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Abstract

Mobility data has increasingly grown in volume over the past decade as loc-

alisation technologies for capturing mobility flows have become ubiquitous.

Novel analytical approaches for understanding and structuring mobility data

are now required to support the back end of a new generation of space-time GIS

systems. This data has become increasingly important as GIS is now an essen-

tial decision support platform in many domains that use mobility data, such

as fleet management, accessibility analysis and urban transportation planning.

This thesis applies the machine learning method of probabilistic topic mod-

elling to decompose and semantically enrich mobility flow data. This process

annotates mobility flows with semantic meaning by fusing them with geograph-

ically referenced social media data. This thesis also explores the relationship

between causality and correlation, as well as the predictability of semantic

decompositions obtained during a case study using a real mobility dataset.
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Chapter 1

Introduction

1.1 Introduction

Geographic Information Systems (GIS) have become essential decision support

platforms in many domains that use mobility data, such as vehicle fleet man-

agement, accessibility analysis and urban transportation planning. Over the

past decade these domains have accrued immense collections of mobility data.

Now more than ever, novel analytical approaches for understanding and struc-

turing mobility records are required to process these ever growing volumes of

data.

This thesis advocates semantic enhancement of mobility flows as an essen-

tial component for next generation GIS. One example application from the

domain of urban mobility analysis is the ability to infer trip purpose from

aggregate data. This application would produce reliable volume estimates for

different user groups, such as commuters, leisure travellers or tourists. This

decomposition of aggregate into multiple trip purpose would simultaneously

benefit both transportation operators and passengers. The operator can now

optimise transportation operation at a systems level and the passenger can now

benefit from a host of newly enabled context-aware smart mobility services.
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A common type of mobility data is a record of the number of trips between

predefined spatial zones known as origin-destination (OD) matrices. The same

type of data is generated by the majority of urban transportation systems

which log the number of trips between stations on their network from ticket

sales or via swipe cards records. Despite the fact that OD tables are one of the

main type of mobility data and that they have been studied in transportation

science for decades, there is a surprising knowledge gap in methods that allow

inferring trip purpose from i to j from non-direct mobility observations and/or

other related data. In the transportation domain, trip purpose data is collec-

ted by conducting costly and time-consuming travel surveys. In geographic

information science and recent data analytics studies, trip purpose identifica-

tion methods have only been proposed for detailed records such as GPS tracks

where exact types of origin destination locations can be defined with sufficient

certainty (Andrienko et al., 2011). At the same time, the limits of applicability

of such methods are constrained by location privacy considerations. Spatially

aggregated data is often used instead of precise GPS locations, increasing the

need for relevant methods even more.

1.2 Methodology

This thesis develops a machine learning methodology for the decomposition of

mobility flows, provided in the aggregate form of origin destination matrices,

into multiple modes of specific trip purpose.

Semantic enrichment is made possible by considering the space-time con-

text of mobility flow modes as well as using available geo-referenced social

media data for an overlapping period. This overlapping social media data de-

tails both periodic and non-periodic activities that influence the mobility of

individuals living in the region of study.
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The causality relations and predictability across two datasets (mobility and

social media) are investigated to support the semantics assigned to each mode

of specific trip purpose.

1.3 Contributions

The main contribution of this thesis is that it resolves a common drawback of

intuitive ad-hoc semantic annotation of the obtained modes solely from space-

time context. Our approach to the issue is based on causality analysis Granger

(1969), as well as predictability of the obtained semantic decompositions of

mobility flows. Using a real mobility dataset from a bike sharing network,

we quantitatively show that temporal and/or spatial coincidence of seemingly

related processes is not sufficient to attribute semantic labels across datasets.

We also build a conditional dependency graph to reason about trip purposes

and advance data-driven predictive systems (Breiman, 2001) of urban dynamic

processes.

The advantages of our approach are twofold. First, it increases the credibil-

ity of semantic annotation of mobility flows. Secondly, it enhances the predict-

ability of the components of mobility flows related to specific trip purposes. It

can therefore be used for better network management and optimization as well

as for providing new location-based and activity-aware services to the users of

a new generation of smart transportation networks.

1.4 Case Study

In this thesis, we present a case study using two real world datasets (mobility

and social media) from the city of Washington D.C, US. The case study rein-

forces our claim that semantic enhancement of mobility flows is a powerful and

important technique that belongs in the next generation of GIS. Although the
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case study utilises a specific mobility dataset; a bike sharing dataset provided

by Captial Bikeshare (see Section 2.1). Every attempt has been made in

this thesis to frame the technique in a more general light. The methodology

outlined can be used to decompose and semantically label almost any origin-

destination based mobility dataset into multiple modes of specific trip purpose.

1.5 Thesis Structure

Chapter 1: Introduction

In this chapter we frame our work in the context of mobility analysis. We

outline the main goal of the thesis, the methodology followed, contributions

to the field and finally a case study performed using two dataset (mobility

and social media) from the city of Washington D.C, US.

Chapter 2: Data

This chapter describes two datasets (mobility - Capital Bikeshare) and

(social media - Twitter) used throughout this thesis. The mobility dataset

spans a much longer time period and so it is described in much more detail.

We analyse the mobility network’s growth over time, the effects of weather

and tourism, we describe the results of a decomposition experiment which

motivated the work and, ultimately, this thesis. Finally we present some

basic statistics about the social media dataset.

Chapter 3: Methods

This chapter begins with a brief introduction to the field of topic modelling.

After this, we explain in detail an algorithm used later in the thesis, Latent

Dirichlet Allocation (LDA). We offer some intuitions about LDA, then

we describe its formulation, first using a graphical model and then more

formally using strict mathematical notation. We complete this chapter

with a practical discussion on fitting the LDA model to a real dataset

4



using approximate posterior inference.

Chapter 4: Temporal Decomposition

In this chapter we decompose the abstruse mobility flows of the Capital

Bikeshare dataset into simpler temporal components using LDA. We de-

scribe the process of creating documents from records, then we perform an

initial decomposition and discuss the results.

Chapter 5: Semantic Labelling

In this chapter we annotate, with semantic meaning, the temporal decom-

position performed in the previous chapter. We then explore both the

spatial and textual components of the decompositions.

Chapter 6: Correlation & Causation

This chapter discusses the important difference between correlation and

causation. We show that even though many of the Twitter and bikeshare

topics are highly correlated only some of them exhibit a true causal rela-

tionship. We use the information gained by this analysis to semantically

annotate the mobility topics.

Chapter 7: Towards Demand Forecasting

This chapter details a proof of concept framework for predicting OD de-

mand flows. We show that one can predict, using a neural network, bike

rental topic intensities from Twitter topic intensities. We then show how

these predicted topic intensities can be used to forecast mobility flows.

Chapter 8: Discussion and Conclusions

In the final chapter, we discuss the implications of our work and the limit-

ations of our technique.

5



Chapter 2

Data

2.1 Data

To make our results reproducible we provide all of the data used by this thesis.

We also provide high resolution versions of all figures.1.

2.2 Capital Bikeshare

As bike sharing systems gained popularity with city dwellers, the data pro-

duced by bike sharing attracted the attention of researchers studying human

mobility (Padgham, 2012; Montoliu, 2012; Borgnat et al., 2011). The bikeshare

dataset used in this thesis is a subset of the historic trip data provided by Cap-

ital Bikeshare2. Capital Bikeshare package and release a complete dataset from

their network every quarter.

2.2.1 System growth over time

At the time of this writing, Capital Bikeshare had released 9 quarters of data

from their bikeshare network. This data spans from the final quarter of 2010

1https://github.com/ccoffey/masters-thesis
2http://www.capitalbikeshare.com/trip-history-data
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until the final quarter of 2012. Figure 2.1 plots the number of bike rentals per

month for the complete 28 month dataset. This figure clearly depicts increasing

popularity in the Capital Bikeshare network. Each year the number of rentals

across the network increased dramatically. One can also see from this figure

the existence of a macro level trend. This trend is likely being caused by one

of two things: seasonal change in weather or tourism.

Figure 2.1: Number of bike rentals per month for the complete 28 month
dataset.

The Capital Bikeshare network is not a static network. To meet growing

popularity, new stations and bikes have been added over time (see Figure 2.2).

Not surprisingly these two graphs display the same overall trend at different

magnitudes. This is the case because a new station is never added without

also adding new bikes to service it.
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Figure 2.2: Station growth over time (left) and bike growth over time (right).

2.2.2 Tourism and Weather

It is important to understand the effects of both weather and tourism on the

bike sharing network as they may have profound implications on the mobility

flows of the underlying network. Figure 2.3, a decomposition of rentals into re-

gistered and casual, was made possible by the member type category collected

by Capital Bikeshare. A registered user is one who pays for the bike system on

an annual or monthly basis. A casual user is one who purchases shorter term

access (1 to 5 days) membership. According to Capital Bikeshare, the casual

user membership is primarily utilised by tourists. Figure 2.3 seems to support

this claim as the Casual rental curve is highest in the summer months: May,

June and July.
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Figure 2.3: 2011 rental counts split into two components registered users
(green) and casual users (red)

To investigate the effects of weather on bikeshare, we built an interactive

calendar application (see Figure 2.4). This application displays the entire

Capital Bikeshare dataset in a unique and informative manner. Each square

in the calendar represents a single day. Days are arranged into columns by

week, then grouped by month and year. The color of each square ranges from

dark red to dark green and represents low to high rental counts respectively.

Note that in Figure 2.4, a dark red square has been highlighted displaying the

label “Monday 29 October: 22 rentals”. There were only 22 rentals on this day,

an incredibly low number considering this includes all 191 bike stations in the

Capital Bikeshare network. In fact on the previous day the number of rentals

was 4,460. The reason for this incredibly low rental count was Hurricane Sandy

which hit Washington D.C, US on Monday October 29th 2012. The weather

table at the bottom of the figure confirms this by displaying an average wind
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speed of 39 KPH and a total rainfall of 97.79 MM. This was by far the highest

recorded (wind speed and rainfall) for the entire dataset. This calendar allows

us to easily identify rental anomalies and corresponding weather information.

We have found by inspection that bad weather affects rental counts much more

on weekends than weekdays. This suggests that cyclists who routinely use the

bike network on weekdays, perhaps for commuting purposes, are not deterred

by bad weather.

Figure 2.4: An interactive calendar application displaying rental counts and
weather information for the entire 28 month Capital Bikeshare dataset.

A note to the reader: An interactive version of the calendar application is

available online 3.

2.2.3 Station Clustering

Weekdays on the bikeshare network are very different from weekends. This

becomes very obvious when you plot the total number of rentals, per hour

and per day. In the rainbow plot (see Figure 2.5), it is clear that Monday

3http://ccoffey.github.io/bike-weather/index.html
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Figure 2.5: Global hourly trends by day of the week

to Friday are incredibly similar. Two sharp peaks are present, the first at

8am (most likely the morning commute) and another at 6pm (most likely the

evening commute). Lunchtime (12 to 1) also shows increased activity. The

weekend on the other hand is a completely different graph, there are no sharp

peaks, simply a constant increase in activity until midday and then a constant

decrease.

The rainbow plot presented in Figure 2.5 is an average taken over all sta-

tions in the network. In this sense, the plot is slightly misleading as it suggests

that this is the average profile for a station in the network. To show that this

is not the case, we generated an average 24 hour profile for each of the 191

stations and then clustered the results using kmeans with parameter k = 3.
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Figure 2.6: Clustering results of kmeans with parameter k=3. Station profiles
(top) and stations positions (bottom).

The results of this clustering are shown in Figure 2.6. Plotted at the top of

this figure are the 191 station profiles, each assigned to one of 3 clusters. The

first of these clusters contains stations which are very active in the mornings

but not at any other time. The second of these clusters contains stations which

are very active in the evenings but not at any other time and the third cluster

12



contains stations that are active both in the morning and evening. Figure 2.6

largely motivated the rest of this thesis. This decomposition of an aggregate

network signal, into station specific signals inspired many questions. Why do

these stations have such different temporal profiles? What are the underly-

ing motivations influencing mobility on the bike sharing network? Are the

green and orange clusters morning and evening commutes? 3 was an arbitrary

choice for k, how many significant components is the aggregate network signal

composed of? Is time-series clustering the best way to perform this decom-

position? If we do extract n distinct components, how can we then assign

semantic meaning to these components?

2.2.4 Case Study Data

In our case study we use a two week subset of the complete Capital Bikshare

dataset described above. Unfortunately we are forced to use only a subset due

to limitations in the second dataset (Twitter) which is described below.

The case study dataset contains 43,636 unique bike rentals completed on

a 191 station network (see Figure 2.7) during a one week period (2012-07-

16 to 2012-07-23 inclusive). The dataset contains a time stamped record of

every trip between a pair of rental stations. Although the final destinations

of bike users are unknown, it is reasonable to assume that destination venues

are located in the vicinity of rental stations. The trip records also contain a

significant amount of self-loops, potentially corresponding to leisure trips and

recreational cycling.
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Figure 2.7: Capital Bikshare network map: locations of 191 stations in Wash-
ington D.C, US
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Figure 2.8: 37,335 tweets, generated by 9,170 unique users, during the 7 day
period (2012-07-16 to 2012-07-23 inclusive).

2.3 Twitter

The Twitter dataset used in this thesis was collected using the Twitter stream-

ing API 4. This dataset contains 37,335 geo-tagged tweets. These tweets were

generated by 9,170 unique users, checking into 15,860 unique venues during

the same one week period as the bikeshare dataset (2012-07-16 to 2012-07-23

inclusive). The locations of check-ins are presented in Figure 2.8. Check-in

messages are popular data sources to determine the semantics behind user

activities (Kling & Pozdnoukhov, 2012; Lian & Xie, 2011; Ye et al., 2011) and

detect significant events (Pozdnoukhov & Kaiser, 2011) as they contain user

generated content and venue information.

4http://dev.twitter.com/docs/streaming-api
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Chapter 3

Methods

3.1 Topic modelling

In machine learning and natural language processing, a topic model is a type

of statistical model for discovering the latent “topics” that pervade a collection

of documents. By discovering patterns of word use and connecting documents

that exhibit similar patterns, topic models have emerged as a powerful new

technique for finding useful structure in an otherwise unstructured collection.

Topic models operate under the belief that documents are created by a gen-

erative process. This “imaginary” process constructs new documents in the

following way. First, it chooses a distribution over topics. Then, for each word,

it chooses a topic at random according to this distribution, and draws a word

from that topic. Topic modelling algorithms attempt to invert this “imagin-

ary” process; inferring the set of topics that were responsible for generating a

collection of documents.

Figure 3.1 shows four example topics that were derived from the TASA

corpus, a collection of over 37,000 text passages from educational materials

(e.g., language & arts, social studies, health, sciences) collected by Touchstone

Applied Science Associates (see Landauer et al. (1998)). For each of the four
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topics depicted, only the 16 most probable words are displayed. By examining

these words, one might conclude that Topic 247 is about medicine, Topic 5 is

about colors, Topic 43 is about cognition and Topic 56 is about medical care.

The act of explicitly naming topics is considered subjective and is therefore

generally regarded as bad practice. We do so here only to aid the reader in

understanding an abstract concept.

Figure 3.1: An illustration of four (out of 300) topics extracted from the TASA
corpus: Reproduced from Steyvers & Griffiths (2007a).

3.2 Latent Dirichlet Allocation

LDA Blei et al. (2003b) was an important advancement in the area of topic

modelling; it reinvigorated research in the field and ultimately acted as a

catalyst for the development of many other topic models (Teh et al., 2006;

Blei et al., 2003a; Blei & Lafferty, 2007; Li & McCallum, 2006; Reisinger et al.,

2010; Wang & Blei, 2009; Doyle & Elkan, 2009).

LDA was originally developed to fix an issue with a previous topic mod-

elling algorithm; probabilistic latent semantic analysis (pLSA) introduced by

Hofmann (1999). pLSI was in turn a probabilistic implementation of the sem-

inal work on latent semantic analysis (LSA) (Deerwester et al., 1990). The

relationship between these techniques is clearly described in Steyvers & Grif-
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fiths (2007b).

3.2.1 Intuition

The idea behind LDA is that documents exhibit multiple topics. Figure 3.1 de-

scribes this idea with an example document. This document entitled “Seeking

Life’s Bare (Genetic) Necessities” is about computing the approximate number

of genes an organism needs to survive the process of evolution. To the left of

this Figure, 4 (out of 100) topics are depicted. The document itself has certain

words highlighted in different colors. These colors correspond with the topic

that each word belongs to with the highest probability. Finally, to the right

of this diagram is a histogram of topic proportions for this document. This

histograms informs us that the document is primarily formed by words from

3 of the 100 topics (yellow, pink and blue).

Latent Dirichlet allocation gets its name from the distribution that is used

to draw the per-document topic distributions (the histogram in Figure 3.2). In

the generative process for LDA, the result of the Dirichlet is used to allocate

the words of the document to different topics. The keyword, latent, is present

in the title to emphasise the fact that the actual topics are never observed

i.e. they are not provided as input to the algorithm. They are inferred by the

algorithm.

18



Figure 3.2: Intuitions behind latent Dirichlet allocation. Reproduced from
(Blei 20121).

3.2.2 Graphical Model

A graphical model is a probabilistic model for which a graph denotes the con-

ditional dependence structure between random variables. LDA is very elegant

when depicted as a graphical model (See Figure 3.3). In a directed graphical

model, nodes represents random variables. If a node is shaded then it is ob-

served, otherwise it is a latent variable. Edges between nodes denote possible

dependence between random variables. The enclosing rectangles (plates) are

a really compact way of denoting replicated structure.

The graphical model for LDA is best understood if one works from the

outside in. Initially we will ignore α and η. Instead we begin our explanation

with the rightmost plate, the K plate. The variable βk here represents the

topics, each β is a distribution over words and there are K of these distribu-

tions. β lives on the vocabulary simplex, the space of all possible solutions.

β comes from a Dirichlet distribution. Next we describe the document plate,

this plate is replicated once for each of the D documents. The only variable in

1http://www.cs.princeton.edu/~blei/papers/icml-2012-tutorial.pdf
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Figure 3.3: A graphical model representation of the latent Dirichlet allocation
(LDA). Reproduced from Blei & Lafferty (2009).

this plate is θd which represents the topic proportions (the histogram in Figure

3.2). Each θd is of dimensionally K. The final plate which is replicated once

for each word in each document contains two variables. The first is denoted

zd,n, the topic assignment (the coloured coin in Figure 3.2). We can see that

zd,n depends on θd because it is drawn from a distribution with parameter θd.

The second is denoted wd,n, the nth word in the dth document. We can see that

wd,n depends on both θd and all of the βk variables. wd,n is the only observed

variable in the entire model. All LDA ever observes is a collection of words,

grouped into documents.

3.2.3 Mathematical Model

The joint distribution of all variables, observed and hidden, according to the

LDA model is given by Equation 3.1.

p(β, θ, Z,W |α, η) =
( K∏

i=1

p(βi|η)
)( D∏

d=1

p(Θd|α)
( N∏
n=1

p(Zd,n|Θd)p(Wd,n|β1:K , Zd,n)
))

(3.1)
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where

K = the number of topics,

D = the number of documents,

N = the number of words in the dth document,

βi = topic i (a distribution over words),

θd = topic proportions for the dth document,

η = topic hyper-parameter,

α = Dirichlet parameter,

Zd,n = the topic assignment Z for the nth word of the dth document,

Wd,n = the nth word of the dth document.

The first section of this equation describes each topic which comes from

some distribution appropriate over topics. The Dirichlet distribution. This

equation is equivalent to the rightmost plate in the graphical model represent-

ation. We wrap this section in parentheses to emphasise that it is independent

of anything else because the β values are only dependant on η.

( K∏
i=1

p(βi|η)
)

(3.2)

The second section of this equation, introduces the second use of a Dirichlet

distribution in the LDA model, to describe the topic proportions for each

document. The topic proportions are only dependant on α.

D∏
d=1

p(Θd|α) (3.3)
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The final section of the equation describes each word in each document.

First we draw a topic assignment Zd,n from the specific topic proportions for

this document θd, then we draw a word for this document Wd,n conditioned

on both the topics β1:K and the specific topic assignment Z for word n in this

document d Zd,n.

( N∏
n=1

p(Zd,n|Θd)p(Wd,n|β1:K , zd,n)
)

(3.4)

3.2.4 The Dirichlet Distribution

The Dirichlet distribution is an exponential family distribution over the sim-

plex. As a conjugate prior for the multinomial, the Dirichlet distribution is

a convenient choice as prior, simplifying the problem of statistical inference.

The probability density of a T dimensional Dirichlet distribution over the mul-

tinomial distribution p = (p1, ..., pr) is defined by:

Dir(α1, ..., αt) =
Γ(Σjαj)

ΠjΓ(αj)

T∏
j=1

Pj
aj−1 (3.5)

The parameters of the Dirichlet distribution are specified by α1...αT . Each

hyper-parameter αj can be interpreted as a prior observation count for the

number of times topic j is sampled in a document, before having observed any

actual words from that document. It is convenient to use a symmetric Dirichlet

distribution with a single hyper-parameter α such that α1 = α2 = ... = αt = α.

By placing a Dirichlet prior on the topic distribution Θ, the result is a

smoothed topic distribution, with the amount of smoothing determined by the

α parameter. Figure 3.4 illustrates the Dirichlet distribution for three topics

in a two-dimensional simplex. The simplex is a convenient coordinate system

to express all possible probability distributions. The smaller the value of the

α parameter, the more spread out the distribution is.
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Figure 3.4: Illustrating the symmetric Dirichlet distribution for three topics
on a two-dimensional simplex. Darker colors indicate higher probability. Left:
α = 4. Right: α = 2. Reproduced from Steyvers & Griffiths (2007a).

The Dirichlet prior on the topic distributions (see equation 3.3) can be

interpreted as forces on the topic combinations with higher α moving the topics

away from the corners of the simplex, leading to more smoothing (compare the

left and right panel). For α < 1, the modes of the Dirichlet distribution are

located at the corners of the simplex. In this regime (often used in practice),

there is a bias towards sparsity, and the pressure is to pick topic distributions

favouring just a few topics.

3.2.5 Model Fitting

In reality, fitting the LDA model to real data is computationally intractable.

This is easiest to see by examining the per-document posterior distribution

(see equation 3.6). For the rest of this section, we are assuming that the

topics β1:K are fixed. The posterior distribution is the conditional distribution

of the hidden variables given the observations. The hidden variables for one

document are: the topic assignments Z and topic proportions θ. So the per-

document posterior p(θ, Z|W1:N) which is the conditional distribution of one

set of topic proportions θ and the topic assignments Z, given the observations

which are the words in the document, is just the joint distribution of the hidden
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variables divided by the marginal probability of the words.

p(θ, Z|W1:N) =
p(Θ|α)

∏N
n=1 p(Zn|Θ)p(Wn|Zn, β1:K)∫

Θ
p(Θ|α)

∏N
n=1

∑K
z=1 p(Zn|Θ)p(Wn|Zn, β1:K)

(3.6)

Equation 3.6 is intractable due to its denominator. There are two ways of

seeing this. The first way is to recognise that the denominator is a multiple hy-

pergeometric function (see Dickey (1983)). The second is to recognise that the

denominator is also the sum of Nk (tractable) Dirichlet integral terms. These

individual terms are themselves computationally tractable but there are (Nk)

of them which leads us back to an computationally intractable denominator.

To fit the LDA model to a real dataset we must utilise approximate pos-

terior inference of the posterior. There are many methods we can use for

this task: Gibbs sampling, Variational methods, Particle filtering, Expecta-

tion propagation, etc. We describe Gibbs sampling in the next section as it is

utilised by plda our preferred implementation of LDA developed by Liu et al.

(2011).

3.2.6 Gibbs Sampling

Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC)

algorithm for obtaining a sequence of observations which are approximately

from a specified multivariate probability distribution (i.e. from the joint prob-

ability distribution of two or more random variables), when direct sampling is

difficult. The basic steps of Gibbs sampling are:

• Define a Markov chain whose stationary distribution is the posterior of

interest.

• Collect independent samples from that stationary distribution and ap-

proximate the posterior with them.
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• In Gibbs sampling, the space of the MC is the space of possible config-

urations of the hidden variables.

• The chain is run by iteratively sampling from the conditional distribution

of each hidden variables given observations and the current state of the

other hidden variables

• Once a chain has “burned in”, collect samples at a lag to approximate

the posterior

A very basic Gibbs sampler for LDA can be defined as follows. Let n(z1:N)

be a counts vector. The first step of the Gibbs sampler is to compute the

conditional distribution of θ given Z1:N (the current state of the other hidden

variables) and W1:N (the observations). From the graphical model (see Figure

3.3) we know that given Z, θ is independent of W . So θ is only dependant

on Z and because its a Dirichlet and conjugate, the posterior distribution of

θ given n draws from θ is just a Dirichlet distribution with parameter α plus

the counts vector:

p(θ|Z1:N ,W1:N) ∼ Dir(α + n(Z1:N)) (3.7)

The second step of the Gibbs sampler is to sample each Zi again. Again

from the graphical model (see Figure 3.3) we know that Zi is only depend-

ant on W and θ and so the posterior probability is proportional to the joint

distribution p(Z|θ)p(Wi|Zi) (see equation 3.8)

p(Zi|Zi−1,W1:N , θ) ∼ p(Z|θ)p(Wi|Zi) (3.8)

So a basic Gibbs sampler for LDA iterates between equations 3.7 and 3.8

until convergence.
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Chapter 4

Temporal Decomposition

4.1 Temporal Decomposition

The first goal of the presented analysis is to decompose the mobility flows

of a bike sharing network into simpler temporal components that one can

reason about. Given an assumption that individuals utilize the bike sharing

network for different reasons: communing, leisure, exploration, health, etc.,

the objective is to identify these different motivations or “topics”.

A methodology of this type for discovering the abstract topics that occur in

a collection of documents is known as probabilistic topic modelling in machine

learning and natural language processing. Various signal decomposition meth-

ods that can be applied to the problem are available, including the classical

Principal Component Analysis, Independent Component Analysis, etc. PCA

have been used in applications of urban dynamics Reades et al. (2009); Toole

et al. (2012). However, given the discrete nature of mobility flows, methods

such as LDA have been shown to be more appropriate for the task and were

applied to uncover hidden topics in generic urban activities (Ferrari & Mamei,

2013; Yuan et al., 2012; Kling & Pozdnoukhov, 2012). The other advantage of

LDA is the probabilistic nature of a decomposition and an ability to deal with
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overlapping topics. In the context of mobility flows, this is required as trips

can have multiple purposes. Also, semantic attribution cannot be uniquely

defined for all trips with certainty.

4.2 Document composition

To apply LDA as a decomposition technique, one requires an alternate repres-

entation of the bike sharing network data described in Section 2.2. Topic mod-

elling operates on discrete dictionaries of atomic units conventionally called

words. One’s first objective is therefore to convert mobility flows into words,

compose meaningful documents and ultimately process the obtained corpus

with a topic modelling method.

With respect to the origin-destination flow dataset, a bike journey from

station i to station j is therefore represented by the word i to j. Inserting to

between the stations names results in unique human readable words.

This collection of words needs to be grouped into documents to produce a

corpus. To motivate a meaningful document composition for topic analysis, one

asks the following question: what should a single document, read in isolation,

tell about the bike sharing network? Such a document should contain a fuzzy

account of the activity on the bike sharing network for a specific period of time.

With respect to our bike sharing network, we take the stance that there is a

set of hidden topics that motivate the transitions of bicycles between stations.

For example, intuition suggests that perhaps one of these topics could be the

morning commute. We will discuss further the caveats of explicitly naming

these topics in Section 5.7.

By experimentation we have found that using any period less than 1 hour

causes the documents to contain too few words to be truly descriptive. A

document is thus simply an hours worth of (word, count) tuples where each
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origin dest start end
12 17 2010-09-15 14:05 2010-09-15 14:27
23 105 2010-09-15 14:07 2010-09-15 14:35
. . . .
3 57 2010-09-25 23:37 2010-09-25 23:45

Figure 4.1: Tabular (above) and document (below) based representations of
bike sharing rental data.

tuple represents the number of i to j trips observed in that hour. A summary

view of word representation and document composition within a corpus is

depicted in Figure 4.1.

4.3 Temporal regularities

By examining Figure 4.2, where a grey dotted line denotes total number of

trips within each hour, one learns that traffic on the bike sharing network

is very regular in nature. The working days, Monday to Friday, trace out

an almost identical temporal profile. The double pronged heart beat on the

working days is likely synonymous with urban commuting.

Figure 4.3 isolates and magnifies a typical weekday (grey dotted line). The

morning commute now is clearly visible each day between (06:00 - 10:00) with

a sharp peak at 08:00. The reverse evening commute is equally clear between

(16:00 - 20:00). It also has a strong peak, this time at 17:30 but its decline

is not as steep as the morning commute. One hypothesis for this is that

workers feel strongly obliged to be at their desk by a specific hour in the

morning. In the evening employers are not so keen to encourage the departure
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Figure 4.2: Temporal decomposition of the bike sharing rental data for the
week (2012-07-16 to 2012-07-22 inclusive) into 5 named topics. See Figure 4.3
for a close-up view on a weekday.

of their workforce. It is equally plausible that cyclists try to avoid the evening

rush hour, there is, after all, nothing worse for a cyclist than sitting in heavy

traffic. Another thing that is evident from the daily temporal pattern of the

bike sharing network is the slight peak in rentals around midday, this occurs

each day between (12:00 and 1:30); lunchtime. The weekend profile of the

bike sharing network is very different from the repetitive weekday profile. The

rigid double pronged pattern is completely missing, instead it has been replaced

with a jagged, bell shaped curve, further reinforcing the hypothesis that the

weekday peaks are synonymous with urban commuting.
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Figure 4.3: Temporal decomposition of bike sharing rental data for a typical
weekday into 5 named topics.

4.4 Initial decomposition results

Figure 4.2 displays the results of running LDA on the bike sharing dataset

with the following parameters: K = 5, α = 0.1 and β = 0.1. We show the

temporal decomposition here into 5 topics. We do this to motivate our ideas

and to set the stage for the next section; Section 5.7 which contains a more

in-depth decomposition and analysis.

The first thing one could notice when studying Figure 4.2 is that LDA

has segmented the two peaks, described earlier as the morning and evening

commutes, into separate and distinct topics. This is interesting for two reas-

ons, firstly because it supports our intuition/hypothesis. Secondly, the LDA

model applied here includes no temporal dependencies between documents. A

baseline LDA does not model transition probabilities internally between words

in a document nor does it model transition probabilities between adjacent doc-

uments. If one randomly re-orders the documents and/or the words inside

each document one will get an equivalent decomposition. This decomposition

will only differ slightly due to inherent randomness of inference based on Gibbs

sampling which is used to approximate the otherwise intractable computations

required for parameter estimation in LDA. How then is LDA distinguishing

between what was superficially labelled the morning and evening commutes?

LDA can do so because we have explicitly encoded time by forming documents
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that represent discrete hours. Furthermore,d we know from Figure 4.2 that

rental activity on the bike sharing network is very regular. LDA is uncover-

ing and exploiting patterns of words it recognises as co-occurring on a regular

basis.
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Chapter 5

Semantic Labelling

5.1 Semantic Labelling

In Section 4.4 we demonstrated the ability to decompose a temporal profile

into a number of distinct topic components. This is a very interesting and

powerful idea but it raises an important question. How does one interpret

these seemingly simpler subcomponents? If one cannot attribute meaning to

them, then all one has done is swap a large enigma for many smaller enigmas.

Indeed, all semantic attribution so far was superficial and based on intuition.

For example, how does one make a distinction between evening commute and

late night cycling topics (Figure 4.2) or claim with certainty that a midday

topic is related to a lunch break and that those trips are not generated by

schoolchildren coming back after classes?

5.2 The spatial component

So far only the temporal aspect of the decomposition has been examined. Extra

information can be gained by examining the actual topic-specific trajectories

between bike stations. Figure 5.1 displays the spatial representation of two

topics. While each bike rental i to j is assigned a probability of belonging to
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each of the K topics, we simply visualise each rental trajectory by its dominant

topic i.e. the topic it has the highest probability of belonging to. Each of the

maps displayed in Figure 5.1 is a snapshot of a different topic at its highest

intensity on Monday. The first map, “morning commute” was taken at 08:00.

The second map, “evening commute” topic, was taken at 18:00.

A detailed inspection of the maps supports the hypothesis that the con-

sidered topics are primarily related to commuting. This is evident by the

overall flow directions, which appears to be in general towards the city centre

on the morning map. Likewise a flow snapshot in the second map of Figure 5.1

appears to have the reverse flow direction, most of the flows in this topic are

from the city centre towards the suburbs. However, it is less coherent com-

pared to the morning as evening time is composed of several different processes.

(Figure 4.2).

Arguably space is as important a descriptor as time. Consider, for ex-

ample, increasing the number of topics to a number high enough to isolate

individual events such as an important concert. Then one should be able to

identify complementary pairs of topics, the first being described by many flows

pointing towards the spatial center of an event and the second proceeding it

with opposite flow directions.

Even with both spatial and temporal descriptors it is still however very

difficult to associate convincing meaning to topics. The deductions on semantic

meaning of topics above were still mainly based on background knowledge

and common sense. One needs to investigate a more descriptive source of

information.
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Figure 5.1: The morning commuting topic plotted in space.
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Figure 5.2: The evening commuting topic plotted in space.
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5.3 The textual component

One such source that is readily available and abundant with textual inform-

ation is social media streams such as Twitter. The enhanced geo-tagged

Foursquare check-in messages posted via Twitter is a particularly promising

source of data. The Foursquare check-in service transforms tweets from seem-

ingly random, non-spatially constrained, temporal opinions; normally expressed

with poor spelling and grammar into targeted bullets of spatially and tem-

porally contextual, targeted record of location, activity and often a personal

opinion.

Foursquares most recent feature actually makes the check-in process almost

automatic (4Square, 2013). The Foursquare application, once installed on a

mobile device, continuously tracks location and provides a user with a best

guess spatial description at all times. It is still however up to the user to

broadcast this location information with an optional short textual comment,

i.e. to “check in”. A check-in is therefore a self-reported time stamped user

location carrying the semantics of the intended user actions.

When many people create these high fidelity breadcrumb traces (Cheng

et al., 2011) (and they do, see Figure 2.8), they offer a space/time window into

the life and events of a specific geographic area, in our case an entire city. Fig-

ure 2.8 was generated using only 7 days of geo-tagged, Foursquare integrated

tweets. In these 7 days, 9244 unique users managed to generate 37950 tweets

densely covering the city center and a lot of the suburbs of Washington D.C,

US This dense covering tells the story of a city, encompassing many places,

events, people and opinions (Kling & Pozdnoukhov, 2012; Pozdnoukhov &

Kaiser, 2011).

These types of traces do more than just tell us about large scale social

events; such as parades, protests, concerts, etc. They also contain the seem-

ingly mundane details of everyday life; people check in at bus-stops, metro-
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Figure 5.3: Digital breadcrumbs left behind by user id:96620504 on 2012-07-
22. These breadcrumbs trace the entire day of the user, where he/she went,
what he/she did and his/her opinions on everything that occurred during the
day.
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Figure 5.4: Overlapping Bike Sharing and Twitter time series. The peaks in
each signal approximately align but are of different magnitudes.

stations, bike-kiosks, they check in when they buy coffee, visit the bank or get

a haircut, they even check in at home and at work. These digital breadcrumbs,

(trajectories) represent, in a similar vein to the bike trajectories, details about

the mobility of everyday life. It is therefore likely that both forms of mobility

are motivated by the same underlying needs. Though not every cyclist is a

Twitter user and not ever cyclist tweets while cycling (although surely some

do), these users’ mobility needs and motivations are overlapping as they both

live in the same city, the same time, the same network of places, activities and

events.

A research goal we aim to achieve is to utilize tweets with Foursquare

check-ins integration as an additional channel of semantically rich mobility

information.

5.4 Descriptive analysis of the textual data

Before we coalesce these two mobility datasets, we first examine the Twitter

check-in data in isolation. Figure 5.4 presents the temporal profile of bike shar-

ing and check-in hourly counts for the exact same time period (a typical week)

of 2012-07-16 to 2012-07-23. Both similarities and differences can be noticed

by comparing the time lines. The most obvious similarity is the segmentation

effect night has on both temporal profiles. The seven days of the week are
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a) b)

c) d)

Figure 5.5: LDA decomposition: 4 topics related to breakfast (a), lunch (b),
dinner (c), and nightlife (d). The dashed line represents the original count
time series.
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a) b)

c) d)

Figure 5.6: LDA decomposition: 4 topics related to events at Verizon Centre
(a), baseball championship (b), a premier of a big box office movie: Dark
Knight Rises (c), and church activities on a weekend (d). The dashed line
represents the original count time series.
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clearly separated in both plots as most individuals have regular sleep patterns.

It also allows one to compare the two mobility profiles on a day by day basis.

The second most striking similarity is the division of both signals into weekday

and weekend patterns. Each weekday appears to trace out a common pattern

which is noticeably different from that traced by a Saturday or a Sunday.

We have discussed similarities so to be thorough we must now discuss

differences. The most significant difference between the two signals is the

position and number of peaks. The Twitter time series clearly does not display

the same double pronged activity profile as the bikeshare time series. Instead

this pattern has been replaced by a three pronged variant. The first and

second peaks of the Twitter time series approximately align with the so called

commuting peaks in the bikeshare time series. The evening peak is however

consistently greater than the morning peak. There is also a more prominent

mid day peak in the Twitter time series. One final and obvious difference

between the time series, is the relative importance of Saturday and Sunday.

In the bikeshare time series Sunday is more active than Saturday, the reverse

is however true in the Twitter dataset.

5.5 LDA analysis of check-ins

Now that we have identified and studied a new source of textually abundant

data in isolation it is time to revisit LDA. The Twitter dataset was converted

into a set of documents by grouping the check-ins into individual documents by

hour. Some Simple filtering steps were performed on the content of the tweets.

First, Twitter specific tokens such as mentions (@username) and hashtags

(#hashtag) were removed. Then the Foursquare specific phrases such as “I

just became the mayor of” and the URLs were removed. Finally, the remaining

words were stemmed. As an example, the following Tweet “Shipping out some

41



jewelry! #fb (@ The UPS Store) http://t.co/prudc1ve” simply becomes the

list [’shipping’, ’jewelry’, ’ups’, ’store’]. This filtering process results in 168 (24

* 7) Twitter based documents that we decompose and analyse in the remainder

of this section. We attempt to name each topic by examining its most likely

words and temporal profile in isolation.

5.6 Periodic Topics

The optimal choice for the number of topics K when performing LDA is an

open question. By experimentation we found that a value of K = 5 consist-

ently decomposed the data into 5 clear, periodic components. We named these

5 distinct and stable components: “Routine”, “Breakfast Out”, “Lunch Out”,

“Dinner Out” and “Nightlife”. Routine can be thought of as general chatter

or background noise. It contains a non-coherent jumble of key words. We have

therefore deemed it non interesting with respect to our analysis and shall not

consider it further. The other 4 topics were named using the same methodo-

logy as in Kling & Pozdnoukhov (2012); Pozdnoukhov & Kaiser (2011). By

examining the keywords and temporal profiles for these 4 topics (see Figure 5.5)

our choices of appellation seems appropriate.

5.7 Event Topics

It was found empirically that increasing K beyond the value 5 enabled LDA to

discover interesting, non-periodic sub components. Automatically discovering

the true value of k is an open research question. In our approach we use the

following manual procedure to determine k. The value of k is incremented

once and LDA now returns k+1 instead of k topics. First the temporal profile

of the new topic is examined in isolation. In our case the temporal profile for

topics 6, 7, 8 and 9 were non-periodic suggesting that these new topics were
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specific events. Next the key words for the new topic are analysed. Using the

keywords and timestamps of peaks in the temporal profile an internet search

is preformed looking for an event in Washington D.C. that matches this data.

After much research and verification it is the analysis who must decide whether

this new topic is coherent or not. Each of the topics 6, 7, 8 and 9 were extracted

from the general chatter topic. This was evident by comparing the k and k+1

topic profiles as the only profile to change significantly was the general chatter

topic. This further reinforces our choice of name (general chatter) for this topic.

We stop incrementing k when doing so splits the general chatter topic into to

large periodic components each of which contains a non-coherent jumble of key

words. These two general chatter topics have uninteresting temporal profiles.

They are always present in the background rising and falling proportional to

the number of people who are awake (tweeting) at any moment in time.

The above process enabled the discovery of 4 specific event topics that took

place during the period encompassed by our twitter dataset. The temporal

profile for these events and their keywords can be seen in Figure 5.6. The

first of the newly discovered topics is the “Verizon Center” topic. The Verizon

Center is a 20,000 seat multi-purpose sports and entertainment venue, owned

and operated by Monumental Sports & Entertainment, in the Penn Quarter

neighbourhood of Chinatown in downtown Washington D.C, US This topic

contains two significant peaks which coincide with two distinct events at the

Verizon Center. The first event was a basketball game on the evening of

Monday July 16th (USA vs Brazil). The second was a smaller family event on

the evening of Thursday July 19th (How to Train Your Dragon live spectacular).

The top four keywords in this topic are: verizon, usa, brazil and basketball.

The second of these topics, is the “Nats vs Mets” topic. This topic peeks

3 times coinciding with the start times for a 3 day series baseball game that

took place on (Tuesday July 17th, Wednesday July 18th and Thursday July

43



19th) between the Washington Nationals and the New York Mets. The top 4

words in this topic are: Nationals, new, york and mets.

It would be very hard to refute that the third topic is about the premier of

a long anticipated film in the Batman series “The Dark Knight Rises”. This

topic peeks dramatically at midnight on Thursday July 19th coinciding with the

premiere of the film “The Dark Knight Rises” which was held simultaneously

by many cinemas in Washington D.C, US Among the top words in this topic

apart from the obvious: Dark, Knight, Rises are the names of 3 popular cinema

chains: imax, amc and cinemark.

The fourth and final topic has been named “Church”. After the inspection

of many tweets it became clear that this topic is being created by church goers

checking into mass on Saturday and Sunday mornings. The key words in this

topic are: church, baptist, temple, morning, Saturday and Sunday.

Increasing the value of K any higher than 9 caused the Routine topic to

split into sub components. These sub topics are as difficult to annotate as the

original routine topic itself. We therefore conclude that our Twitter dataset

contains 8 meaningful topics and further decomposition is relatively fruitless.
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Chapter 6

Correlation & Causation

6.1 Correlation & Causation

Throughout this thesis we have advocated the usefulness of decomposi-

tion methodology for semantic enrichment of mobility data from a related

geo-referenced social media dataset. We warned against over interpretation

of topics based on temporal coincidence of seemingly related processes. For

example, while the morning commute is quite regular and self-evident, the

validity of LDA decomposition of evening travel behaviours (Figure 4.2) is not

as straightforward and can not be inferred solely by intuition. The reverse

order is quite likely for the topics that we provisionally labelled as “Evening

commute” and “Late Night Cycling” in Section 4.4. We further show how this

issue can be resolved by exploring correlation and causal relationships between

the topics found in both datasets.

6.2 Causation relationship

Discriminating true causation from correlation is a long-standing problem in

statistics and data analysis. The common tools for causality verification in-

clude the Granger test Granger (1969), as well as the recently developed meth-
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ods by Sugihara et al. (2012). We have opted to use the Granger’s test to

find relationships between urban activities (as detected from Twitter check-in

topics) and intensities of bikeshare mobility modes detected with the LDA de-

composition. The variation of the test that we have utilised Ding et al. (2006)

builds a multivariate autoregressive model which tests whether the addition of

a particular topic identified in another dataset improves the prediction of the

topic under consideration for the next hour.

Figure 6.1 shows correlation coefficients between pairs of topics from two

datasets. For example, one can note high correlation between the “Morning

commute” and “Breakfast Out” topics amongst others. Also, note a high

correlation between “Dinner Out” and a baseball game topic “Nats vs Mets”

which appears due to temporal co-occurrence of the two activities.

Figure 6.1: Correlation coefficient.
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Figure 6.2: Causality index from Granger’s test.

The Granger’s causation index presented in Figure 6.2 reveals a very dif-

ferent pattern. While highlighting the true causal dependencies (“Morning

commute” and “Breakfast Out”), there is no significant causal relationship

between many of the temporally co-occurring events such as the mentioned

“Dinner Out” and a baseball game.

6.3 Dependence graph

Figure 6.3 presents the causal relationship identified between topics in a form

of a directed graph. To guide the eye, the topics corresponding to bikeshare

mobility and Twitter check-ins are marked with different colors and icons. The

size of a node in the graph is proportional to the mean intensity of the topic
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and the link widths are proportional to the Granger index value (Figure 6.2).

Figure 6.3: Causal relationships detected between estimated bikeshare mobility
modes and social media topics.

We have previously mentioned that the morning commute is relatively ap-

parent in all aspects (time, space and the content of the relevant “Breakfast

Out” topic), while the evening commute is far more convoluted. Indeed, the

intensity of the evening commute is dependent on several Twitter topics cor-

responding both to the regular activities (“Dinner Out”) and one-off events

(“Nats vs Mets” game and a “Verizon Centre” shows). It is also affected by

the “Late Night Cycling” topic.

An interesting relationship is the one between “Breakfast Out” and “Morn-

ing Commute”. The direction of causation suggests that people eat breakfast

and then cycle to work rather than the reverse relationship which would suggest

that people cycle in order to purchase or eat breakfast. In contrast, “Midday

Cycling” precedes the “Lunch Out” suggesting that bikeshare users cycle to

reach lunch venues.
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Figure 6.4: Scatter plots for the “Breakfast Out” and “Morning Commute”
(top) and “Midday Cycling” and “Lunch Out” (bottom).
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Figure 6.5: Scatter plots for the “Evening Commute” and “Dinner Out” (top)
and “Evening Commute” and “Nats vs Mets” game (bottom).
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Figure 6.6: Scatter plots for the “Evening Commute” and “Nightlife” (top)
and “Late Night Cycling” and “Nightlife” (bottom).
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Chapter 7

Towards Demand Forecasting

7.1 Predictability

The dependence graph described in the previous chapter (see Figure 6.3)

encodes conditional independence between variables and can be used to build

predictive models. However, despite the seemingly simple relationships depic-

ted in the graph, the actual dependencies between bike rentals and Twitter

messages are quite complicated. Figures 6.4-6.6 provide scatter plots for sev-

eral pairs of topics illustrating cases where correlation does not correspond

to causation (Figure 6.4, see the Pearson’s correlation coefficient r and the

Granger index g values in the Figure title). Both of these values range from 0

to 1. A value of 0 indicates absolutely no correlation or causation whereas a

value of 1 indicates perfect correlation or causation.

The rest of the chapter details a proof of concept framework, for forecast-

ing mobility flows from social media streams. There are three steps in the

forecasting process. At this point in the thesis we have already described step

1 in detail. The remaining two steps will now be described.

Step 1

Decompose the mobility and social media temporal profiles into (n and m)
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topic components respectively.

Step 2

Train a system to predict the n mobility topic intensities from the m social

media topic intensities.

Step 3

Use LDA to infer new documents, individual mobility flows (words), given

topic intensities predicted by Step 2.

LDA is a generative model, once it has been trained on a corpus of doc-

uments, the model itself can be used to generate new documents. In our

application a document is a collection of unordered bike rentals. Predicting

individual bike trajectories with LDA is impractical, especially for stations

with low rental counts. However the technique can be used to approxim-

ate aggregate flow between OD pairs. Aggregate flows are useful in many

transportation applications, such as: optimizing multimodal interconnectivity

(Coffey et al., 2012), and, large scale transit schedule coordination (Nair et al.,

2013). Moreover, because this technique utilises social media streams, it can

react to large scale events, providing real-time flow forecasts for a dynamic

city.

7.2 Predicting mobility topic intensities

There are many models from the field of machine learning: Neural Networks,

Support Vector Machines, Linear Regression, that could be used to learn a

mapping from mobility topic intensities to social media topic intensities. We

have opted to train a multilayer perceptron (MLP) (Rosenblatt, 1961). A

MLP is a feedforward artificial neural network model that maps sets of input

data onto sets of output data. An MLP consists of multiple layers of nodes

53



in a directed graph, with each layer fully connected to the next one. Except

for the input nodes, each node is a neuron (or processing element) with a

nonlinear activation function. MLP utilizes a supervised learning technique

called backpropagation for training the network (Rumelhart et al., 1985).

Our MLP instance (see Figure 7.1) has ten input neurons (the Twitter

topic intensities) and 5 output neurons (the bikeshare topic intensities). We

chose the number of hidden layers (2) and the number of nodes per hidden

layer (100) experimentally. The validation protocol for the predictor was as

follows. The “one-day-out” procedure was applied, with one day of data taken

out of the training set and predicted based on the data from the remaining

days.

Figure 7.1: MLP with social media (Twitter topics) as input nodes and mo-
bility (bikeshare topics) as output nodes.

Once the MLP has been trained we have a function mapping Twitter topic
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intensities to bikeshare topic intensities (see equation 7.1). This function will

be used in step 3 to predict actual bike flows on the Capital Bikeshare network.

λ(t1, t2, ..., t10) = [b1, b2, ..., b5] (7.1)

7.3 Predicting mobility flows

Given an LDA model M, trained on a corpus of historical documents, we can

generate a new document D using a vector of topic intensities T . Figure

7.2 displays the predicted topic intensities T = [0.73, 0.21, 0.03, 0.02, 0.01] for

Tuesday July 24th at 18:00.

Figure 7.2: Predicted topic intensities (T vector) for Tuesday July 24th at
18:00.

The generated document contains 672 (the sum of the topic intensity vector

T before normalization) bike rentals. LDA generated these bike rentals by first

choosing a topic with probability proportional to the topic intensity vector

T. Then given that topic, it drew station pairs (bike trajectories from origin

to destination) with probabilities learnt during (step 1) the modelling stage.

Figures 7.3-7.7 display per topic bike rentals in space.
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Figure 7.3: Topic 1 accounts for 489 of the 672 bike rentals for this hour

Figure 7.4: Topic 2 accounts for 142 of the 672 bike rentals for this hour
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Figure 7.5: Topic 3 accounts for 21 of the 672 bike rentals for this hour

Figure 7.6: Topic 4 accounts for 6 of the 672 bike rentals for this hour
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Figure 7.7: Topic 5 accounts for 14 of the 672 bike rentals for this hour

With respect to bikeshare, demand forecasting enables an operators to stra-

tegically redistribute bikes. Accurate forecasting can therefore help alleviate a

crucial issue in bike-sharing systems; the unbalanced distribution in space and

time of the bikes among the stations (Schuijbroek et al., 2013). For the cyclist,

this would ensure that there is always an available bike at the beginning of a

journey and always an empty docking station at the end of a journey.

The prediction approach outlined in this section is a proof of concept frame-

work. We believe this to be a very promising technique however a huge amount

of work is still required before this framework will generate accurate predic-

tions. Figure 7.1 shows the use of all ten Twitter topics as input nodes and

all five bikeshare topics as output nodes. This is definitely not the best con-

figuration for the prediction task. A better approach might be to build one

neural network for each of the bikeshare topics and then preform exhaustive

feature selection to decide which of the Twitter topics to use as inputs. It is
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for example very unlikely that the “Lunch Out” topic has any effect on the

“Late Night Cycling” topic. Keeping poor features as inputs is detrimental

to the learning processes and ultimately the predictive accuracy of the neural

network. Furthermore, to compute the accuracy of this approach a much lar-

ger dataset would be required. Such a dataset would need to account for

seasonal effects, weather and tourism. We therefore relegate the construction

and validation of an actual prediction system to future work.
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Chapter 8

Discussion and Conclusions

We presented an approach that increases the credibility of semantic annotation

of mobility flow datasets. It begins with a decomposition of aggregate flow

data into several mobility modes. It then utilizes content-rich geo-referenced

social media data to enrich the semantics behind the modes related to the trip

purpose and user activities at destinations.

We have highlighted that the usual ad-hoc annotation based on co-occurrence,

background knowledge and intuition may be misleading. As an alternative, we

have introduced a rigorous approach based on causality testing. This ap-

proach opens novel perspectives for forecasting individual components of mo-

bility flows related to specific trip purposes from relevant social media streams.

This technique could enable new revenue opportunities for bikeshare operat-

ors; targeted advertising at bike stations. If trip purpose is known ahead of

time then advertisements for restaurants or services near destination stations

could prove very effective.

We have also demonstrated a framework for forecasting mobility flows

which illustrates the feasibility of using crowd-sourced social media data to

forecast actual travel behaviours in a city. Such a system would allow bikeshare

operators to minimise bike reallocation costs and maximise network through-
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put by removing bottlenecks. Another benefit for the operator is the flexibility

to react to large scale events announced by social media. This would enable

the operator for example to provide extra bikes at unusually busy locations

for the duration of a specific event. For the cyclist this means a better user

experience and reassurance that their chosen bike stations will have bikes and

empty docking ports available even in peak operating times.

The construction and validation of an actual prediction system is part of

our ongoing work. We intend to collect social media data ranging a much

larger time period than the one week case study performed by this thesis.

Such a dataset would enable us to rigorously test and compare our prediction

technique against state of the art time-series forecasting approaches.

A valid question that could be raised about our approach is whether or not

Twitter is an appropriate and representative dataset? More specifically is the

textual content of tweets relevant, is the Twitter population of representative

size and finally is the proportion of geotagged tweets sufficiently large? We

see Twitter as a window into the lives of the inhabitants of a city. Twitter

users tweet about everything. They tweet about their first cup of coffee from

Starbucks in the morning. They tweet (on their way to work) when buses and

trains are delayed. They tweet about where they went to lunch and what they

ate. They tweet about their gym sessions. They tweet about what they ate

for dinner, especially if they went to a restaurant. They tweet about going

to the cinema and attending basketball matches. They tweet about everyday

life and its mobility. In this regard we believe that the textual content of

tweets are very relevant and appropriate for our approach. Concerns about the

Twitter population size and demographic being representative are much more

difficult to answer. Twitter has been extremely secretive about the number

of active accounts it maintains. In 2010, Pew Internet and American Life

Project released some demographic information about Twitter users, and found
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that about 8% of American Internet users were on Twitter and that women,

minorities, and people living in urban centers are most likely to use Twitter.

Finally the geotagged proportion of tweets is quite low. On average only 1.5%

of all tweets are geotagged. It is possible that this percentage will increase

as people become more and more reliant on position enabled services and

GPS chips become more power conservative. In light of these limitation, our

approach should be seen as a proof of concept framework. Twitter in its current

form is not the perfect dataset.

We believe that our approach is readily applicable to other forms of OD

matrix, such as smart transit cards that log a users movement through a city

on buses and metro. There is little difference between this type of dataset and

the bikeshare dataset used throughout this thesis. The average trip lengths

would be longer and the population larger but the dataset itself would be very

similar.

Another limitation of the methodology presented here is the need for in-

tensive human interaction; during the process of topic modelling, specifically

the selection of LDA parameters (α, β and nTopics). The Bayesian nonpara-

metric topic model (Teh et al., 2006), an extension of LDA, provides an elegant

solution to at least the number of topics parameter. It does this by determin-

ing nTopics during posterior inference, and furthermore, new documents can

exhibit previously unseen topics. This parameter reduction comes at the cost

of computational complexity.

A thorough critical view of our work would highlight the following. We

expect mobility data to contain at least one pair of dependent topics; the

morning and evening commute. If an individual participates in the morning

commute it is highly likely they will also participate in the evening commute.

However, the baseline implementation of LDA used does not search for volume

dependent pairs of topics. The temporal decomposition is therefore naive in
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that it does not understand any dependency between topics. During semantic

enrichment, it is up to the analyst to make connections between pairs, pos-

sibly even groups of topics. A more sophisticated technique would recognise

dependency between topics during the modelling phase.

Furthermore LDA is typically used in the domain of natural language pro-

cessing. Documents from this domain do not contain the same sort of temporal

dependency as the mobility based documents we have created. We expect to

find both periodic topics (commuting, lunch, dinner, etc) and non periodic

topics (baseball games, movie premiers, etc) within mobility data. However,

again the baseline implementation of LDA used does not explicitly model topic

periodicity.

In spite of the limitations noted above; we have shown through this thesis

that modern techniques for spatial data analysis can greatly enhance our un-

derstanding of urban dynamics. In this light, we believe our work on temporal

decomposition and semantic labelling moves us one step closer to our ultimate

goal; engineering smarter transportation systems.
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- Software and Applications, vol. 153 of Advances in Intelligent and Soft

Computing, pp. 145–153. Springer Berlin Heidelberg.

66

http://code.google.com/p/plda


R. Nair, et al. (2013). ‘Large-Scale Transit Schedule Coordination Based on

Journey Planner Requests’. Annual Meeting of the Transportation Research

Board .

M. Padgham (2012). ‘Human Movement Is Both Diffusive and Directed’. PLoS

ONE 7(5):e37754.

A. Pozdnoukhov & C. Kaiser (2011). ‘Space-time dynamics of topics in stream-

ing text’. In Proceedings of the 3rd ACM SIGSPATIAL International Work-

shop on Location-Based Social Networks, LBSN ’11, pp. 1–8, New York, NY,

USA. ACM.

J. Reades, et al. (2009). ‘Eigenplaces: analysing cities using the space-time

structure of the mobile phone network’. Environment and Planning B: Plan-

ning and Design 36(5):824–836.

J. Reisinger, et al. (2010). ‘Spherical topic models’. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pp. 903–910.

F. Rosenblatt (1961). ‘Principles of neurodynamics. perceptrons and the theory

of brain mechanisms’. Tech. rep., DTIC Document.

D. E. Rumelhart, et al. (1985). ‘Learning internal representations by error

propagation’. Tech. rep., DTIC Document.

J. Schuijbroek, et al. (2013). ‘Inventory rebalancing and vehicle routing in bike

sharing systems’ .

M. Steyvers & T. Griffiths (2007a). Probabilistic Topic Models. Lawrence

Erlbaum Associates.

M. Steyvers & T. Griffiths (2007b). ‘Probabilistic topic models’. Handbook of

latent semantic analysis 427(7):424–440.

67



G. Sugihara, et al. (2012). ‘Detecting Causality in Complex Ecosystems’.

Science 338(6106):496–500.

Y. W. Teh, et al. (2006). ‘Hierarchical dirichlet processes’. Journal of the

American Statistical Association 101(476):1566–1581.

J. Toole, et al. (2012). ‘Inferring land use from mobile phone activity’. In

Proceedings of the UrbComp’12. ACM.

C. Wang & D. M. Blei (2009). ‘Decoupling sparsity and smoothness in the

discrete hierarchical dirichlet process’. In Advances in neural information

processing systems, pp. 1982–1989.

M. Ye, et al. (2011). ‘What you are is when you are: the temporal dimension of

feature types in location-based social networks’. In Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, GIS ’11, pp. 102–111, New York, NY, USA. ACM.

J. Yuan, et al. (2012). ‘Discovering regions of different functions in a city

using human mobility and POIs’. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’12,

pp. 186–194, New York, NY, USA. ACM.

68


	Introduction
	Introduction
	Methodology
	Contributions
	Case Study
	Thesis Structure

	Data
	Data
	Capital Bikeshare
	System growth over time
	Tourism and Weather
	Station Clustering
	Case Study Data

	Twitter

	Methods
	Topic modelling
	Latent Dirichlet Allocation
	Intuition
	Graphical Model
	Mathematical Model
	The Dirichlet Distribution
	Model Fitting
	Gibbs Sampling


	Temporal Decomposition
	Temporal Decomposition
	Document composition
	Temporal regularities
	Initial decomposition results

	Semantic Labelling
	Semantic Labelling
	The spatial component
	The textual component
	Descriptive analysis of the textual data
	LDA analysis of check-ins
	Periodic Topics
	Event Topics

	Correlation & Causation
	Correlation & Causation
	Causation relationship
	Dependence graph

	Towards Demand Forecasting
	Predictability
	Predicting mobility topic intensities
	Predicting mobility flows

	Discussion and Conclusions
	Bibliography

