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Abstract
Writing accurate numerical software is hard because of many
sources of unavoidable uncertainties, including finite numerical
precision of implementations. We present a programming model
where the user writes a program in a real-valued implementation
and specification language that explicitly includes different types
of uncertainties. We then present a compilation algorithm that gen-
erates a conventional implementation that is guaranteed to meet
the desired precision with respect to real numbers. Our verification
step generates verification conditions that treat different uncertain-
ties in a unified way and encode reasoning about floating-point
roundoff errors into reasoning about real numbers. Such verifica-
tion conditions can be used as a standardized format for verifying
the precision and the correctness of numerical programs. Due to
their often non-linear nature, precise reasoning about such verifica-
tion conditions remains difficult. We show that current state-of-the
art SMT solvers do not scale well to solving such verification con-
ditions. We propose a new procedure that combines exact SMT
solving over reals with approximate and sound affine and interval
arithmetic. We show that this approach overcomes scalability lim-
itations of SMT solvers while providing improved precision over
affine and interval arithmetic. Using our initial implementation we
show the usefullness and effectiveness of our approach on several
examples, including those containing non-linear computation.

1. Introduction
Writing numerical programs is difficult, in part because the pro-
grammer needs to deal not only with the correctness of the al-
gorithm but also with unavoidable uncertainties. Program inputs
may not be exactly known because they come from physical exper-
iments or were measured by an embedded sensor. The computa-
tion itself suffers from roundoff errors at each step, because of the
use of finite-precision arithmetic. In addition, resources like energy
may be scarce so that only a certain number of bits are available
for the numerical datatype. At the same time, the computed results
can have far-reaching consequences if used to control, for example,
a vehicle or a nuclear power plant. It is therefore of great impor-
tance to improve confidence in numerical code [34]. One of the first
challenges in doing this is that most of our automated reasoning
tools work with real arithmetic, whereas the code is implemented in
finite-precision (typically, floating point) arithmetic. Many current
approaches to verifying numerical programs start with the floating-
point implementation and then try to verify the absense of (runtime)
errors. However, the absence of errors by itself does not guarantee
that program behavior matches the desired specification expressed
using real numbers. Fundamentally, the source code semantics is
expressed in terms of data types such as floating points. This is
further problematic for compiler optimizations, because, e.g., the
associativity law is unsound with respect to such source code se-
mantics.

In this paper we advocate a natural but ambitious alternative:
source code programs should be expressed in terms of ideal, math-
ematical real numbers. In our system, the programmer writes a pro-
gram using a Real data type and states the desired postconditions,
then specifies uncertainties explicitly in pre- and postconditions as
well as the desired target precision on the return values. It is then
up to our trustworthy compiler to check, taking into account all un-
certainties and their propagation, that the desired precision can be
soundly realized in a finite precision implemenation. If so, the com-
piler chooses and emits one such finite-precision implementation.

Following this model, we derive verification conditions that en-
code reasoning about floating-point roundoff errors into reason-
ing about real numbers. Our verification conditions explicitly sep-
arate the ideal program without external uncertainties and round-
offs from the actual program, which is actually executed in finite
precision with possibly noisy inputs. Additionally, our constraints
are fully parametric in the floating-point precision and can thus be
used with different floating-point hardware configurations, as well
as used for determining the minimum precision needed.

To summarize, the view of source code as functions over real
numbers has several advantages:

• Programmers can, for the most part, reason in real arithmetic
and not floating-point arithmetic. We thus achieve separation of
the design of algorithms (which may still be approximate) from
their realization using finite precision computations.
• We can verify the ideal meaning of programs using techniques

developed to reason over real numbers, which are more scalable
than techniques that directly deal with floating point arithmetic.
• The approach allows us to quantify the deviation of implemen-

tation outputs from ideal ones, instead of merely proving e.g.
range bounds of floating-point variables which is used in sim-
pler static analyses.
• The compiler for reals is free to do optimizations as long as they

preserve the precision requirements. This allows the compiler
to apply, for example, associativity of arithmetic, or even select
different approximation schemes for transcendental functions.
• In addition to roundoff errors, the approach also allows the

developer to quantify program behavior in the face of external
uncertainties such as input measurement errors.

Using our verification condition generation approach, the cor-
rectness and the precision of compilation for small programs can
be directly verified using an SMT solver such as Z3 [16] (see Sec-
tion 5.3); this capability will likely continue to improve as the
solvers advance. However, the complexity of the generated veri-
fication conditions for larger programs is still out of reach of such
solvers and we believe that specialized techniques are and will con-
tinue to be necessary for this task. This paper presents two special-
ized techniques that improve the feasibility of the verification task.
The first technique performs local approximation and is effective
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even in benchmarks containing nonlinear arithmetic; the second
technique specifically handles conditional expressions.

1.1 Solving Non-Linear Constraints
Nonlinear arithmetic poses a significant challenge for verification
because it cannot directly be handled using Simplex-like algorithms
embedded inside SMT solvers. Although interesting relevant frag-
ments are decidable and are supported by solvers, their complex-
ity is much higher. Unfortunately, non-linear arithmetic is ubiq-
uitous in numerical software. Furthermore, our verification condi-
tions add roundoff errors to arithmetic expressions, so the resulting
constraints grow further in complexity, often becoming out of reach
of solvers. An alternative to encoding into SMT solver input is to
use a sound and overapproximating arithmetic model such as in-
terval or affine arithmetic [15]. However, when used by itself on
non-linear code, these approaches yield too pessimistic results to
be useful.

We show that we can combine range arithmetic computation
with SMT solving to overcome the limitations of each of the indi-
vidual techniques when applied to non-linear arithmetic. We obtain
a sound, precise, and somewhat more scalable procedure. During
range computation, our technique also checks for common prob-
lems such as overflow, division by zero or square root of a negative
number, emitting the corresponding warnings. Additionally, be-
cause the procedure is a forward computation, it is suitable for auto-
matically generating function summaries containing output ranges
and errors of a function. From the point of view of the logical
encoding of the problem, range arithmetic becomes a specialized
method to perform approximate quantifier elimination of bounded
variables that describe the uncertainty.

1.2 Sound Compilation of Conditional Branches
In the presence of uncertainties, conditional braches become an-
other verification challenge. The challenge is that the ideal execu-
tion may follow one branch, but, because of input or roundoff er-
rors, the actual execution follows another. This behaviour may be
acceptable, however, if we can show that the error on the output
remains within required bounds. Therefore, our approach would
directly benefit from automated analysis of continuity, which was
advocated previously [48]. For such continuous functions, our anal-
ysis can be done separately for each program path. In the absence
of knowledge of continuity, we present a new method to check that
different paths taken by real-valued and floating point versions of
the program still preserves the desired precision specification. Our
check does not require continuity (which becomes difficult to prove
for non-linear code). Instead, it directly checks that the difference
between the two values on different branches meets the required
precision. This technique extends our method for handling non-
linear arithmetic, so it benefits from the combination of range arith-
metic and SMT solving.

1.3 Implementation and Evaluation
We have implemented our compilation and verification procedure,
including the verification condition generation, analysis of possi-
bly non-linear expressions, and the handling of conditionals. Our
system is implemented as an extension of a verifier for functional
Scala programs. The implementation relies on a range arithmetic
implementation for Scala as well as on the Z3 SMT solver.

We have evaluated the system on a number of diverse bench-
marks, obtaining promising results. We are releasing our bench-
marks (and making them available as supplementary material for
reviewers). We hope that the benchmarks can be used to com-
pare future tools for error quantification, help the development of
nonlinear solvers, and also present challenges for more aggressive
compilation schemes, with different number representations and

different selection of numerical algorithms. To support program-
ming of larger code fragments our system also supports a modu-
lar verification technique, which handles functions through inlining
function bodies or using their postconditions. We thus expect that
our technique is applicable to larger code bases as well, possibly
through refactoring code into multiple smaller and annotated func-
tions. Even on the benchmarks that we release, we are aware of no
other available system that would provide the same guarantees with
our level of automation.

1.4 Summary of Contributions
Our overall contribution is an approach for sound compilation of
real numbers. Specifically:

• We present a real-valued implementation and specification lan-
guage for numerical programs with uncertainties; we define its
semantics in terms of verification constraints that they induce.
We believe that such verification conditions can be used as a
standardized format for verifying the precision and the correct-
ness of numerical programs.
• We develop an approximation procedure for computing precise

range and error bounds for nonlinear expressions which com-
bines SMT solving with interval arithmetic. We show that such
an approach significantly improves computed range and error
bounds compared to standard interval arithmetic, and scales
better than SMT solving alone. Our procedure can also be used
independently as a more precise alternative to interval arith-
metic, and thus can perform forward computation without hav-
ing the desired postconditions.
• We describe an approach for soundly computing error bounds

in the presence of branches and uncertainties, which ensures
soundness of compilation in case the function defined by a
program is not known to be continuous.
• We have implemented our framework and report our experience

on a set of diverse benchmarks, including benchmarks from
physics, biology, chemistry, and control systems. The results
show that our technique is effective and that it achieves a syn-
ergy of the techniques on which it relies.

2. Example
We demonstrate some aspects of our system on the example in Fig-
ure 1. The methods triangle and triangleSorted compute the area of
a triangle with side lengths a, b and c. The notation a.in(1.0, 9.0)
is short for 1.0 < a && a < 9.0. We consider a particular applica-
tion where the user may have two side lengths given, and may
vary the third. She has two functions available to do the compu-
tation and wants to determine whether either or both satisfy the
precision requirement of 1e-11 on line 9. Our tool determines that
such requirement needs at least double floating point precision; the
challenge then is to establish that this precision is sufficient to en-
sure these bounds, given that errors in floating code accumulate and
grow without an a priori bound.

Our tool verifies fully automatically that the method triangleSorted
indeed satisfies the postcondition and generates the source code
with the Double datatype which also includes a more precise and
complete postcondition:

0.01955760939159717 ≤ res ∧ res ≤ 12.519984025578283 ∧
res +/− 8.578997409317759e−12

To achieve this result, our tool first checks that the precondition
of the function call is satisfied using the Z3 solver. Then, it inlines
the body of the function triangleSorted and computes a sound bound
on the result’s uncertainty with our approximation procedure and
uses it to show that the postcondition is satisfied. The error compu-
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def mainFunction(a: Real, b: Real, c: Real): Real = {
2 require(4.500005 <= a && a <= 6.5)

4 val b = 4.0
val c = 8.5

6 val area = triangleSorted(a, b, c)
//val area = triangleUnstable(a, b, c)

8 area
} ensuring(res => res +/− 1e−11)

10

def triangle(a: Real, b: Real, c: Real): Real = {
12 require(a.in(1.0, 9.0) && b.in(1.0, 9.0) && c.in(1.0, 9.0) &&

a + b > c + 1e−6 && a + c > b + 1e−6 && b + c > a + 1e−6)
14

val s = (a + b + c)/2.0
16 sqrt(s ∗ (s − a) ∗ (s − b) ∗ (s − c))

}
18

def triangleSorted(a: Real, b: Real, c: Real): Real = {
20 require(a.in(1.0, 9.0) && b.in(1.0, 9.0) && c.in(1.0, 9.0) &&

a + b > c + 1e−6 && a + c > b + 1e−6 && b + c > a + 1e−6 &&
22 a < c && b < c)

24 if (a < b) {
sqrt((c+(b+a)) ∗ (a−(c−b)) ∗ (a+(c−b)) ∗ (c+(b−a)))/4.0

26 } else {
sqrt((c+(a+b)) ∗ (b−(c−a)) ∗ (b+(c−a)) ∗ (c+(a−b))) / 4.0

28 }
}

Figure 1. Computing the area of a triangle.

tation takes into account in a sound way the input uncertainty (here
an initial roundoff error on the inputs), its propagation and roundoff
errors commited at each arithmetic operation. Additionally, due to
the initial roundoff error the comparison on line 24 is not exact, so
that some floating-point computations will take a different branch
than their corresponding real-valued computation. More precisely,
the total error when computing the condition is 7.22e − 16, as
computed by our tool. That is, floating-point values that satisfy
a < b + 7.22e − 16 may take the else branch, even though the
corresponding real values would follow the then branch, and simi-
larly in the opposite direction. Our tool verifies that the difference
in the computed result in two branches, due to this divergence be-
tween real arithmetic and floating point arithmetic code, remains
within the precision requirement.

Finally, our tool uses our novel range computation procedure
to also compute a more precise output range than we could have
obtained in interval arithmetic. It then includes this more com-
plete postcondition in the generated floating-point code. In fact, in-
terval arithmetic alone computes the ranges [0.0138, 16.163] and
[0.0169, 14.457] for using the methods triangle and triangleSorted
respectively, seemingly suggesting that two methods perform en-
tirely different computations. With our technique, the tool com-
putes the same range [0.0195, 12.52] for both methods, but shows a
difference in the absolute error of the computation. For the method
triangle, the verification fails, as desired, because the computed er-
ror (2.3e − 11) exceeds the required precision bound. This result
is expected—the textbook formula for triangles is known to suffer
from imprecision for flat triangles [31], which is somewhat rectified
in the method triangleSorted.

3. Programs with Reals
Each program to be compiled consists of one top-level object with
methods written in a functional subset of the Scala programming
language [41]. All methods are functions over the Real datatype

and the user annotates them with pre- and postconditions that ex-
plicitly talk about uncertainties. Real represents ideal real num-
bers without any uncertainty. We allow arithmetic expressions over
Reals with the standard arithmetic operators {+,−, ∗, /,√}, and
together with conditionals and function calls they form the body
of methods. Our tool also supports immutable variable declarations
as val x = .... This language allows the user to define a computation
over real numbers. Note that this specification language is not exe-
cutable.

The precondition allows the user to provide a specification of
the environment. A complete environment specification consists of
lower and upper bounds for all method parameters and an upper
bound on the uncertainty or noise. Range bounds are expressed
with regular comparison operators. Uncertainty is expressed with
the predicate such as x +/− 1e−6, which denotes that the variable
x is only known up to 1e − 6. Alternatively, the programmer can
specify the relative error as x +/− 1e−7 ∗ x. If no noise except for
roundoff is present, roundoff errors are automatically added to
input variables.

The postcondition can specify the range and the maximum un-
certainty accepted on the output. In addition to the language al-
lowed in the precondition, the postcondition may reference the er-
rors on inputs directly in the following way: res +/− 3.5 ∗ !x, which
says that the maximum acceptable error on the output variable res
is bounded from above by 3.5 times the initial error on x. Whereas
the precondition may only talk about the ideal values, the postcon-
dition can also reference the actual value directly via ∼x. This al-
lows us to assert that runtime values will not exceed a certain range,
for instance.

Floating-point arithmetic Our tool and technique support in the
generated target code any floating-point precision and in partic-
ular, single and double floating-point precision as defined by the
IEEE 754 floating-point standard [46]. It is also straightforward to
combine it with techniques to generate fixed-point arithmetic [13],
which similarly relies on knowing ranges of variables. We assume
rounding-to-nearest rounding mode and that basic arithmetic oper-
ations {+,−, ∗, /,√} are rounded correctly, which means that the
result from any such operation must be the closest representable
floating-point number. Hence, provided there is no overflow, the
result of a binary operation ◦F satisfies

x ◦F y = (x ◦R y)(1 + δ), |δ| ≤ εM , ◦ ∈ {+,−, ∗, /} (1)

where ◦R is the ideal operation in real numbers and εM is the
machine epsilon that determines the upper bound on the relative
error. This model provides a basis for our roundoff error estimates.

4. Compiling Reals to Finite Precision
Given a specification or program over reals and a possible target
floating-point precision, our tool generates code over floating-point
numbers that satisfy the given pre- and postconditions. Figure 2
presents a high-level view of our compilation algorithm. Our tool
first analyses the entire specification and generates one verification
condition for each postcondition to be proven. To obtain a modular
algorithm, the tool also generates verification conditions that check
that at each function call the precondition of the called function
is satisfied. The methods are then sorted by occuring function
calls. This allows us to re-use already computed postconditions
of function calls in a modular analysis. If the user specified a
target precision, the remaining part of the compilation process is
perfomed with respect to this precision, if not or in the case the
user specified several possible precisions, our tool will iteratively
select the next more precise precision and attempt to compile the
entire program. If compilation fails due to unsatisfied assertions,
the next precision is selected. Thus, one task of our algorithm is to
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Input: spec: specification over Reals, prec: candidate precisions
for fnc ← spec.fncs

fnc.vcs = generateVCs(fnc)

spec.fncs.sortBy((f1, f2) => f1 ⊆ f2.fncCalls)

while prec 6= ∅ and notProven(spec.fncs)
precision = prec.nextPrecise
for fnc ← spec.fncs
for vc ← fnc.vcs
while vc.hasNextApproximation ∧ notProven(vc)

approx = getNextApproximation(vc, precision)
vc.status = checkWithZ3(approx)

generateSpec(fnc)
generateCode(spec)

Output: floating−point code with generated postconditions

Figure 2. Compilation algorithm.

automatically determine the necessary least floating-point precision
to ensure the specification is met. Currently, each precision iteration
is computed separately, which is not a big issue due to a small
number alternative floating-point targets. We did identify certain
shared computations between iterations; we can exploit them in the
future for more efficient compilation. In order for the compilation
process to succeed, the specification has to be met with respect
to a given floating-point precision, thus the principal part of our
algorithm is spent in verification, which we describe in Section 5.

We envision that in the future the compilation task will also
include automatic precision-preserving code optimizations, but in
this paper we concentrate on the challenging groundwork of veri-
fying the precision of code.

Our tool currently generates Scala code over single, dou-
ble, double-double and quad-double floating-point arithmetic. For
double-double and quad-double precision, which were imple-
mented in software by [3], we provide a Scala interface with the
generated code. In case the verification part of compilation fails,
we nonetheless generate code (together with a failure report) with
the best postconditions our tool was able to compute. The user can
then use the generated specifications to gain insight why and where
her program does not satify requirements.

Our techniques are not restricted to these floating-point preci-
sions, however, and will work for any precision that follows the
abstraction given in Equation (1). Furthermore, while we have im-
plemented our tool to accept specifications in a domain specific lan-
guage embedded in Scala and generate code in Scala, all our tech-
niques apply equally to all programming languages and hardware
that follow the floating-point abstraction we assume (Equation 1).

5. Verifying Real Programs
We will now describe the verification part of our compilation al-
gorithm. In the following we will call the ideal computation the
computation in the absence of any uncertainties and implemented
in a real arithmetic, and the actual computation the computation
that will finally be executed in finite-precision and with potentially
uncertain inputs.

5.1 Verification Conditions for Loop-Free Programs
Each method with its precondition P and postcondition Q implies
the following verification condition:

∀~x, ~res, ~y. P (~x) ∧ body(~x, ~y, ~res)→ Q(~x, ~res) (*)

a <= x && x <= b x ∈ [a, b]

x +/− k x◦ = x+ errx ∧ errx ∈ [−k, k]
x +/− m ∗ x x◦ = x+ errx ∧ errx ∈ [−|mx|, |mx|]
∼x x◦

!x errx

x � y (x � y) ∧ (x◦ � y◦)(1 + δ1)

sqrt(x) sqrt(x) ∧ sqrt(x◦)(1 + δ2)

val z = x z = x ∧ z◦ = x◦

if (c(x)) e1(x) ((c(x) ∧ e1(x)) ∨ (¬c(x) ∧ e2(x)))∧
else e2(x) ((c◦(x◦) ∧ e1◦(x◦)) ∨ (¬c◦(x◦) ∧ e2◦(x◦)))
g(x) g(x) ∧ g◦(x◦)

� ∈ {+,−, ∗, /}
−εm ≤ δi ∧ δi ≤ εm, all δ are fresh

cond◦ and e◦ denote functions with roundoff errors at each step

Table 1. Semantics of our specification language.

where ~x, ~res, ~y denote the input, output and local variables respec-
tively.

Table 1 summarizes how verification constraints are generated
from our specification language. Each variable x in the specification
corresponds to two real-valued variables x, x◦, the ideal one in the
absence of uncertainties and roundoff errors and the actual one,
computed by the compiled program. Note that the ideal and actual
variables are related only through the error bounds in the pre- and
postconditions, which allows for the ideal and actual executions to
take different paths.

In the method body we have to take into account roundoff
errors from arithmetic operations and the propagation of existing
errors. Our system currently supports operations {+,−, ∗, /,√},
but these can be in principle extended to elementary functions, for
instance by encoding them via Taylor expansions [37].

Note that the resulting verification conditions are parametric in
the machine epsilon.

5.2 Specification Generation
In order to give feedback to developers and to facilitate automatic
modular analysis, our tool also provides automatic specification
generation. By this we mean that the programmer still needs to
provide the environment specification in form of preconditions, but
our tool automatically computes a precise postcondition.

Formally, we can rewrite the constraint (*) as

∀~x, res. (∃~y. P (~x) ∧ body(~x, ~y, res))→ Q(~x, res)

where Q is now unknown. We obtain the most precise post-
condition Q by applying quantifier elimination (QE) to P (~x) ∧
body(~x, ~y, res) and eliminate ~y. The theory of arithmetic over re-
als admits QE so it is theoretically possible to use this approach.
We do not currently use a full QE procedure for specification gen-
eration, as it is expensive and it is not clear whether the returned
expressions would be of a suitable format. Instead, we use our ap-
proximation approach which computes ranges and maximum errors
in a forward fashion and allows us to compute an (over) approxi-
mation of a postcondition of the form res ∈ [a, b] ∧ res± u.

5.3 Difficulty of Simple Encoding into SMT solvers
For small functions we can already prove interesting properties by
using the exact encoding of the problem just described and dis-
charging the verification constraints with Z3. Consider the follow-
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def getNextApproximation(vc, precision):

paths 

path-wise 

merging 

functions 

inlining postcondition 

inlining full function 

arithmetic 

approx. error   

approx. error & range 

first approximation 

getRange!
evalWithError!getPathError!

Figure 3. Approximation pipeline.

ing code a programmer may write to implement the third B-spline
basic function which is commonly used in signal processing [29].

def bspline3(u: Real): Real = {
require(0 ≤ u && u ≤ 1 && u ± 1e−13)
−u∗u∗u / 6.0
} ensuring (res ≥ −0.17 ≤ res && res ≤ 0.05 && res ± 1e−11)

Functions and the correspoding verification conditions of this com-
plexity are already within the possibilities of the nonlinear solver
within Z3. For more complex functions however, Z3 does not
(yet) provide an answer in a reasonable time, or returns unknown.
Whether alternative techniques in SMT solvers can help in such
cases remains to be seen [7, 30]. We here provide an approach
based on step-wise approximation that addresses the difficulty of
general-purpose constraint solving.

5.4 Verification with Approximations
In order to nontheless verify interesting programs, we have de-
veloped an approximation procedure that computes a sound over-
approximation of the range of an expression and of the uncertainty
on the output. This procedure is a forward computation and we
also use it to generate specifications automatically. We describe the
approximation procedure in detail in Section 6, for now we will as-
sume that it exists and, given a precondition P and an expression
expr, computes a sound bound on the output range and its associ-
ated uncertainty:

([a, b], err) = evalWithError(P, expr)⇔
∀~x, ~x◦, res, res◦.P (~x, ~x◦) ∧ res = expr(~x) ∧ res◦ = expr◦( ~x◦)

→ ¬(res < a ∨ b < res) ∧ |res− res◦| < err

We have identified three possibiities for approximation: nonlin-
ear arithmetic, function calls, and paths and each can be approxi-
mated at different levels. We have observed in our experiments, that
“one size does not fit all” and a combination of different approxi-
mations is most successful in proving the verification conditions we
encountered. For each verification condition we thus construct ap-
proximations until Z3 is able to prove one, or until we run out of ap-
proximations where we report the verification as failed. We can thus
view verification as a stream of approximations to be proven. We il-
lustrate the pipeline that computes the different approximations in
Figure 3. The routines getPathError, getRange and evalWithError are
described in the following sections in more detail.

The first approximation (indicated by the long arrow in Fig-
ure 3) is to use Z3 alone on the entire constraint constructed by the
rules in Table 1. This is indeed an approximation, as all function
calls are treated as uninterpreted functions in this case. As noted
before, this approach only works in very simple cases or when no
uncertainties and no functions are present.

Function calls If the verification constraint contains function
calls and the first approximation failed, our tool will attempt to in-
line postconditions and pass on the resulting constraint down the

approximation pipeline. We support inlining of both user-provided
postconditions and postconditions computed by our own specifi-
cation generation procedure. If this still is not precise enough, we
inline the entire function body.

Postcondition inlining is implemented by replacing the function
call with a fresh variable and constraining it with the postcondi-
tion. Thus, if verification suceeds with inlining the postcondition,
we avoid having to consider each path of the inlined function sep-
arately and can perform modular verification avoiding a potential
path explosion problem. Such modular verification is not feasible
when postconditions are too imprecise and we plan to explore the
generation of more precise postconditions in the future. One step
in this direction is to allow postconditions that are parametric in
the initial errors, for example with the operator !x introduced in
Section 3. While our tool currently supports postcondition inlining
with such postconditions, we do not yet generate these automati-
cally.

Arithmetic The arithmetic part of the verification constraints gen-
erated by Table 1 can be essentially divided into the ideal part and
the actual part, which includes roundoff errors at each computation
step. The ideal part determines whether the ideal range constraints
in the postcondition are satisfied and the actual part determines
whether the uncertainty part of the postcondition is satisfied. We
can use our procedure presented in Section 6 to compute a sound
approximation of both the result’s range as well as its uncertainty.
Based on this, our tool constructs two approximations. For the first,
the ideal part of the constraint is left untouched and the actual part
is replaced by the computed uncertainty bound. This effectively re-
moves a large number of variables and many times suffiently sim-
plifies the constraint for Z3 to succeed. If this fails, our tool addi-
tionally replaces the ideal part by the computed range constraint.
Note that the second approximation may not have enough informa-
tion to prove a more complex postconditions, as correlation infor-
mation is lost. We note that the computation of ranges and errors
is the same for both approximations and thus trying both does not
affect efficiency significantly.

Paths In the case of several paths through the program, we have
the option to consider each path separately or to merge results at
each join in the control flow graph. This introduces a tradeoff be-
tween efficiency and precision, since on one hand, considering each
path separately leads to an exponential number of paths to consider.
On the other hand, merging at each join looses correlation informa-
tion between variables which may be necessary to prove certain
properties. Our approximation pipeline chooses merging first, be-
fore resorting to a path-by-path verification in case of failure. We
believe that other techniques for exploring the path space could also
be integrated into our tool [9, 32]. Another possible improvement
are heuristics that select a different order of approximations de-
pending on particular characteristics of the verification condition.

Example We illustrate the verification algorithm on the exam-
ple in Figure 4. The functions sineTaylor and sineOrder3 are veri-
fied first since they do not contain function calls. Verification with
the full verification constraint fails. Next, our tool computes the er-
rors on the output and Z3 suceeds to prove the resulting constraint
with the ideal part untouched. From this approximation our tool
directly computes a new, more precise postcondition, in particular
it can narrow the resulting error to 1.63e-15. Next, our tool con-
siders the comparison function. Inlining only the postcondition is
not enough in this case, but computing the error approximation on
the inlined functions suceeds in verifying the postcondition. Z3 is
again able to verify the real-valued portion independently. Finally,
the tool verifies that the preconditions of the function calls are satis-
fied by using Z3 alone. Verification of the function comparisonInvalid
fails with all approximations so that our tool reports unknown. It also
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def comparisonValid(x: Real): Real = {
require(−2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 − z2
} ensuring(res => ∼res <= 0.1)

def comparisonInvalid(x: Real): Real = {
require(−2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 − z2
} ensuring(res => ∼res <= 0.01) // counterexample: 1.0

def sineTaylor(x: Real): Real = {
require(−2.0 < x && x < 2.0)
x − (x∗x∗x)/6.0 + (x∗x∗x∗x∗x)/120.0 − (x∗x∗x∗x∗x∗x∗x)/5040.0
} ensuring(res => −1.0 < res && res < 1.0 && res +/− 1e−14)

def sineOrder3(x: Real): Real = {
require(−2.0 < x && x < 2.0)
0.954929658551372 ∗ x − 0.12900613773279798∗(x∗x∗x)
} ensuring(res => −1.0 < res && res < 1.0 && res +/− 1e−14)

Figure 4. Different polynomial approximations of sine.

provides the counterexample it obtains from Z3 (x = 1.0), which
in this case is a valid counterexample.

5.5 Soundness
Our procedure is sound because our constraints overapproximate
the actual errors. Furthemore, even in the full constraint as gener-
ated from Table 1, roundoff errors are overapproximated since we
assume the worst-case error bound at each step. While this ensures
soundness, it also introduces incompleteness, as we may fail to val-
idate a specification because our overapproximation is too large.
This implies that counterexamples reported by Z3 are in general
only valid, if they disprove the ideal real-valued part of the verifica-
tion constraint. In general, this is easy to distinguish from the case
where verification fails due to too large error bounds, as Z3 prefers
simpler counterexamples over complex ones and thus chooses all
error variables to be zero if the ideal part is being violated.

6. Solving Nonlinear Constraints
Having given an overview of the approximation pipeline, we now
describe the computation of the approximation for nonlinear arith-
metic, which corresponds to the last box in Figure 3. For complete-
ness of presentation, we first review interval and affine arithmetic
which are common choices for performing sound arithmetic com-
putations and which we also use as part of our technique. We then
present our novel procedure for computing the output range of a
nonlinear expression given ranges for its inputs that can be a more
precise substitute for interval or affine arithmetic. Finally, we con-
tinue with a procedure that computes a sound overapproximation
of the uncertainty on the result of a nonlinear expression.

One possibility to perform guaranteed computations is to use
standard interval arithmetic [39]. Interval arithmetic computes a
bounding interval for each basic operation as

x ◦ y = [min(x ◦ y),max(x ◦ y)] ◦ ∈ {+,−, ∗, /}

and analogously for square root. Affine arithmetic was originally
introduced in [15] and addresses the difficulty of interval arithmetic
in handling correlations between variables. Affine arithmetic repre-

sents possible values of variables as affine forms

x̂ = x0 +

n∑
i=1

xiεi

where x0 denotes the central value (of the represented interval) and
each noise symbol εi is a formal variable denoting a deviation from
the central value, intended to range over [−1, 1]. The maximum
magnitude of each noise term is given by the corresponding xi.
Note that the sign of xi does not matter in isolation, it does, how-
ever, reflect the relative dependence between values. For example,
take x = x0 + x1ε1, then

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval would
have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =

n∑
i=1

|xi|

A general affine operation αx̂ + βŷ + ζ consists of addition, sub-
traction, addition of a constant (ζ) or multiplication by a constant
(α, β). Expanding the affine forms x̂ and ŷ we get

αx̂+ βŷ + ζ = (αx0 + βy0 + ζ) +

n∑
i=1

(αxi + βyi)εi

An additional motivation for using affine arithmetic is that differ-
ent contributions to the range it represents remain, at least partly,
separated. This information can be used for instance to help iden-
tify the major contributor of a result’s uncertainty or to separate
contributions from external uncertainties from roundoff errors.

6.1 Range Computation
The goal of this procedure is to perform a forward-computation to
determine the real-valued range of a nonlinear arithmetic expres-
sion given ranges for its inputs. Two common possibilities are in-
terval and affine arithmetic, but they tend to overapproximate the
resulting range, especially if the input intervals are not sufficiently
small (order 1). Affine arithmetic improves over interval arithmetic
somewhat by tracking linear correlations, but in the case of non-
linear expressions the results can become actually worse than for
interval arithmetic.

Observation: A nonlinear theorem prover such as the one that
comes with Z3 can decide with relatively good precision whether
a given bound is sound or not. That is we can check with a prover
whether for an expression e the range [a, b] is a sound interval en-
closure. This observation is the basis of our range computation.

The input to our algorithm is a nonlinear expression expr and a
precondition P on its inputs, which specifies, among possibly other
constraints, ranges on all input variables ~x. The output is an interval
[a, b] which satisfies the following:

[a, b] = getRange(P, expr)⇔
∀~x, res.P (~x) ∧ res = expr(~x)→ ¬(res < a ∨ b < res)

The algorithm for computing the lower bound of a range is given
in Figure 5. The computation for the upper bound is symmetric. For
each range to be computed, our tool first computes an initial sound
estimate of the range with interval arithmetic. It then performs an
initial quick check to test whether the computed first approximation
bounds are already tight. If not, it uses the first approximation as the
starting point and then narrows down the lower and upper bounds
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def getRange(expr, precondition, precision, maxIterations):
z3.assertConstraint(precondition)
[aInit, bInit] = evalInterval(expr, precondition.ranges);

//lower bound
if z3.checkSat(expr a + precision) == UNSAT

a = aInit
b = bInit
numIterations = 0
while (b−a) < precision ∧ numIterations < maxIterations

mid = a + (b − a) / 2
numIterations++
z3.checkSat(expr mid) match
case SAT ⇒ b = mid
case UNSAT ⇒ a = mid
case Unknown ⇒ break

aNew = a
else

aNew = aInit

bNew = ... //upper bound symmetrically
return: [aNew, bNew]

Figure 5. Algorithm for computing the range of an expression.

using a binary search. At each step of the binary search our tool
uses Z3 to confirm or reject the newly proposed bound.

The search stops when either Z3 fails, i.e. returns unknown for
a query or cannot answer within a given timeout, the difference
between subsequent bounds is smaller than a precision threshold,
or the maximum number of iterations is reached. This stopping
criterion can be set dynamically.

Additional constraints In addition to the input ranges, the pre-
condition may also contain further constraints on the variables. For
example consider again the method triangle in Figure 1. The pre-
condition bounds the inputs as a, b, c ∈ [1, 9], but the formula is
useful only for valid triangles, i.e. when every two sides together
are longer than the third. If not, we will get an error at the lat-
est when we try to take the square root of a negative number. In
interval-based approaches we can only consider input intervals that
satisfy this constraint for all values, and thus have to check sev-
eral (and possibly many) cases. In our approach, since we are using
Z3 to check the soundness of bounds, we can assert the additional
constraints up-front and then all subsequent checks are performed
with respect to all additional and initial contraints. This allows us to
avoid interval subdivisions due to imprecisions or problem specific
constraints such as those in the triangle example. This becomes es-
pecially valuable in the presence of multiple variables, where we
may need an exponential number of subdivisions.

6.2 Error Approximation
We now describe our approximation procedure which, for a given
expression expr and a precondition P on the inputs, computes
the range and error on the output. More formally, our procedure
satisfies the following:

([a, b], err) = evalWithError(P, expr)⇔
∀~x, ~x◦, res, res◦.P (~x, ~x◦) ∧ res = expr(~x) ∧ res◦ = expr◦( ~x◦)

→ ¬(res < a ∨ b < res) ∧ |res− res◦| < err

where expr◦ represents the expression evaluated in floating-point
arithmetic and ~x, ~x◦ are the ideal and actual variables. The precon-
dition specifies the ranges and uncertainties of initial variables and

other additional constraints on the ideal variables. The uncertainty
specification is necessary, as it related the ideal and actual variables.

The idea of our procedure is to “execute” a computation while
keeping track of the output range of the current expression and
its associated errors. At each arithmetic operation, we propagate
existing errors, compute an upper bound on the roundoff error
and add it to the overall errors. Since the roundoff error depends
proportionally on the range of values, we also need to keep track of
the ranges as precisely as possible.

Our procedure is build on the abstraction that a computation is
an ideal computation plus or minus some uncertainty. The abstrac-
tion of floating-point roundoff errors that we chose also follows this
separation:

fl(x � y) = (x � y)(1 + δ) = (x � y) + (x � y)δ
for δ ∈ [−εm, εm] and � ∈ {+,−, ∗, /}. This allows us to treat all
uncertainties in a unified manner.

Our procedure builds on the idea of the SmartFloat datatype [12],
which uses affine arithmetic to track both the range and the errors.
For nonlinear operations, however, the so computed ranges become
very pessimistic quickly and the error computation may also suffer
from this imprecision. We observed that since the errors tend to be
relatively small, this imprecision does not affect the error propaga-
tion itself to such an extent. If the initial errors are small (less than
one), multiplied nonlinear terms tend to be even smaller, whereas
if the affine terms are larger than one, the nonlinear terms grow. We
thus concentrate on improving the ideal range of values and use our
novel range computation procedure for this part and leave the error
propagation with affine arithmetic as in [12].

In our adaptation, we represent every variable and intermediate
computation result as a datatype with the following components:

x : (range : Interval, ˆerr : AffineForm)

where range is the range of this variable, computed as described in
Section 6.1 and ˆerr is the affine form representing the errors. The
(overapproximation) of the actual range including all uncertainties
is then given by totalRange = range+ [ ˆerr], where ˆerr denotes
the interval represented by the affine form.

Roundoff error computation Roundoff errors are computed at
each computation step as

ρ = δ ∗maxAbs(totalRange)
where δ is the machine epsilon, and added to ˆerr as a fresh noise
term. Note that this roundoff error computation makes our error
computation parametric in the floating-point precision.

Error propagation For affine operations addition, subtraction,
and multiplication by a constant factor the propagated errors are
computed term-wise and thus as for standard affine arithmetic. We
refer the reader to [12, 15] for further details and describe here
only the propagation for nonlinear arithmetic. For multiplication,
division and square root, the magnitude of errors also depends
on the ranges of variables. Since our ranges are not affine terms
themselves, propagation has to be adjusted. In the following, we
denote the range of a variable x by [x] and its associated error by
the affine form ˆerrx. When we write [x] ∗ ˆerry we mean that the
interval [x] is converted into an affine form and the multiplication
is performed in affine arithmetic.

Multiplication is computed as

x ∗ y = ([x] + ˆerrx)([y] + ˆerry)

= [x] ∗ [y] + [x] ∗ ˆerry + [y] ∗ ˆerrx + ˆerrx ∗ ˆerry + ρ

where ρ is the new roundoff error. Thus the first term contributes
to the ideal range and the remaining three to the error affine form.
The larger the factors [x] and [y] are, the larger the finally computed
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errors will be. In order to keep the overapproximation as small as
possible, we evaluate [x] and [y] with our new range computation.

Division is computed as
x

y
= x ∗ 1

y
= ([x] + ˆerrx)([1/y] + ˆerr1/y)

= [x] ∗ [ 1
y
] + [x] ∗ ˆerr 1

y
+ [

1

y
] ∗ ˆerrx + ˆerrx ∗ ˆerr 1

y
+ ρ

For square root, we first compute an affine approximation of square
root as in [12]

√
x = α ∗ x+ ζ + θ

and then perform the affine multiplication term wise.

Overflows and NaN Our procedure allows us to detect potential
overflows, division by zero and square root of a negative value, as
our tool computes ranges of all intermediate values. We currently
report these issues as warnings to the user.

6.3 Limitations
The limitation of this approach is clearly the ability of Z3 to check
our constraints. We found its capabilities satisfactory, although we
expect the performance to still significantly improve. To emphasize
the difference to the constraints that are defined by Table 1, the
constraints we use here do not add errors at each step and thus
the number of variables is reduced significantly. We also found
several transformations helpful, such as rewriting powers (e.g. x ∗
x ∗ x to x3), multiplying out products and avoiding non-strict
comparisons in the precondition, although the benefits were not
entirely consistent. Note that at each step of our error computation,
our tool computes the current range. Thus, even if Z3 fails to tighten
the bound for some expressions, we still compute more precise
bounds than interval arithmetic overall in most cases, as the ranges
of the remaining subexpressions have already been computed more
precisely.

7. Conditional Statements
In this Section we consider the difference between the ideal and
actual computation due to uncertainties on computing branch con-
ditions and the resulting different paths taken. We note that the
full constraint constructed according to Section 3 automatically in-
cludes this error. Recall that the ideal and actual computations are
independent except for the initial conditions, so that it is possible
that they follow different paths through the program.

In the case of approximation, however, we compute the error
on individual paths and have to consider the error due to diverging
paths separately. If a method encodes a continous function in the
usual mathematical sense then we note that we only need to quan-
tify errors for each path separately. Thus, if have a method [9] to
determine whether a function with conditional statements is con-
tinuous, then our approach described so far is sufficient to provide
sound error bounds. For the case where such a procedure does not
exist or fails to provide an answer, for example due to nonlinear-
ity, or the function simply is not continuous, we propose the fol-
lowing algorithm to explicitly compute the difference between the
ideal and the actual computation across paths. Note that we do not
assume continuity, i.e. the algorithm allows us to compute error
bounds even in the case on non-continous functions.

For simplicity, we present here the algorithm for the case of one
conditional statement:

if (c(x) < 0) f1(x)
else f2(x)

It generalizes readily to more complex expressions. W.l.o.g. we
assume that the condition is of the form c(x) < 0. Indeed, any

def getPathError:
2 Input: pre (x ∈ [a, b] ∧ x± n)

program (if (cond(x) < 0) f1(x) else f2(x))
4 val pathError1 = computePathError(pre, cond, f1, f2)

val pathError2 = computePathError(pre, ¬ cond, f2, f1)
6 return max (pathError1, pathError2)

8 def computePathError(pre, c, f1, f2):
([c], errc) = evalWithError(pre, c)

10 ([f2]float, errfloat) =
evalWithError(pre ∧ c(x) ∈ [0, errc], f2)

12 [f1]real =
getRange(pre ∧ c(x) ∈ [−errc, 0], f1)

14 return: max |[f1]real − ([f2]float + errfloat)|

Figure 6. Computing error due to diverging paths.

conditional of the form c(x) == 0 would yield different results
for the ideal and actual computation for nearly any input, so we do
not allow it in our specification language.

The actual computation commits a certain error when comput-
ing the condition of the branch and it is this error that causes some
executions to follow a different branch than the corresponding ideal
one would. Consider the case where the ideal computation evalu-
ates f1, but the actual one evaluates f2. Algorithm 6 gives the com-
putation of the path error in this case. The idea is to compute the
ranges of f1 and f2, but only for the inputs that could be diverg-
ing. The final error is then the maximum difference of these value.
The algorithm extends naturally to several variables. In the case of
several paths through the program, this error has to be, in princi-
ple, computed for each combination of paths. We use Z3 to rule out
infeasible paths up front so that the path error computation is only
performed for those paths that are actually feasible.

We have currently implemented this approach in our tool for
the case when we use merging to handle paths in order to avoid
having to consider an exponential number of path combinations.
We also use a higher default precision and number of iterations
threshold during the binary search in the range computation as this
computation requires in general very tight intervals for each path.

We identify two challenges for performing this computation:

1. As soon as the program has multiple variables, the inputs for the
different branches are not two-dimensional intervals anymore,
which makes an accurate evaluation of the individual paths
difficult in standard interval arithmetic.

2. The inputs for the two branches are inter-dependent. Thus,
simply evaluating the two branches with inputs that are in the
correct ranges, but are not correlated, yields pessimistic results
when computing the final difference (line 16).

We overcome the first challenge with our range computation
which takes into account additional constraints. For the second
challenge, we use our range computation as well, however unfortu-
nately Z3 fails to tighten the final range to a satisfactory precision
due to timeouts. We still obtain much better error estimates than
with interval arithmetic alone, as the ranges of values for the indi-
vidual paths are already computed much more precisely. We report
in Section 8 on the type of programs whose verification is already
in our reach today.

8. Experiments
The examples in Figure 1 and 4 and Section 5.3 provide an idea
of the type of programs our tool is currently able to verify fully
automatically. The B-spline example from Section 5.3 is the largest
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Benchmark Our error (IA only) Simulated error
doppler1* 2.36e-6 5.97e-7
doppler1 4.92e-13 (4.95e-13) 7.11e-14
doppler2* 6.21e-5 1.85-5
doppler2 1.29e-12 1.14e-13
doppler3* 1.23e-4 5.96e-5
doppler3 2.03e-13 (2.05e-13) 4.27e-14
rigidBody1* 9.21e-7 8.24e-7
rigidBody1 5.08e-13 2.28e-13
rigidBody2* 1.51e-4 1.25e-4
rigidBody2 6.48e-11 2.19e-11
jetEngine* 0.15 (-) 3.58e-5
jetEngine 1.62e-8 (-) 5.46e-12
turbine1* 4.86e-6 3.71e-7
turbine1 1.25e-13 (1.38e-13) 1.07e-14
turbine2* 8.05e-6 7.66e-7
turbine2 1.76e-13 (1.96e-13) 1.43e-14
turbine3* 3.35e-6 1.04e-6
turbine3 8.50e-14 (9.47e-14) 5.33e-15
verhulst* 2.82e-4 2.40e-4
verhulst 6.82e-16 2.23e-16
predatorPrey* 9.22e-5 8.61e-5
predatorPrey 2.94e-16 (2.96e-16) 1.12e-16
carbonGas* 2114297.84 168874.70
carbonGas 4.64e-8 (5.04e-8) 3.73e-9
Sine (single) 1.03e-6 (1.57e-6) 1.79e-7
Sine 9.57e-16 (1.46e-15) 4.45e-16
Sqrt (single) 9.03e-7 (9.52e-7) 2.45e-7
Sqrt 8.41e-16 (8.87e-16) 4.45e-16
Sine, order 3 (single) 1.19e-6 (1.55e-6) 2.12e-7
Sine, order 3 1.11e-15 (1.44e-15) 3.34e-16

Table 3. Comparison of errors computed with our procedure
against simulated errors. Simulations were performed with 107 ran-
dom inputs. (*) indicates that inputs have external uncertainties as-
sociated.

meaningful example we were able to find that Z3 alone could verify
in the presence of uncertainties. For all other cases, it was necessary
to use our approximation methods.

8.1 Evaluating Effectiveness on Nonlinear Expressions
To evaluate our range and error computation technique we have
chosen several nonlinear expressions commonly used in physics,
biology and chemistry [40, 43, 49] as benchmark functions, as well
as benchmarks used in control systems [1] and suitable benchmarks
from [18].Experiments were performed on a desktop computer
running Ubuntu 12.04.1 with a 3.5GHz i7 processor and 16GB of
RAM. Running times highly depend on the timeout used for Z3.
Our default setting is 1 second; we did not find much improvement
in the success rate above this threshold.

Range computation Stepwise estimation of errors crucially de-
pends on the estimate of the ranges of variables. The strength of
using a constraint solver such as Z3 is that it can perform such esti-
mation while taking into account the precise dependencies between

variables in preconditions and path conditions. Table 2 compares
results of our range computation procedure described in Section 6
against ranges obtained with standard interval arithmetic. Interval
arithmetic is one of the methods used for step-wise range estima-
tion; an alternative being affine arithmetic. We have also experi-
mented with an affine arithmetic implementation [12]. However, we
found that affine arithmetic gives more pessimistic results for com-
puting ranges for non-linear benchmarks. We believe that this is
due to imprecision in computing nonlinear operations. Note, how-
ever, that we still use affine arithmetic to estimate errors given the
computed ranges.

We set the default precision threshold to 1e−10 and maximum
number of iterations for the binary search to 50. To obtain an
idea about the ranges of our functions, we have also computed
a lower bound on the range using simulations with 107 random
inputs and with exact rational arithmetic evaluation of expressions.
We observe that our range computation can significantly improve
over standard interval bounds. The jetEngine benchmark is a notable
example, where interval arithmetic yields the bound [−∞,∞],
but our procedure can still provide bounds that are quite close to
the true range. Running times are below 7 seconds for the most
complex benchmarks, except for jetEngine which runs in about 1
minute due to timeouts from Z3 for some intermediate ranges.

Error computation Table 3 compares uncertainties computed by
our tool against maximum uncertainties obtained through exten-
sive simulation with 107 random inputs. We ran the simulation in
parallel with rational and their corresponding floating-point value
and obtained the error by taking the difference in the result. Bench-
marks marked with (*) have added initial uncertainties. Unless oth-
erwise indicated, we used double floating-point precision. To our
knowledge this is the first quantitative comparison of an error com-
putation precision with (an approximation) of the true errors on
such benchmarks. Except for the benchmarks jetEngine∗ our com-
puted uncertainties are within an order and many times even closer
to the underapproximation of the true errors provided by simula-
tion. In the case of the jetEngine∗ benchmark, we believe that the
imprecision is mainly due to its complexity and subsequent failures
of Z3. The values in parentheses in the second column indicate er-
rors computed if ranges at each arithmetic operation are computed
using interval arithmetic alone. While we have not attempted to im-
prove the affine arithmetic-based error computation from [12], we
can see that in some cases a more precise range computation can
gain us improvements. The full effect of the imprecision of stan-
dard range computation appears when, due to this imprecision, we
obtain possible errors such as division-by-zero or square root of a
negative number errors. The first case happens in the case of the
non-linear jetEngine benchmark, so with interval arithmetic alone
we would therefore not obtain any meaningful result. Similarly, for
the triangle example from Section 2, without being able to con-
strain the inputs to form valid triangles, we cannot compute any
error bound, because the radicand becomes possibly negative.

Table 4 presents another relevant experiment, evaluating the
ability to use additional constraints during our range computation.
We use the triangle example from Section 2 with additional con-
straints allowing increasingly flat triangles by setting the threshold
on line 13 (a + b > c + 1e−6) to the different values given in the first
column. As the triangles become flatter, we observe an expected in-
crease in uncertainty on the input since the formula becomes more
prone to roundoff errors. At threshold 1e−10 our range computation
fails to provide the necessary precision and the radicand becomes
possibly negative. (We used double precision in this example as
well.)
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Benchmark Our range interval arithmetic Simulated range
doppler1 [-137.639, -0.033951] [-158.720, -0.029442] [-136.346, -0.035273]
doppler2 [-230.991, -0.022729] [-276.077, -0.019017] [-227.841,-0.023235]
doppler3 [-83.066, -0.50744] [-96.295, -0.43773] [-82.624, -0.51570]
rigidBody1 [-705.0, 705.0] [-705.0, 705.0] [-697.132, 694.508]
rigidBody2 [-56010.1, 58740.0] [-58740.0, 58740.0] [-54997.635, 57938.052]
jetEngine [-1987.022, 5099.243] [−∞,∞] [-1779.551, 4813.564]
turbine1 [-18.526, -1.9916] [-58.330, -1.5505] [-18.284, -1.9946]
turbine2 [-28.555, 3.8223] [-29.437, 80.993] [-28.528, 3.8107]
turbine3 [0.57172, 11.428] [0.46610, 40.376] [0.61170, 11.380]
verhulst [0.31489, 1.1009] [0.31489, 1.1009] [0.36685,0.94492]
predatorPrey [0.039677, 0.33550] [0.037277, 0.35711] [0.039669,0.33558]
carbonGas [4.3032 e6, 1.6740 e7] [2.0974 e6, 3.4344 e7] [4.1508 e6, 1.69074 e7]
Sine [-1.0093, 1.0093] [-2.3012, 2.3012] [-1.0093, 1.0093]
Sqrt [1.0, 1.3985] [0.83593, 1.5625] [1.0, 1.3985]
Sine (order 3 approx.) [-1.0001, 1.0001] [-2.9420, 2.9420] [-1.0, 1.0]

Table 2. Comparison of ranges computed with out procedure against interval arithmetic and simulation. Simulations were performed with
107 random inputs. Ranges are rounded outwards.

Benchmark Range Max. abs. error
triangle1 (0.1) [0.29432, 35.0741] 2.72e-11

triangle2 (1e-2) [0.099375, 35.0741] 8.04e-11
triangle3 (1e-3) [3.16031e-2, 35.0741] 2.53e-10
triangle4 (1e-4) [9.9993e-3, 35.0741] 7.99e-10
triangle5 (1e-5) [3.1622e-3, 35.0741] 2.53e-9
triangle6 (1e-6) [9.9988e-4, 35.0741] 7.99e-9
triangle7 (1e-7) [3.1567e-4, 35.0741] 2.54e-8
triangle8 (1e-8) [9.8888e-5, 35.0741] 8.08e-8
triangle9 (1e-9) [3.0517e-5, 35.0741] 2.62e-7

triangle10 (1e-10) - -

Table 4. Ranges and errors for increasingly flat triangles. All val-
ues are rounded outwards. Interval arithmetic alone fails to provide
any result.

8.2 Evaluating Errors across Program Paths
Figure 7 presents several examples to evaluate our error compu-
tation procedure across different paths from Section 7. The first
method cav10 [22] has been used before as a benchmark function
for computing the output range. Our tool can verify the given post-
condition immediately. Note that the error on the result is actually
as large as the result itself, since the method is non-continuous,
an aspect that has been ignored in previous work, but that our
tool detects automatically. The method squareRoot3 is also an non-
continous function that computes the square root of 1 + x using an
approximation for small values and the regular library method oth-
erwise. Note the additional uncertainty on the input, which could
occur for instance if this method is used in an embedded controller.
Our tool can verify the given spefication. If we change the condition
on line 10 to x < 1e−4 however, verification fails. In this fashion,
we can use our tool to determine the appropriate branch condition
to meet the precision requirement. The above examples verify all
in under 5 seconds. Finally, the smartRoot method computes one
root of a quadratic equation using the well-known more precise

def cav10(x: Real): Real = {
2 require(x.in(0, 10))

if (x∗x − x >= 0)
4 x/10

else
6 x∗x + 2
} ensuring(res => 0 <= res && res <= 3.0 && res +/− 3.0)

8

def squareRoot3(x: Real): Real = {
10 require( x.in(0,10) && x +/− 1e−10 )

if (x < 1e−5)
12 1 + 0.5 ∗ x

else
14 sqrt(1 + x)
} ensuring( res => res +/− 1e−10)

16

def smartRoot(a: Real, b: Real, c: Real): Real = {
18 require(3 <= a && a <= 3 && 3.5 <= b && b <= 3.5 &&

c.in(−2, 2) && b∗b − a ∗ c ∗ 4.0 > 0.1)
20

val discr = b∗b − a ∗ c ∗ 4.0
22 if(b∗b − a∗c > 10.0) {

if(b > 0.0) c ∗ 2.0 /(−b − sqrt(discr))
24 else if(b < 0.0) (−b + sqrt(discr))/(a ∗ 2.0)

else (−b + sqrt(discr))/(a ∗ 2.0)
26 }

else {
28 (−b + sqrt(discr))/(a ∗ 2.0)

}
30 } ensuring (res => res +/− 6e−15)

Figure 7. Path error computation examples.

method from [23]. We are currently not aware of an automatic tool
to prove programs continuous in the presence of nonlinear arith-
metic, so that we need to compute the error across different paths
as well. Our tool succeeds in verifying the postcondition in about
25s. The rather long running time is due to the complexity of the
conditions when computing the error across paths, and thus Z3’s
longer response time, and a number of Z3 timeouts (Z3 timeout
here means merely that some ranges have not been tightend to the
best precision). In the future, we envision that optimizations that
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select alternative approximations can be performed automatically
by a trustworthy compiler.

9. Related work
Current approaches for verifying floating-point code include ab-
stract interpretation, interactive theorem proving and decision pro-
cedures, which we survey in this section. We are not aware of work
that would automatically integrate reasoning about uncertainties.

Abstract interpretation (AI) Abstract domains that are sound
with respect to floating-point computations can prove bounds on
the ranges of variables [5, 11, 20, 28, 38]. The only work in this area
that can also quantify roundoff errors is the tool Fluctuat[17, 24].
These techniques use interval or affine arithmetic and together with
the required join and meet operations may yield too pessimistic
results. [42] improves the precision of Fluctuat by refining the in-
put domains with a constraint solver. Our approach can be viewed
as approaching the problem from a different end, starting with an
exact constraint and then using approximation until the solver suc-
ceeds. Unlike AI tools in general, our system currently handles
only functional code, in particular it does not handle loops. If the
user can provide inductive postconditions, then we can still prove
the code correct, but we do not in general discover these ourselves.
Our focus lies on proving precise bounds on the ranges in the pres-
ence of nonlinear computations and the quantification of roundoff
errors and other uncertainties.

Theorem proving The Gappa tool [14, 35] generates a proof
checkable by the interactive theorem prover Coq from source code
with specifications. It can reason about properties that can be re-
duced to reasoning about ranges and errors, but targets, very precise
properties of specialized functions, such as software implementa-
tions of elementary functions. The specification itself requires ex-
pertize and the proofs human intervention. A similar approach is
taken by [2] which generate verification conditions that are dis-
charged by various theorem provers. Harisson has also done signif-
icant work on proving floating-point programs in the HOL Light
theorem prover [26].

Our approach makes a different compromise on the precision
vs. automation tradeoff, by being less precise, but automatic. The
Gappa approach can be used complementary to ours, in that if we
detect that more precision is needed, Gappa is employed by an
expert user on selected methods, and the results are then used by
our tool instead of automatically computed specifications.

Range computation The Gappa tool and most constraint solvers
internally use interval arithmetic for sound range computations,
whose limitations are well-known. [19] describes an arithmetic
based on function enclosures and [37] use an arithmetic based
on taylor series as an alternative. This approach is useful when
checking a constraint, but is not suitable for a forward computation
of ranges and errors.

Decision procedures An alternative approach to verification via
range computation are floating-point decision procedures. Bit-
precise constraints, however, become very large quickly. [8] ad-
dresses this problem by using a combination of over- and underap-
proximations. [25] present an alternative approach in combining
interval constraint solving with a CDCL algorithm and [21] is a
decision procedure for nonlinear real arithmetic combining inter-
val constraint solving with an SMT solver for linear arithmetic.[44]
formalizes the floating-points for the SMT-LIB format. While these
approach can check ranges on numeric variables, they do not handle
roundoff errors or other uncertainties and cannot compute specifi-
cations automatically.

Our techniques rely on the performance of Z3. We hope that
an integration of the recent new improved solver for nonlinear

arithmetic [30] will make many more verification problems feasible
with our techniques. An alternative to this approach is using linear
approximations to solve polynomial constraints [7]. We believe that
such advances are largely orthogonal to our use of range arithmetic
and complement each other.

Testing Symbolic execution is a well-known technique for gener-
ating test inputs. [6] use a combination of meta-heuristic search and
interval constraint solving to solve the floating-point constraints
that arise, whereas [33] combine random search and evolutionary
techniques. [47] test numerical code for precision by perturbing
low-order bits of values and rewriting expressions. The idea is to
exagerate initial errors and thus make imprecisions more visible.
Probabilistic arithmetic [45] is a similar approach but it does the
perturbation by using different rounding modes. [4] also propose
a testing produce to detect accuracy problems by instrumentring
code to perform a higher-precision computation side by side with
the regular computations. While these approaches are sound with
respect to floating-point arithmetic, they only generate or can check
individual inputs and are thus not able to verify or compute output
ranges or their roundoff errors.

Robustness analysis [27] combines abstract interpretation with
model checking to check programs for stability by tracking the evo-
lution of the width of the interval representing a single input. [36]
use concolic execution to find inputs which, given maximum devi-
ations on inputs, maximize the deviation on the outputs. These two
works however, use a testing approach and cannot provide sound
guarantees. [9] presents a framework for continuity analysis of pro-
grams along the mathematical ε−δ definition of continuity and [10]
builds on this work and presents a sound robustness analysis. This
framework provides a syntactic proof of robustness for programs
over reals and thus does not consider floating-points. Our approach
describes a quantitative measure of robustness for nonlinear pro-
grams with floating-point numbers and other uncertainties, and we
believe that it can complement the cited framework.

10. Conclusion
We have presented a programming model for numerical programs
that decouples the mathematical problem description from its re-
alization in finite precision. The model uses a Real data type that
corresponds to mathematical real numbers. The developer specifies
the program using reals and indicates the target precision; the com-
piler chooses a floating point representation while checking that the
desired precision targets are met. We have described the soundness
criteria by translating programs with precision requirements into
verification conditions over mathematical reals. The resulting veri-
fication conditions, while a natural description of the problem being
solved, are difficult to solve using a state-of-the art SMT solver Z3.
We therefore developed an algorithm that combines SMT solving
with range computation. Our notion of soundness incorporates full
input/output behavior of functions, taking into account that, due to
conditionals, small differences in values can lead to different paths
being taken in the program. For such cases our approach estimates
a sound upper bound on the total error of the computation.

We have evaluated our techniques on a number of benchmarks
from the literature, including benchmarks from physics, biology,
chemistry, and control systems. We have found that invocation of
SMT solver alone is not sufficient to handle these benchmarks due
to scalability issues, whereas the use of range arithmetic by itself
is not precise enough. By combining these two techniques we were
able to show that a floating point version of the code conforms to
the real-valued version with reasonable precision requirements.

We believe that our results indicate that it is reasonable to in-
troduce Reals as a data type, following a list of previously intro-
duced mathematical abstractions in programming languages, such
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as unbounded integers, rationals, and algebraic data types. The fea-
sibility of verified compilation of our benchmarks suggests that it
is realistic to decouple the verification of executable mathematical
models over reals from their sound compilation. We therefore ex-
pect that this methodology will help advance rigorous formal veri-
fication of numerical software and enable us to focus more on high-
level correctness properties as opposed to run-time errors alone.
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