (Proofs) As usual, proofs only look at the(−)0 components. Thus, if(c0, ) ∈ TεAw
and (c′0, ) ∈ TεAw′ and ^x x′

v v′ is in S(W)(w,w′) with apex and low pointw,w then a
proof in (TεA) ^x x′

v v′ (c, c
′) is a partial continuous functionµ which givenσ ∈ Sw and

σ′ ∈ Sw′ and p : σ.v ∼ σ′.v′ either is undefined and thenc0(σ) andc′0(σ′) are both
undefined or else is defined and thenc0(σ) and c′0(σ′) are both defined with results,
say,c0(σ) = (w1, u, σ1, v) and c′0(σ′) = (w′1, u

′, σ′1, v
′). In this case,µ(p) returns a

tuple( ^
x1 x′1
v1 v′1

, q) satisfying x1uv= x′1u′v′ and q∈ Aw1(x1.v, x′1.v
′) with w1 = cod(x1) and

σ1.v1 ∼ σ1.v′1 in Sw1.

• (Realization) If c∈ C, we define cTεA
w (c0, c1) to mean that wheneverh w σ then

c(h) is defined iffc0(σ) is defined and if c(h) = (h1, v) andc0(σ) = (w1, u, σ1, v) then
h1 w1 σ1 and vA

w1
v.

Proving that a semantic computationTεA as in Definition 13 is a fibred setoid is non-
trivial. The tricky case is the existence of a transitivity operation. It is here that we need
the independence of abstract locations as stated in Definition 9, which implies thatS is
also minimal-pullback-preserving. Details, along with the construction of the cartesian
product (A × B,A×B) and function space (A⇒T,A⇒T), given semantic types (A,A)
and (B,B) and computation (T,T), may be found in the appendix.
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5.1 Fundamental theoremGiven a semantic type~A� for each basic typeA we can

interpret any typeτ as a semantic type~τ� by putting~τ1
ε
→ τ2� = ~τ1�⇒Tε~τ2�. A

typing contextΓ = x1:τ1, . . . , xn:τn is interpreted as the semantic type~Γ� = (1 ×
~τ1�) × . . . ) × ~τn� where 1 is the constant functor returning the discrete setoid {()}.

To every typing derivationΓ ⊢ t : τ & εwe then associate a morphism~Γ ⊢ t : τ & ε� :
S(~Γ�) → Tε~τ� such that~t� ~Γ�→Tετ ~Γ ⊢ t : τ & ε�. (Note: this is point where
the untyped semantics is related with the abstract one.) Forevery equality derivation
Γ ⊢ t = t′ : τ & ε we have~Γ ⊢ t : τ & ε� = ~Γ ⊢ t′ : τ & ε�, where the two typing
derivationsΓ ⊢ t : τ & ε andΓ ⊢ t′ : τ & ε are the canonical ones associated with
the equality derivationΓ ⊢ t = t′ : τ & ε. In essence, one has to provide a semantic
counterpart for every syntactic concept, e.g. let, fix, etc.Details are in the appendix.
5.2 Observational equivalenceLet Int stand for the constant functor that returns the
discrete setoid on the setZ of integers. We definev Int

w i ⇐⇒ v = int(i). We also
assume that there is some initial store and abstract storeh0, σ0 and a worldw0 such that
h0 w0 σ0. For instance,w0 can be the empty world with no locations and accordingly
h0 the initial store at startup.

Definition 14. Let (A,A) be a semantic type. We define anobservation of typeA as a
morphism o: A→ TεInt for someε and a function f so that fA→TεInt o.

Two values v, v′ are observationally equivalent at typeA if for all observations f, o
of type A one has that f(v)(h0) is defined iff f(v′)(h0) is defined and when f(v)(h0) =
(h1, v1) and f(v′)(h0) = (h′1, v

′
1) then v1 = v′1.

Takingo = ~⊢ f : τ
ε
→ int� immediately yields the following:

Proposition 2. If v, v′ are observationally equivalent at type~τ� and f is a term such

that ⊢ f : τ
ε
→ int then~ f �(v)(h0) is defined iff~ f �(v′)(h0) is defined and when

~ f �(v)(h0) = (h1, v1) and~ f �(v′)(h0) = (h′1, v
′
1) then v1 = v′1.

Theorem 3 (Observational equivalence).If (A,A) is a semantic type and vA
w0

e
and v′ A

w0
e′ with e∼ e′ in Aw0 then v and v′ are observationally equivalent at type A.

Proof We havef (v) TεInt
w0

o(e) and f (v′) TεInt
w0

o(e′) and alsoµ : o(e) ∼ ^1 1
1 1

o(e′) in
TεInt for someµ as in Definition 13.

The applicationµ to σ0, σ0, r(σ0) either is undefined in which caseo(e)(σ0) and
o(e′)(σ0) and f (v)(h0) and f (v′)(h0) are all undefined, the latter by the definition of


TεInt. Otherwise, we getf (v)(h0) = (h1, v1) and f (v′)(h0) = (h′1, v
′
1) ando(e)(σ0) =

(σ1, i1) ando(e′)(σ0) = (σ′1, i
′
1) where, by definition of realization inTεInt and Int, we

havev1 = int(i1) andv2 = int(i2). Now, µ(σ0, σ0, r(σ0)) returns a pullback (^
x1 x′1
v1 v′1

, q)
such that, in particular,x1.i1 ∼ x2.i2, whencei1 = i2 since Int is constant and then
v1 = v2 as required. ⊓⊔

6 Applications

In what follows we use our semantics to establish a number of effect-dependent se-
mantic equalities, hence program equivalences in the senseof observational equiva-
lences. We also give some semantically justified typings of concretely given functions,
in particular “set factory” described in Section 2.1. More examples are discussed in the
appendix.
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6.1 Sets of locationsWe work in the instantiation “sets of locations”. Recall the
example, “dummy allocation” from Section 2.1. Suppose thatf Γ⊢TεA e. Now, put
dummy(e)(w)(γ ∈ ~Γ�w)(h ∈ Sw) = e(w)(γ)(h′), whereh′ is the heap obtained by
adding a dummy location toh. We havedummy( f ) Γ⊢TεA dummy(e) since is oblivious
to extensions of the store. Therefore, reflexivity also furnishes a proof of equality. It also
means that, semantically,dummy( f ) does not need to flag the allocation effectal since
no semantically visible world extension takes place.

For the Interleaved Dummy Allocation example, on the other hand, there is an extra
step caused by the proper allocation, which yields a world extensionw → w1 and
w→ w′1. In order to show the equivalence, we construct a proof, i.e., a pull-back square
w1^w′1, where the allocated concrete locations are identified in its low point. Then
the reasoning is the same as above used for showing the semantic equivalence of the
Dummy example.

This is different in the following example. Define a semantictype N of names by
letting Nw be the discrete setoid on the setw andNu(l) = u(l) andv N

w l ⇐⇒ v =
loc(l). Moreover, f = ~ref(0)�, g = ~let x⇐ref(0)in let y⇐ref(0)in (x, y)�,
andh = ~let x⇐ref(0)in let y⇐ref(0)in (y, x)�. We now define semantic coun-
terpartsf : S(1)→ Tal N, g, h : S(1)→ Tal N, where
f0w(σ) = (w1, i1, σ1, l1), g0w(σ) = (w2, i2i1, σ2, (l1, l2)), andh0w(σ) = (w2, i2i1, σ2, (l2, l1))
Here and in what follows it is assumed thatnew(σ) = (l1, σ1) andnew(σ1) = (l2, σ2)
andw1 = w ∪ {l1} andw2 = w1 ∪ {l2}. Recall thatSw ⊆ H. Finally, i1 : w → w1 and
i2 : w1 → w2 stand for the obvious inclusions. We use analogous definitions for the
primed variants.

In order to definef0.5 we start withu : w → w′ andσ ∈ Sw, σ′ ∈ Sw′, R ∈ R(al)
such that (σ, u.σ′) ∈ Rw. Defineu′ : w1→ w′1 so thatu′i1 = i′1u, that isu′(l ∈ w) = u(l),
u′(l1) = l′1. We now return the pullback squarew1 ^

u′ 1
1 u′w

′
1 with apexw′1 and low point

w1 and the trivial proof thatu′.l1 = l′1. This settles the definition off0.5, sinceRw1 is
total sinceR ∈ R(al). Notice though, that we cannot avoid the allocation effecthere.

The functionsg0.5 andh0.5 are defined analogously.
We now construct a proof thatg ∼ h, recall that onlyg0 andh0 are needed for

this. Givenw, σ and the notation from above this proof amounts to a pullback square
w2 ^

x x′
v v′w

′
2 such thatxi2i1 = x′i′2i′1u and x.(l1, l2) = x′.(l2, l1) andσ2.v ∼ σ′2.v

′. Note
that, accidentally, the final abstract stores of both computations are the same, namely,
σ2. Now let f be the bijection that swapsl1, l2 and fixes everything else. We then put
^x x′

v v′ := ^1 f
f 1. Now, obviously (l1, l2) = f .(l2, l1) and∼-equality of abstract stores is trivial

by definition.

6.2 Heap PERsIn this section we generalize our earlier collection of effect-dependent
program equivalences [4] to the abstract locations of the Heap PERs instantiation. We
first show how the set factory indeed has the announced effecttypings and thus can
participate in effect-dependent equivalences.
Set factoryLet w be a world andσ ∈ Sw. Suppose thatσ1 arises fromσ by allocating
a fresh set data structure, e.g., a linked list, with entry point(s) E. Let l1 be the abstract
location describing this fresh data structure, i.e., (h, h′) ∈ lR1 ⇐⇒ the data structures
starting fromE in h, h′ are well-formed, denote the same set, and do not overlap with
the footprints of all the abstract locations inw. The footprintlF1 comprises the locations
that make up this data structure assuming that (h, h) ∈ lR, otherwise any value can be
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chosen. Finally,lG contains idempotent functions,ι, such thatι(h) = h1 andh1 agree on
all concrete locations from dom(h) ⊇ lF (h) and, moreover, dom(h1) ⊇ dom(h).

Now for any chosen regionr we addl1 to r to yield a new worldw1. The function
setfactory0wσ then returnsw1 and a tuple of semantic functions for reading, member-
ship, removal of which we only sketch reading here: Ifu : w1 → w2 andσ1 ∈ Sw1

andi ∈ Z then the reading function looks upi in the data structure starting at the entry
pointsE in σ1. (Note thatσ1 ∈ Sw asserts that this data structure exists and is well-
formed.) The returned (abstract) storeσ2 might not be the same asσ because internal
reorganizations, e.g., removal of duplicates, might have occurred. However, no world
extension is needed andσ1 ∼ σ2 holds. This together with the fact that the outcome
only depends on thelR equivalence class justifies a read-only typing for reading.
Memoization For the simplememofunctional from Section 2.1 we produce just as in
the previous example a fresh abstract locationl that contains the two newly allocated
concrete locations, saylx, ly, and on which we impose the invariant (h, h′) ∈ lR ⇐⇒
h(lx), h′(lx) contain the same integer value, sayi and thath(ly), h′(ly) both contain the
integer valuef (i) where f is the pure function to be memoised.
Effect-dependent equivalencesConsider the following notation

σ ∼rds(ε,w) σ
′ ⇐⇒ ∀l ∈ w(rds(ε)).(σ, σ′) ∈ lR

σ ∼nwrs(ε,w) σ
′ ⇐⇒ ∀l ∈ w(nwrs(ε)).(σ, σ′) ∈ lR

which specify that the abstract heapsσ andσ′ are equivalent on all the abstract locations
l in regions associated, respectively, to read effects and no-writes inε.

Lemma 2. Let Γ ⊢ e : τ & ε. For any world w ∈ W, and contextγ ∈ ~Γ�w,
wheneverσ0, σ

′
0 ∈ Sw such thatσ0 ∼rds(ε,w) σ

′
0, thenc(σ0) and c(σ′0) wherec =

~Γ ⊢ e : τ & ε�w(γ) are equally defined and ifc(σ0) = (w1, u, σ1, v) and c(σ′0) =
(w′1, u

′, σ′1, v
′) then there exist (continuously!) a pullbackw1 ^

x x′
v v′w

′
1 with apexw and

low pointw and a proof of x.v ∼ x′.v′ such that xu= x′u′ and the following is satisfied:
1. for all l ∈ w, we have either:(σ0, σ1.u) ∈ lR and (σ′0, σ

′
1.u
′) ∈ lR (remain equiva-

lent) or (σ1.u, σ′1.u
′) ∈ lR (equally modified);

2. if l ∈ w(nwrs(ε)), then(σ0, σ1.u) ∈ lR and(σ′0, σ
′
1.u
′) ∈ lR.

3. There exists a morphismc′ ∈ ~Γ� → Tε~τ�, such thatc′ ∼ c and if c′(w)(γ)σ0 =

(w⋆, u⋆, σ⋆, v⋆), then for all regionsr < als(ε), w⋆(r) = w(r).

We can validate all the effect-dependent program equivalences “dead, commuting, du-
plicated computation” and “pure lambda hoist”, as well as the “masking rule” from
previous work [6] in our new, more powerful, setting. To givean impression of the
formulation of these validations we state the corresponding proposition for “dead com-
putation” which is particularly interesting in that it contains a termination precondition.
The proof, and details of the other equations are in the appendix, which also contains a
validation of loop unrolling optimisation described by Tristan and Leroy [31].

Proposition 3 (dead computation).Suppose thatΓ ⊢ e : unit & ε, thatwrs(ε) = ∅
and that~Γ ⊢ e : unit & ε�w(γ)(σ) is defined for allw, γ ∈ ~Γ�w, σ ∈ Sw. Then if
for all worlds w, all contextsγ ∈ ~Γ�w, and abstract heapsσ ∈ Sw, the function
~Γ ⊢ e�(w)(γ)(σ) is defined, then~Γ ⊢ e : unit & ε� ∼ ~Γ ⊢ () : unit & ε�.

6.3 State Dependent Abstract Data Types (ADT)We prove the equivalence of a
number of programs involving state dependent abstract datatypes.

16



Awkward Example The first example is Pitts and Stark’s classicawkwardexample[26].
Consider the following two programs:

e1 = let x⇐ref(0)in λ f .x := 1; f (); !x and e2 = λ f . f (); 1.
Intuitively, the expressionse1 and e2 are equivalent as they both return the value 1,
althoughe1 uses a fresh location to do so. We can formally prove the equivalence of
these functions as follows: Assign the region wherex is allocated asr. If f has the type

unit
ε
→ unit with effectsε, thene1 has type (unit

ε
→ unit)

ε,rdr,wrr
→ int & ε, alr,

while e2 has type (unit
ε
→ unit)

ε
→ int & ε. Notice thatε may containrdr or wrr or

both. Moreover, assume that the footprint of a location in region r consists of a single
concrete locationl, and that the guarantee of a locationlG consist of a single function
write1 such thatwrite1(h) = h′ whereh′(l) = 1 andh′(l′) = h(l′) for all other locations.
Clearlye1 has such a write effect.

For proving the equivalence ofe1 ande2, assume a worldw and an abstract heapσ.
Let ~e1�wσ = (w ⊎ w1 ⊎ wr , u1, v1, σ1) and~e2�wσ = (w ⊎ w1, u1, v2, σ2). We need
to construct a pullback squarew ⊎ w1 ⊎ wr^w ⊎ w1 such that the valuesv1 andv2 are
equal in its apex andσ1 andσ2 are equal in its low point. Sincewrr is in the effects of
e1, we have thatv1 = 1. We also havev2 = 1 trivially. Hencev1 andv2 are equal in the
apex of the pullback squarew ⊎ w1 ⊎ wr^w ⊎ w1. Similarly,σ1 when taken to the low
point of the square, that is, where the locations inwr are forgotten, the resulting heap is
equivalent toσ2.
Modified Awkward Example Consider now the following variant of the Awkward
example, due to Dreyer et al.[14]:

e1 = let x⇐ref(0)in λ f .x := 0; f (); x := 1; f (); !x and e2 = λ f . f (); f (); 1.
The difference is that in the first programx is written to 0 and the call-back function is
used twice. Interestingly, however, the solution given forthe Awkward example works
just fine. We can prove semantically that the type of the programe1 has the same type
as before in the Awkward example, where the only writes allowed on abstract location
assigned forx is to write one. Therefore, iff has effect of writing on the regionr, it will
setx to one.
Callback with Lock Example We now show equivalence of the following programs,
also due to Dreyer et al.[14]:

e1 = let b⇐ref(true) in let x⇐ref(0)in e2 = let b⇐ref(true) in let x⇐ref(0)in
〈λ f .if !b then 〈λ f .if !b then

(b := false; f (); x :=!x+ 1;b := true) (b := false; let n⇐ !x in f ();
else (), λ .!x〉 x := n+ 1;b := true)

else (), λ .!x〉
Both programs produce a pair of functions, one incrementingthe value stored inx and
the second returning the value stored inx. The boolean referenceb serves as lock in
the incrementing function. Once this function is called thevalue inb is set tofalse
and only after calling the call-back, the value inx is incremented isb set again totrue.
However, the implementation of the increment function is different. While the program
to the left calls the call-back functionf () and then increments the value ofx using the
value stored inx, the program to the right remembers (inn) the value ofx before the
call-back is called and then uses it to increment the value stored inx.

Assume thatx andb are in the footprint of the same abstract location (l) in the region
r. We show that these programs are equivalent under the type
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(unit
ε
→ unit)

ε,wrr,rdr
→ unit) × (unit

rdr
→ unit) & alr, ε,

whereε may contain the effectswrr, rdr. In particular, the locationl is specified as fol-
lows: its footprint consists only of the concrete locationsstoring x and b, written lb
and lx, while its rely-condition is equality. The more interesting is its guarantee con-
dition (lG), which contains the following idempotent functionsfi for i ∈ N: fi(h) = h
if h(lb) = false and fi(h) = h′ if h(lb) = true, whereh′(lx) = i if h(lx) ≤ i and
h′(lx) = h(lx); moreover, the value ofb is unchanged, that is,h′(lb) = h(lb). It is easy to
check that these functions are idempotent as well as their composition.

First, notice that indeed the two functions above have typewrr as the increment of
x is captured by using some write functionfi and moreoverb is true. Now, to show
that the two programs above are equivalent, we need to show that the value stored inx
before and after the call back is called is the same. This is the case, as even ifwrr ∈ ε,
the value stored inb is false, which means that any functionfi used will leave the
concrete locations storingx andb untouched.

Notice that if the read function also called the call-back, then the reasoning above
would break, as the call-back could modify the value stored in x becauseb is true.

7 Conclusions
We have laid out the basic theory of proof-relevant logical relations and shown how they
can be used to justify nontrivial effect-dependent programequivalences. We have also
shown that proof-relevant logical relations give direct-style justifications of the Pitts-
Stark-Shinwell equivalences for name generation. For the first time it was possible to
combine effect-dependent program equivalences with hidden invariants allowing “silent
modifications” that do not count towards the ascription of aneffect. Earlier accounts of
effect-dependent program equivalences [19,5,4,6,30] do not provide such possibilities.

Proof-relevant logical relations or rather the sets|Aw| whereA is a semantic type
bear a vague relationship with themodel variables[11] from “design by contract” [23]
and more generally data refinement [25]. The commonality is that we track the seman-
tic behavior of a program part with abstract functions on some abstracted set of data
that may contain additional information (the “model”). Thedifference is that we do not
focus on particular proof methods or specification formalisms but that we provide a
general, sound semantic model for observational equivalence and program transforma-
tion and not merely for functional correctness. This is possible by the additional, also
proof-relevant part of the semantic equality proofs between the elements of the models.
We also note that our account rigorously supports higher-order functions, recursion, and
dynamic allocation.

Our abstract locations draw upon several ideas from separation logic [28], in par-
ticular footprints and the conditions on rely/guarantee assumptions from [32]. Intrigu-
ingly, we did not need something resembling the “frame rule”although perhaps the
Π-quantification over larger worlds in function spaces playsits role.

Pullback-preserving functors and especially the instantiation sets of locationsare
inspired by FM-sets [15] or rather theSchanuel toposto which they are equivalent (see
Staton [29] for a comprehensive account). The instantiations other thansets of locations,
as well as the use of setoids for the “values” of these functors rather than plain sets is
original to this work.

We would like to have a semi-formal format that allows one to integrate semantic
arguments with typing and equality derivations more smoothly. We would also like to
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allow proof-relevant partial equivalences in the Heap PER instantiation, which essen-
tially amounts to the ability to store values with proof-relevant equality. In particular,
this would allow us to model higher-order store with some layering policy [9]. For un-
restricted higher-order store as in [30], but with abstractlocations, one would need to
overcome the well-known difficulties with circular definition of worlds. Step-indexing
[2] is an option, but we would prefer a domain-theoretic solution. The formal simi-
larity of our abstract locations with the rely-guarantee formalism [12,32] suggests the
intriguing possibility of an extension to concurrency.

We also believe that update operations governed by finite state machines [1] can be
modelled as an instance of our framework and thus combined with effect-dependency.
The application of our general framework to effects other than reading, writing, alloca-
tion deserves further investigation.

Indeed, we feel that with the transition to proof-relevancewe have opened a door to
a whole new world that hopefully others will investigate with us.
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A Online Appendix

This appendix contains some additional technical materialthat was omitted from the
main body for space reasons. In particular, Section A.1 contains standard details on
semantics of values and computations as well as of domain theory. Section A.2 elabo-
rates the Setoids theory, introducing the definition of Isomorphic pullbacks and contains
more properties of p.p.f. In Section A.3, a third instantiation, more complex than the sets
of locations, but simpler than Heap PERs can be found. Section A.4 contains most of
the machinery necessary to establish the Fundamental Theorem. Finally, Section A.5
contains further applications of our setting. For instance, we prove the soundness of a
number of re-writes, such as the communting equation, duplication elimination, pure
lambda-hoist, etc. We also prove the soundness of the Masking rule and discuss the
loop-unrolling example in [31].

A.1 Syntax and Semantics
PredomainsA predomainis anω-cpo, i.e. a partial order with suprema of ascending
chains. Adomainis a predomain with a least element,⊥. Recall thatf : A → A′ is
continuousif it is monotonex ≤ y⇒ f (x) ≤ f (y) and preserves suprema of ascending
chains, i.e.,f (supi xi) = supi f (xi). Any set is a predomain with the discrete order. If
X is a set andA a predomain then anyf : X → A is continuous. A subsetU of a
predomainA is admissibleif whenever (ai)i is an ascending chain inA such thatai ∈ U
for all i, then supi ai ∈ U, too. If f : X × A→ A is continuous andA is a domain then
one definesf †(x) = supi f i

x(⊥) with fx(a) = f (x, a). One has,f (x, f †(x)) = f †(x) and if
U ⊆ A is admissible andf : X × U → U then f † : X → U, too. We denote a partial
(continuous) function from set (predomain)A to set (predomain)B by f : A⇁ B.
SemanticsThe untyped semantics of values and computations is given bythe recursive
clauses in Figure 5; note the overloading of semantic brackets for constants, values and
computations. The notationη(x) stands for thei-th projection fromη ∈ V if x is xi and
η[x7→v] (functionally) updates thei-th slot inη whenx = xi .

VxWη = η(x)
VcWη = VcW

V(v1, v2)Wη = (Vv1Wη,Vv2Wη)
Vv.iWη = di if i = 1, 2, VvWη = (d1,d2)

Vrec f x = tWη = fun(g† η), whereg(η,u) = λd.VtWη[ f 7→fun(u), x7→d]

VvWη h = (h, VvWη)
Vif v then t2 else t3Wηh = Vt2Wηh if VvWη = int(z), z, 0
Vif x then t2 else t3Wη = Vt3Wηh if VvWη = int(0)

Vlet x⇐ t1 in t2Wη h, = ⊥, whenVt1Wη h = ⊥
Vlet x⇐ t1 in t2Wη h = Vt2Wη[x7→u] h1whenVt1Wη h = (h1,u)

V!vWη h = (h, h(l)), whenVvWη = loc(l)
Vv1 := v2Wη h = (h[l 7→Vv2Wη], int(0)), if Vv1Wη = loc(l)
Vref(v)Wη h = new(h,VvWη)

VvWη = int(0), otherwise
VtWη h = (h, int(0)), otherwise

Fig. 5: Semantics of the untyped meta language
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A.2 Setoids
More on dependencyWe should explain what continuity of a dependent function like
t(−,−) is: if (xi)i and (yi)i and (zi)i are ascending chains inA with supremax, y, z and
pi ∈ A(xi, yi) andqi ∈ A(yi , zi) are proofs such that (xi , yi , pi)i and (yi , zi , qi)i are ascend-
ing chains, too, with suprema (x, y, p) and (y, z, q) then (xi , zi , t(pi , qi)) is an ascending
chain of proofs (by monotonicity oft(−,−)) and its supremum is (x, z, t(p, q)).

Formally, such dependent functions can be reduced to non-dependent ones using
pullbacks, that ist would be a function defined on the pullback of the second and first
projections from{(x, y, p) | p ∈ A(x, y)} to |A|, but we find the dependent notation to be
much more readable.
Isomorphic pullbacks

Definition 15. LetW be a category of worlds. Two pullbacksw ^x x′
u u′w

′ andw ^y y′

v v′w
′ are

isomorphic if there is an isomorphism f between the two low points of the squares so
that v f = u and v′ f = u′, thus also u f−1

= v and u′ f −1
= v′.

It is easy to see that pullback squares can be composed.

Lemma 3. Given a category of worldsW, such thatw,w′,w′′ ∈ W, if w ^x x′
u u′w

′ and

w′ ^y y′

v v′w
′′ are pullback squares as indicated then there exist z, z′, t, t′ such thatw ^

zx z′y′

ut v′t′w
′′

is also a pullback.

Proof Choosez, z′, t, t′ in such a way that^z z′

x′ y and ^u′ v
t t′ are pullbacks. The verifica-

tions are then an easy diagram chase. ⊓⊔

Pullback squares can be decomposed as formally described below. This property is
used for instance in the definition of fibred setoids, formalizing our notion of semantic
computation. In particular, to formalize that the executions of related computations do
not depend on each other.

Lemma 4. A pullback square^x x′
u u′ in a category of worlds is isomorphic to t( ^x 1

1 x, ^
1 x′
x′ 1 ).

Pullback-preserving functors

Lemma 5. If A is a p.p.f., u: w → w′ and a, a′ ∈ Aw, there is a continuous function
Aw′(u.a, u.a′) → Aw(a, a′). Moreover, the “common ancestor” aof a and a′ is unique
up to∼.

Note that the ordering on worlds and world morphisms is discrete so that continuity
only refers to theAw′(u.a, u.a′) argument.

Definition 16 (Morphism of functors). If A, B are p.p.f., a morphism from A to B
is a pair e = (e0, e1) of continuous functions where e0 : Πw.Aw → Bw and e1 :
Πw.Πw′.Πx : w → w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′) → Bw′(x.e0(a), e0(a′)). A
proof that morphisms e, e′ are equal is given by a continuous functionµ : Πw.Πa ∈
Aw.Bw(e(a), e′(a)).

These morphisms compose in the obvious way and so the pullback-preserving functors
and morphisms between them form a category.
More on S(A) and fibred setoidsIf ^x x′

u u′ and ^y y′

v v′ are two composable pullback squares

with composite ^zx z′y′

ut v′t′ and p ∈ S(A) ^x u
x′ u′ (a, a

′) and p′ ∈ S(A) ^y v
y′ v′ (a

′, a′′), then the
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composite proof oftS(A)(p, p′) ∈ S(A) ^zx z′y′

ut v′t′ (a, a
′′) is given bytA(z.p, z′.p′). Indeed,

if ŵ = cod(z) is the apex of the composite square thenz.p ∈ Aŵ(zx.a, zx′.a′) and
z′.p′ ∈ Aŵ(z′y.a′, z′y′.a′′) andzx′.a′ = z′y.a′ sincezx′ = z′y so the two proofs compose
in Aŵ.

Lemma 6. Let T be a fibred setoid. The elements tgiven by pullback preservation are
unique up to∼. If u : w→ w′ is an isomorphism then there is a continuous function Tu:
Tw → Tw′ and it is bijective up to∼ with inverse T(u−1). If ^ and^′ are isomorphic
pullback squares then there are continuous back and forth functionsΠ t.Π t′.T^(t, t′)→
T^′(t, t′).

Lemma 7. If A is a p.p.f. and T is a fibred setoid then in order to specify amorphism
from S(A) to T with given first component f0 : Πw.Aw → Tw it is enough to provide
a continuous function f0.5 : Πw,w′.Πx : w → w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′) →
T ^x 1

1 x( f0(a), f0(a′)).

Proof If ( f0, f1) is a morphism we can definef0.5 by f0.5(x, p) = f1(x, a, a′, p) noting
that p ∈ S(A) ^x 1

1 x(a, a
′). Conversely, givenf0.5 to define f1 we pick a pullback square

w ^x x′
u u′w

′ with apexw anda ∈ Aw, a′ ∈ Aw′ and p ∈ Aw(x.a, x′.a′), i.e., a proof in
S(A)^(a, a′). Applying f0.5 to r(−) yields the morphismp1 ∈ T ^x 1

1 x( f0(a), f0(x.a));
moreover, applyingf0.5 to s(p) yields p2 ∈ T ^x′ 1

1 x′( f0(a′), f0(x.a)). Then,t(p1, s(p2)) ∈
Tt( ^x 1

1 x, ^
1 x′
x′ 1 )( f0(a), f0(a′)) so that Lemmas 4 and 6 yield the desired proof in the square

T ^x x′
u u′ ( f0(a), f0(a′)).

The second part of the lemma about equality is just a restatement of the definition
of equality of morphisms of fibred setoids. ⊓⊔

Lemma 8. Let A, B be p.p.f. For every morphism e: A → B there is a morphism
S(e) : S(A)→ S(B) such that S(e)0 = e0. Thus, in particular S(−) is a full and faithful
functor from the category of p.p.f. onW to the category of fibred setoids overW.

On abstract heapsThe definition of minimal pullback-preserving functor corresponds
to the p.p.f. used for values, but is used for abstract heaps.In particular, an abstract
heap at the low-point of a pullback square is the result of forgetting locations from an
abstract heap at its apex.

Applying the definition of minimal ppf to the trivial minimalpullback ^u 1
1 u, plus

nonemptiness, yields the following result.

Lemma 9. For every u: w→ w′ andσ ∈ Sw there is morphism of setoidsSw→ Sw′

which is right inverse to(−).u.

The “unique up to∼” clause allows us in particular to assert the∼-equality of two
abstract storesσ, σ′ ∈ Sw by provingσ.x ∼ σ′.x andσ.x′ ∼ σ′.x′ separately when
^x x′

u u′ is a minimal pullback with apexw.
A.3 Computational model

We now discuss a third instantiation of our framework, whichcaptures the setting
developed in [5].
Flat stores The flat storesinstantiation assumes that heap locations contain merely
integer values and no pointers. Possible worlds are finite sets of locations together with
a function that associates each location aregiontaken from a fixed setRegsof regions.
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World morphisms must preserve this tagging. We writel ∈ w andl ∈ w(r) to mean that
l occurs inw and with regionr in the second case. Abstract storesSw comprise those
heapsh ∈ H with dom(h) ⊇ w and such thatl ∈ w andh ∈ Sw implies thath(l) is an
integer value,int(v) for v ∈ Z (thus all locations hold integer values). We puth ∼ h′

in Sw iff for all l ∈ w one hash(l) = h′(l). In this case there is a unique proof, say⋆.
For morphismu : w → w′ we defineSu : Sw′ → Sw by renaming concrete locations
according tou. The elementary effects arerdr,wrr, alr representing reading from within,
writing into, allocating within a regionr. The associated sets of relations are given by

R∈ R(rdr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀l ∈ w(r).σ(l) = σ′(l)

R∈ R(wrr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀l ∈ w(r).∀v ∈ Z.⇒ (σ[l 7→int(v)], σ′[l 7→int(v)]) ∈ Rw

R∈ R(alr) ⇐⇒ (σ, σ′) ∈ Rw⇒ ∀w1.∀u ∈ I (w,w1).(dom(w1) \ dom(w) ⊆ dom(w1(r)))
⇒ ∀σ1 ∈ Sw1, σ

′
1 ∈ Sw′1.σ1.u ∼ σ ∧ σ′1.u ∼ σ

′∧

∀l ∈ dom(w1) \ dom(w).σ1(l) = σ′1(l)⇒ (σ1, σ
′
1) ∈ Rw1

This essentially mirrors the setting of our earlier relation-based account of reading,
writing, and allocation with integer values stores [5] withthe difference that allocation
is modelled with relations on the same level as reading and writing and that the stores
being related share the same layout.
A.4 Proof-relevant logical relations In following establishes that the semantics of
the monad corresponds indeed to a semantic computation, that is, a fibred setoid.

Proposition 4. The semantic computation TεA as defined in Definition 13 is a fibred
setoid.

Proof The tricky case is to show the existence of a transitive operation. It is here
that we require the independence of abstract locations as stated in Definition 9, which
implies thatS is also minimal-pullback-preserving.

Assume that there are proofs inp1 : TεA ^
x1 x′1
v1 v′1

(c, c′) and p2 : TεA ^
x2 x′2
v2 v′2

(c′, c′′)

wherew ^
x1 x′1
v1 v′1

w′ andw′ ^
x2 x′2
v2 v′2

w′′. We also haveσ ∈ Sw andσ′′ ∈ Sw′′, such that they
are equivalent in the pullback of the low points of these two pullback squares. Letq be
such pullback.

In order to use the proofsp1 andp2, we need to construct fromσ andσ′′ an abstract
heapσ′ ∈ Sw′. Let q be the minimal pullback over the apexes of the two pullback

squaresw ^
x1 x′1
v1 v′1

w′ andw′ ^
x2 x′2
v2 v′2

w′′. Thenw andw′′ form a pullback square with apex

q and low pointq. SinceS is minimal-pullback-preserving, there is aσq ∈ Sq, such
that it is equivalent toσ andσ′′ when taken to the worldq. We now defineσ′ ∈ Sw′

to beσq taken to the worldw′. We thus haveσ′ ∈ Sw′, andσ′′ ∈ Sw′′, such that
σ.v1 ∼ σ

′.v′1 andσ′.v′2 ∼ σ
′′.v′2.

We can now use thep1 and p2. In particular, letc(σ) = (w1, u1, σ1, v1), c′(σ′) =
(w′1, u

′
1, σ

′
1, v
′
1), andc′′(σ′′) = (w′′1 , u

′′
1 , σ

′′
1 , v

′′
1 ). From the proofs, we get two pullback

squaresw1^w′1 andw′1^w′′1 . It is easy to show that the values obtained are equal in the
minimal pullback over the apexes of these two pullback squares and that the abstract
heaps are equivalent in the pullback of their low points. ⊓⊔

Definition 17 (cartesian product).If (A,A) and(B,B) are semantic types their carte-
sian product(A × B,A×B) is defined by(A × B)w = Aw × Bw (cartesian product of
setoids) and(v1, v2) A×B

w (a, b) ⇐⇒ v1 
A
w a∧ v2 

B
w b.
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Definition 18 (function space).Let (A,A) be a semantic type and(T,T) be a se-
mantic computation. We define a semantic type(A⇒T,A⇒T) as follows. An object
f of (A⇒T)w is a pair ( f0, f1) of continuous functions where f0 assigns to eachw1

and v : w → w1 a continuous function f0(v) : Aw1 → Tw1. The second com-
ponent f1 assigns to each v: w → w1 and v1 : w1 → w2 a continuous function
Πa ∈ Aw1.Πa′ ∈ Aw2.Aw2(v1.a, a′)→ T ^

v1 1
1 v1

( f0(v, a), f0(v1v, a′)).
If f , f ′ ∈ |A⇒T | then a proofµ ∈ (A⇒T)( f , f ′) is a continuous function assigning

to each v: w→ w1 and a∈ Aw1 a proofµ(v, a) ∈ T ^1 1
1 1( f0(v, a), f ′0(v, a)).

If u : w → w′ and f = ( f0, f1) ∈ (A⇒T)w then u. f ∈ (A⇒T)w′ is given by
precomposition with u, i.e.,(u. f )0(v, a) = f0(vu, a), etc.

As for the realisation relationA⇒T we put vA⇒T
w f to mean that v= fun(g) for

some g and whenever i: w→ w1 is an inclusion and uA
w1

a then g(u) T
w1

f (i, a).

Notice that unlike morphisms the elements of the function space arenot identified if
they are “provably equal.” Notice also that ifv A⇒T

w f impliesv A⇒T
w1

i. f whenever
i : w→ w1 is an inclusion.

In what follows we define semantic counterparts to the generic syntactic construc-
tions common to all instantiations, namely application andabstraction, sequential com-
position, subeffecting, and recursion that allow us to define this interpretation of deriva-
tions in a compositional fashion. Having given these semantic counterparts we then
omit the formal definition of the interpretation~−�.

Lemma 10 (Abstraction).LetΓ,A be semantic types, T a semantic computation. There
is a functionλ so that if e : S(Γ × A) → T is a morphism of fibred setoids then
λ(e) : S(Γ) → A⇒T. Moreover, if e∼ e′ thenλ(e) ∼ λ(e′) and if f Γ×A→T e then
λη.λa. f (η, a) Γ→A⇒T λ(e).

Lemma 11 (Application).Let A be a semantic type and T be a semantic computation.
There is a morphism app: S((A⇒T) × A)→ T andλ( f , a). f (a) ((A⇒T)×A)→T app.

Lemma 12 (subeffecting).Let Γ,A be semantic types andε, ε′ be effects. There is a
functionsubeff, so that if e: S(Γ) → TεA, thensubeff(e) : S(Γ) → Tε∪ε′A. Moreover,
if e ∼ e′, thensubeff(e) ∼ subeff(e′). Finally, if f Γ→TεA e then fΓ→Tε∪ε′A subeff(e).

Proof For the first component,subeff0, we use the same first componente0 of e.
What changes is the definition of the second component,subeff1. It is defined only for
relationsR ∈ R(ε ∪ ε′), for which e1 is also defined. For some related given abstract
heaps inR, subeff1 calls e1 constructing the corresponding pullback. For proofs the
reasoning is similar. ⊓⊔

We elide assertions about∼-versions of beta-eta-equality, and the existence of “value
morphisms” of typeS(A)→ TεA for any semantic typeA.

Lemma 13 (let).Let Γ,A, B be semantic types andε an effect. There is a function let
such that if e1 : S(Γ)→ TεA and e2 : S(Γ × A)→ TεB are morphisms then let(e1, e2) :
S(Γ) → TεB. Moreover, if e1 ∼ e′1 and e2 ∼ e′2 then let(e1, e2) ∼ let(e′1, e

′
2). Finally, if

f1 Γ→TεA e1 and f2 Γ×A→TεB e2 thenλη.λh.let (h1, v)= f1(η)(h) in f2(η, v)(h1) Γ→TεA

let(e1, e2).
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Proof Consider the following definition for the first component of the morphism
let(e1, e2) which is only defined whene1 ande2 are defined. The type of this component
is ~Γ�w → Tε~B�w. Hence, assume a worldw, and a contextγ ∈ ~Γ�w, then one
returns an object (c0, c1) ∈ Tε~B�w. The first componentc0 is: Πw.Πγ ∈ ~Γ�w.Πσ ∈
Sw.e2(w1)(γ, v1)σ1 wheree1(w)(γ)σ = (w1, u1, σ1, v1).

For the second component,c1, assume a relationR ∈ R(ε), and two abstract heaps

σ, σ′ ∈ Sw such that (σ, σ′) ∈ Rw. Frome1 we get a proofw1 ^
x1 x′1
v1 v′1

w′1, wheree1(w)(γ)σ =
(w1, u1, σ1, v1) and e1(w)(γ)σ′ = (w′1, u

′
1, σ

′
1, v
′
1), such that (σ1.v1, σ

′
1.v
′
1) ∈ R and

p : ~A�w1(x1.v1, x′1.v
′
1). Applying e2 on σ1.v1 andσ′1.v

′
1 we get a proofq2 ^

y2 y′2
v2 v′2

q′2,
such that ( ˜σ2.v2, σ̃2

′.v′2) ∈ R. However, we need to show that the heaps obtained from
applyinge2 onσ1 andσ′1 (using the correct world and context), namelyσ2 andσ′2, are
related. For this we rely on the morphism (e2)1. In particular, we use (e2)1 on the pull-
backw1 ^

1 x1
x1 1 w1 and obtain a pullbackw2^q2 such thatσ2 and ˜σ2 are equal in its low

point. Similarly, applying (e2)1 on the pullbackw1 ^
x′1 1
1 x′1

w′1, we get a pullbackq′2^w′2,
where ˜σ2

′ is equal toσ′2 in its pullback. Using Lemma 3, we compose the pullbacks
w2^q2, q2^q′2 andq′2^w′2, obtaining a common pullbackq, whereσ2 andσ′2 when
taken toq are inR.

The morphismlet(e1, e2) ∼ let(e′1, e
′
2) can be then defined whene1 ∼ e′1 ande2 ∼ e′2

are defined. Assume a pullbackw ^1 1
1 1w and an abstract heapσ ∈ Sw and a con-

text γ ∈ ~Γ�w. Using the morphism betweene1 and e′1 on these objects, we ob-

tain a pullbackw1 ^
x1 x′1
v1 v′1

w′1, p1 ∈ ~A�w1(x1.v1, x′1.v
′
1) andq1 : σ1.v1 ∼ σ

′
1.v
′
1, where

e1(w)(γ)σ = (w1, u1, σ1, v1) ande′1(w)(γ)σ = (w′1, u
′
1, σ

′
1, v
′
1). From the pullback pre-

serving property of computations andp1, there is a common valuev ∈ ~A�w1 and con-
text γ ∈ ~Γ�w1 which are equal, respectively, tov1 andv′1, andγ andγ′ (when taken
to the correct world). We then construct a proof~Γ × A�w1. We now apply twice the
morphism betweene2 ande′2 once in the pullbackw1^w1 and another on the pullback
w1^w′1, obtaining two pullbacksw2^q2 andq2^w′2. From Lemma 3, we can compose
them where the resulting values and heaps are equal. ⊓⊔

Lemma 14 (fix).LetΓ,D be semantic types so that for eachw the predomain Dw is a
domain with least element⊥w such that(⊥w,⊥w, r(⊥w)) ≤ (d, d′, p) holds for every
proof p∈ D(d, d′) and such that x.⊥w = ⊥w′ holds for every x: w→ w′.1

i There then exists a function fix so that whenever e: Γ×D→ D then fix(e) : Γ → D
ii If e ∼ e′ then fix(e) ∼ fix(e′). Furthermore, the fixpoint and unrolling equations

from Lemma 14 hold.
iii Finally, if f Γ×D→D e then f†  fix(e).

Proof For everyw we havee0w : Γw × Dw → Dw. We can thus formfix(e)0w :=
(e0w)† : Γw → Dw. It remains to definefix(e)1. To do that, we recall that we have
an ascending chain of elementsfixn(e)0w(γ) ∈ Dw given by fix0(e)0w(γ) = ⊥w and
fixn+1(e)0w(γ) = e0w(γ, fixn(e)0w(γ)) and havefix(e)0w(γ) = supn fixn(e)0wγ. Now
suppose thatγ ∈ Γw and x : w → w′ andγ′ ∈ Γw′ and p ∈ Γw′(x.γ, γ′). Write
dn = fixn

0w(γ) andd′n = fixn
0w′(γ′). Inductively, we get proofspn ∈ Dw′(x.dn, d′n) where

p0 = r(⊥w′) (note thatx.⊥w = ⊥w′) andpn+1 = e1(p, pn). Since (x.⊥w,⊥w′ , r(⊥w′)) ≤

1 For exampleD = A⇒TεB for semantic typesA, B.

26



(x.d1, d′1, p1) we obtain by monotonicity ofe1 and induction that (x.dn, d′n, pn) is an as-
cending chain with supremum (x. supn dn, supn d′n, q) for some proofq which we take as
fix(e)1(p). Note that the passage fromp to q is continuous. ⊓⊔

A.5 Applications
The following lemma formalizes our intuition that

Lemma 2 Proof The proof that the values are equal inw follows directly from the
definition of computations and effects.

For the first part, we use the following relationRdefined for all worldsw1, such that
u : w→ w1:
{(σ, σ′) | σ ∼rds(ε,w) σ

′ ∧ ∀l ∈ w.
(σ.u, σ0) ∈ lR ∧ (σ′.u, σ′0) ∈ l

R∨ (σ.u, σ′.u) ∈ lR}
Otherwise, for the worldsw2 not reachable fromw, the relationRw2 is the trivial set.
Notice thatR ∈ R(ε) and it is contravariant. The claim then follows directly.

The proof of the second part follows in a similar fashion, butwe use the following
relation:
{(σ, σ′) | σ ∼rds(ε,w) σ

′ ∧ σ ∼nwrs(ε,w) σ0.u}
And we use a similar relation for showing thatσ′0 andσ′1.u

′ agree on the not written
locationsnwrs(ε,w).

For the third property, first, we show that there is an isomorphism betweenw(r) and
w(r) for all regionsr < als(r) by using the following relation:
{(σ, σ′) | σ ∼ σ′ ∧ ∀r < als(ε).#r(σ), #r(σ′) ≤ #r(w)}

where #r denotes the number of abstract locations coloured withr. Clearly,R ∈ R(ε) as
ε does not contain any allocation effects. This gives us one direction, while the other
direction is obtained by using the inclusion morphisms. Given this property, one can
easily construct the functionc′. ⊓⊔

Proposition 5. (commuting computations) Suppose that:Γ ⊢ e1 : τ1 & ε1 andΓ ⊢ e2 :
τ2 & ε2, whererds(ε1) ∩ wrs(ε2) = rds(ε2) ∩ wrs(ε1) = wrs(ε1) ∩ wrs(ε2) = ∅. Let

e= let x⇐e1 in let y⇐e2 in (x, y) and e′ = let y⇐e2 in let x⇐e1 in (x, y)

then~Γ ⊢ e : τ1 × τ2 & ε1 ∪ ε2� ∼ ~Γ ⊢ e′ : τ1 × τ2 & ε1 ∪ ε2�.

Proof Assume a worldw and a contextγ ∈ ~Γ�w. Let ci = ~Γ ⊢ ei : τi & εi� for
i = 1, 2.

It is enough to assume a pullbackw ^1 1
1 1w, and an abstract heapσ0 ∈ Sw. Assume

that these functions are defined as follows:
c1(w)(γ)σ0 = (w ⊎ w1, u1, σ1, v1)
c2(w ⊎ w1)(u1.γ)σ1 = (w ⊎ w1 ⊎ w2, u2, σ2, v2)
c′2(w)(γ)σ0 = (w ⊎ w′1, u

′
1, σ

′
1, v
′
1)

c′1(w ⊎ w′2)(u′1.γ)σ
′
1 = (w ⊎ w′1 ⊎ w′2, u

′
2, σ

′
2, v
′
2)

One can easily show that when one of these functions is undefined, then the correspond-
ing function is also undefined.

We need to show that there is a proofw ⊎ w1 ⊎ w2 ^
x x′
v v′w ⊎ w′1 ⊎ w′2 such that

p : σ2.v ∼ σ′2.v
′ and p1 : xu2.v1 ∼ x′.v′2 and p2 : x.v2 ∼ x′u′2.v

′
1. Decomposew =

w0⊎q1⊎q2, wherew(wrs(εi)) ⊆ qi . The existence of such decomposition follows from
the disjointness of write effects inε1 andε2.

From Lemma 2 and from the disjointness of reads and writes, itis the case thatσ0

andσ′1 agree on the locations inw0 ⊎ q1. That is, there is a proofp : σ0.1 ∼ σ′1.x1,
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defined using the proofw0 ⊎ q1 ^
x1 1
1 x1

w0 ⊎ q1 ⊎w′2, wherex1 : w0 ⊎ q1→ w0 ⊎ q1 ⊎w′2.

Applying (e1)1 to the objects above, we get the pullbackw0 ⊎ q1 ⊎ w1 ^
x2 x′2
v2 v′2

w0 ⊎ q1 ⊎

w′2 ⊎ w′1, and proofq : x2.v1 ∼ x′2.v
′
2. Symmetrically, we obtain the proofsw0 ⊎ q2 ⊎

w2 ^
x3 x′3
v3 v′3

w0 ⊎ q2 ⊎ w′1 ⊎ w′2, andq′ : x3.v2 ∼ x′3.v
′
1. Hence, there is also a proof in the

larger worldcod(x).
To see informally that the final heapsσ2 andσ′2 are equal, we use the following

facts obtained using Lemma 2:σ2 andσ1 agree on the locations inw0 ⊎ q1; moreover,
σ′2 andσ1 agree on the locations inw0 ⊎ q1; henceσ2 andσ′2 agree on the locations
in w0 ⊎ q1. Symmetrically, we can also argue thatσ2 andσ′2 agree on the locations in
w0 ⊎ q2. Composing these proofs (see comment after Lemma 9 why this is allowed),
we get thatσ2 andσ′2 agree on the locations inw. Finally, since the locations allocated
by one computation are not used by the other computation, thefinal heaps are equal at
the apex world. ⊓⊔

The following propositions are also provable. All propositions are proved in a sim-
ilar way as the soundness proof of the commuting case, using Lemma 2 when needed.
For instance, the soundness proof of the duplicated computation uses the third case in
Lemma 2.

Proposition 6 (dead computation).Suppose thatΓ ⊢ e : unit & ε, thatwrs(ε) = ∅
and that~Γ ⊢ e : unit & ε�w(γ)(σ) is defined for allw, γ ∈ ~Γ�w, σ ∈ Sw. Then if
for all worlds w, all contextsγ ∈ ~Γ�w, and abstract heapsσ ∈ Sw, the function
~Γ ⊢ e�(w)(γ)(σ) is defined, then~Γ ⊢ e : unit & ε� ∼ ~Γ ⊢ () : unit & ε�.

Proof Assume a worldw and a contextγ ∈ ~Γ�w. Let c = ~Γ ⊢ e : τ & ε�. It is
enough to assume a pullbackw ^1 1

1 1w, and an abstract heapσ0 ∈ Sw. Let c(w)(γ)σ0 =

(w, 1, σ1, v1). We need to construct a pullback such thatv1 is equivalent to () in its apex
andσ1 is equivalent toσ0 in its low point. Consider the pullbackw1 ^

1 u
u 1w. Clearly

v1 = (), and therefore the values are equivalent inw1. Moreover, from the fact that
wrs(ε) = ∅,σ1 andσ0 agree on all locations inw. Hence,σ1.u ∼ σ0, which finishes the
proof. ⊓⊔

Proposition 7 (duplicated computation).Suppose thatΓ ⊢ e : τ & ε and suppose
that rds(ε) ∩ wrs(ε) = als(ε) = ∅. Thus, e reads and writes on disjoint portions of the
store and makes no allocations. The the terms e1 and e2 below

let x⇐ein (x, x) and let x⇐ein let y⇐ein (x, y)

are contextually equivalent. That is formally~Γ ⊢ e1 : τ × τ & ε� ∼ ~Γ ⊢ e2 : τ × τ & ε�.

Proof Assume a worldw and a contextγ ∈ ~Γ�w. Let c = ~Γ ⊢ e : τ & ε�. It is
enough to assume a pullbackw ^1 1

1 1w, and an abstract heapσ0 ∈ Sw. From Lemma 2
and since these functions do not allocate, we can assume thatthey do not cause any
world extension and are therefore defined as follows:

c(w)(γ)σ0 = (w, 1, σ1, v1) andc(w)(γ)σ1 = (w, 1, σ2, v2).

We need to show that the valuesv1 andv2 are equivalent and the heapsσ1, obtained by
applying oncee, andσ2, obtained by applying twicee, are also equal.
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Decomposew = w0 ⊎ wr ⊎ ww, wherewr contains all the regions read bye andww

all the regions written bye. This is possible because of the disjointness of ofe’s read
and write effects. From Lemma 2 and the disjointness ofe’s read and write effects, we
have thatσ0 andσ1 agree on the regions read bye, that is,σ0 ∼rds(ε,w) σ1. Hence, again
from Lemma 2, we have that the valuesv1 andv2 are equal. Moreover, the locations in
ww are equaly written, while the locations inw0⊎wr are left unchanged, that is,σ1 and
σ2 agree on the location inw. ⊓⊔

Proposition 8 (pure lambda hoist).Suppose thatΓ ⊢ e : Z & ∅ andΓ, x:X, y:Z ⊢ e′ :
Y & ε Let e1 and e2 be respectivelyλx.let y⇐ ein e′ andlet y⇐ ein λx.e′. Then

~Γ ⊢ e1 : (X
ε
→ Y) & ∅� ∼ ~Γ ⊢ e2 : (X

ε
→ Y) & ∅�.

Proof Assume a worldw and a contextγ ∈ ~Γ�w. Let c = ~Γ ⊢ e : τ & ε� and
c′ = ~Γ, x : X, y : Z ⊢ e′ : τ & ε�. It is enough to assume a pullbackw ^1 1

1 1w, and an
abstract heapσ0 ∈ Sw. Sinceehas no effects, we have no world extension:

c(w)(γ)σ0 = (w, 1, σ′1, v
′
1)

Moreover, from Lemma 2,σ1 andσ0 agree on all locations. We now show that

~Γ ⊢ λx.let y⇐ein e′(x, y) : (X
ε
→ Y)� ∼ ~Γ ⊢ λx.e′(x, v′1) : (X

ε
→ Y)�

In order to prove this, assume a morphismv : w → w1 anda ∈ ~X�w1. We need then
to prove that the computations resulting from applyinga to the functions above are
equivalent in the pullbackw1 ^

1 1
1 1w1. For this, assume an abstract heapσ ∈ Sw1. Since

e has no effect, we have no world extension:

c(w1)(γ)σ = (w1, 1, σ1, v1)
c′(w1)(γ, a, v1)σ1 = (w2, 1, σ2, v2)
c′(w1)(γ, a, v′1)σ = (w′2, 1, σ

′
1, v2)

Sincee is pure, we havev1 = v.v′1 and from Lemma 2 we have thatσ1 andσ agree on
all locations inw1 and in particular on locations read bye′. Hence, again by Lemma 2
the pullback proof exists whereσ2 andσ′1 are equal in its low point and the resulting
values are equal in its apex. ⊓⊔

Masking We now justify soundness of the masking rule shown below:

Γ ⊢ t : τ & ε r < regs(Γ) ∪ regs(τ)
Γ ⊢ t : τ & ε \ {rdr,wrr, alr}

Masking

which allows one to mask effects, that is, allowing it to behave closer to pure functions.
As discussed in [4], as the effect-dependent equations can be applied only if some con-
ditions on the set of effects is satisfied, the masking of effects may enable the use of
such equations. (See the commutation computation equation.)

Assume that for for every set of regionsR, we take a different instantiationWR

where all abstract locations get colors fromR. Within WR we can interpret app, lambda,
fix, etc. If R ⊆ R′ andX is a semantic type overWR′ denoteX|R its restriction toWR.
In our setting, we prove of the soundness of the masking rule by providing morphisms
between the objects inWR and objects inWR′ when restricted toR, whereR ⊆ R′.
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Body of Loop Prolog Steady Program Epilogue
x := load(p); p1 := p; store(p1, y); [wrr1] store(p1, y); [wrr1]
y := x * c; p2 := p; p1 := p2 + 8; y := x2 * c;

store(p, y); x1 := x; y := x2 * c; store(p2, y); [wrr2]
p := p + 8; x2 := x; x1 := load(p1); [rdr1] x := x2;

i := i + 1; x1 := load(p1); [rdr1] store(p2, y); [wrr2] p := p2;

p2 := p1 + 8; p2 = p1 + 8;

x2 := load(p2); [rdr2] y = x1 * c;

y := x1 * c; y = load(p2); [rdr2]

i := i + 2; i := i + 2;

Fig. 6: Program obtained from the loop unrolling technique.Herep, p1 andp2 are pointers and
all load andstore operations are on 64 bit numbers (float).
This corresponds in our setting to the Masking Lemma in [4] and is formalized by
introducing the notion of matching pairs: LetX be a semantic type overWR and X′

be a semantic type overWR′ . The two form amatching pairif there are morphisms
i : X → X′|R and j : X′|R→ X both tracked by the identity on the level of values and
isomorphisms w.r.t.∼. The idea is that ifτ only mentions regions inR then~τ� with
respect toR and~τ� with respect toR′ will be a matching pair.

Suppose thatw ∈ WR. If σ ∈ Sw then, sincew can be viewed also overR′, we can
understandσ as living inWR′ . Conversely, ifw ∈ WR′ andσ ∈ Sw, then we also have
σ ∈ Sw|R by coarsening. This is because ifσ satisfies all the contracts in the larger
worlds involving the regionsR′, then it also satisifies the contracts for the regions in the
smaller setR. In fact, every worldw ∈WR′ induces a worldw|R∈WR.

We now prove that if only regions fromR are mentioned inτ then~τ�R and~τ�R′

form a matching pair where~·�Rdenotes the interpretation with respect toWR: Suppose
thatε mentions all ofR′ and that (Γ, Γ′), (A,A′) are matching pairs and thate : Γ′ →
TεA′ is a morphism tracked byf : V → C. There then exists a morphismmask(e) :
Γ → Tε|RA also tracked byf and ife∼ e′ thenmask(e) ∼ mask(e′).

Let the morphismsiΓ and jΓ due to the fact that (Γ, Γ′) form a matching pair and
iA and jA due to the fact that (A,A′) form a matching pair. It is then easy to prove
the soundness of masking by using the morphismmask(e)w(γ)(σ) = let (σ1, v) ⇐
e(iΓ(γ))(σ) in (σ1, jA(v)).
Example: Loop Unrolling Loop unrolling is a software pipelining technique used to
enhance the use of parallel processing. The idea is instead of iterating a loop in a se-
quential manner, one attempts to process a number of iterations of the loop at the same
time using multiple processors.

As described in [31] implementing and proving the correctness of loop unrolling
techniques is hard as one needs to demonstrate that the program resulting from loop
unrolling that can be executed in parallel is equivalent to the original sequential pro-
gram. We briefly illustrate the power of our system with regions and effects by one
of the running examples in [31]. Consider a loop program whose body is depicted in
Figure 6. Intuitively, this program is multiplying all the elements of an array of float
values by the valuec. Clearly, instead of executing this program sequentially,we can
execute different iterations in parallel. In particular, after applying the loop unrolling
optimization to a program, one obtains a program that is divided in three parts: the pro-
log, that initializes all the variables, the steady state, that is iterated, and the epilogue,
that is executed when the loop condition is no longer true andthe loop is over. Figure 6

30



contains the program obtained by loop unrolling two iterations of the program above.
The Prolog and the Epilogue are executed at the beginning andthe end, respectively,
while the Steady Program may be executed several times.

The task is to show that the optimized program is equivalent to the sequential pro-
gram above. Using the unrolling equations from Lemmas 14 we can unroll the loop
twice (n = 2) and extract a prologue. We can then conclude with effect-dependent
equivalences, in particular Prop. 5 as follows. We use two regionsr1 andr2. All even
elements of the array, that is,p, p + 16, p + 32, . . . , belong to the regionr1, while
all odd elements, that is,p + 8,p + 24,p + 40, . . . , belong to the regionr2. Given
this setting, the read and write effects are as shown in Figure 6. It is now a simple exer-
cise to show that any execution of the optimized program is equivalent to an execution
of the sequential program. For instance, any instruction with a read effect onr1 can be
permuted so that it appears immediately before the following instruction with write ef-
fect r1 on the same regionr1. This is possible because the only effect between these two
instructions is a read on the other regionr2. The same is true for permuting instructions
that read onr2.
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