
Nancy G. Leveson

COMMUNICATIONS OF THE ACM February 1997/Vol. 40, No. 2 129

T
RYING TO PREDICT THE FUTURE OF OUR FIELD IS RISKY: OUR TECHNOLOGY

is changing so fast that the information necessary to make good pre-

dictions is simply not available. Instead, I thought I would look at the

past and current state of software engineering and use this viewpoint to for-

mulate some hypotheses about what the future should hold.

Software Engineering:
Stretching the Limits

of Complexity
t h e s c i e n c e o f f u t u r e t e c h n o l o g y

Software engineering has come a long way since
the 1960s and the first attempts to make our field
into an engineering discipline. In fact, the first steps
included the name itself, which reflected the goal of
introducing engineering discipline into the software
development process. Our achievements toward this
goal include a greater understanding of the role of
abstraction and separation of concerns in software
engineering, the introduction of modularity and the
notions of a software life cycle, process, measure-
ment, abstract specifications and notations, and so
on.

Most of these ideas come directly from engineer-
ing, although they needed to be adapted to the
unique problems that arise in working with differ-
ent and more abstract materials. Although hardware
engineers are also involved in design, they are
guided and limited by the natural laws of the mate-
rials with which their designs must be imple-

mented. Software appears not to have these same
types of natural limits, but to be infinitely flexible
and malleable. In reality, the limits exist but are
simply less obvious and more related to limitations
in human abilities than limitations in the physical
world.

Thus, the first 50 years may be characterized as
our learning about the limits of our field, which are
intimately bound up with the limits of complexity
with which humans can cope. Our tools and tech-
niques are used to assist us in dealing with this com-
plexity, that is, to help make our systems
intellectually managable. We do this by imposing
on the software development process the discipline
that nature imposes on the hardware engineering
process. We have been learning what types of disci-
pline are necessary and how to best enforce them.

Besides engineering and management discipline,
we have also been learning how to apply mathemat-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F253671.253754&domain=pdf&date_stamp=1997-02-01

ical rigor and discipline to software development. To
this end, many of the pioneers of our field have
shown the relationship of software with mathemat-
ics and the use of mathematics in solving our prob-
lems. These achievements include the
axiomatization of programming languages and data
types, formal verification, and formal specification
and analysis.

Although we have come a long way in building
the engineering and mathe-
matical foundations of soft-
ware engineering and in
improving our ability to
build complex software, at
the same time the problems
we are attempting to solve
have been getting more diffi-
cult. The problems are also
changing in their fundamen-
tal nature. The earlier empha-
sis on efficiency has shifted to
an emphasis on correctness
and utility as we become
increasingly dependent on
computers in applications
where losses due to computer
errors are potentially huge.
Economic considerations
have increased the emphasis
on reuse and reusable compo-
nents. And although our
early days were filled with
building new software, we are
more and more consumed
with the problems of main-
taining and evolving existing
software. In addition, as our
systems grow bigger and require large teams of
designers, we have started to examine the ways
humans collaborate and to devise ways to assist them
to work together effectively.

These same trends will continue in the next 50
years, with perhaps even less emphasis on coding and
more on the other aspects of the software engineer-
ing process. But there will be new challenges and
perhaps new approaches and directions that will be
required to solve the problems of the next century.
To address these challenges, we may need to shift our
emphases and follow some new paths.

If our problems in building and interacting with
complex systems are really rooted in intellectual

managability and human limits in managing com-
plexity, then we will need to stretch these limits to
build ever more complex systems. But basic human
ability is not changing. To successfully build and
operate ever more complex systems, we will need to
find ways to augment human ability, both in terms of
system designers and system users. Achieving this
goal, I believe, will require augmenting our engi-
neering and mathematical foundations with ideas

from cognitive psychology
and the social sciences.

While our first 50 years
have seen us develop our con-
cepts of software as an engi-
neered product and a
mathematical object, less
attention has been focused on
software as a human product
and on computers as devices
that interact with and assist
humans (as opposed to replac-
ing them). Software engineer-
ing is a problem-solving
activity and software engi-
neering techniques and tools
are used to assist humans in
this activity—the effective-
ness of our tools could be
greatly increased if we based
their design on scientific
knowledge about how
humans solve problems. Our
software products are also used
or monitored by humans, and
the way that our software is
designed to interact with
humans is a critical factor in

whether the software is useful to or usable by them.
When creating new software engineering meth-

ods and tools, we often inadvertently enforce partic-
ular problem-solving strategies, often the one
preferred by the designer of the method or tool. We
need to learn more about human problem-solving,
particularly with respect to software engineering
tasks, and give our students a better grounding in
cognitive psychology. For example, psychologists
have found that not only do problem-solving strate-
gies vary among individuals, but individuals vary
their strategies dynamically during a problem-solv-
ing activity. To design more effective and usable
software engineering methods and tools, we need to

130 February 1997/Vol. 40, No. 2 COMMUNICATIONS OF THE ACM

“Robotics are already
taking over factories, they
can work 24-hours-a-day.
People can’t compete with
that. What will it mean for

us? The only way we’re
going to really survive in
the future is to know how
to use computers and to
know what to do with

them. Computers are it,
no matter what. ”

—David Phaire, age 16
New York City

ensure they do not limit or assume certain problem-
solving strategies, but instead support multiple
strategies, and allow for shifting among strategies
during problem solving.

Our tools and methods should also reflect human
limitations and capabilities, which will require our
learning more about human errors and limitations in
performing software engineering tasks and in using
our tools and products.

In addition to the new challenges in making our
software engineering techniques more human-cen-
tered, important problems are starting to arise in
designing human-software interfaces and interac-
tions. In the engineering world, the challenges in
building high-tech systems composed of humans and
machines have necessitated augmenting traditional
human factors approaches to consider the capabilities
and limitations of the human element in complex
systems. “Cognitive engineering” is a term that has
come to denote the combination of ideas from sys-
tems engineering, cognitive psychology, and human
factors to cope with these challenges. With comput-
ers playing more and more important roles in these
systems, computer science and especially software
engineering needs to be integrated with these other
concerns.

I believe that many of the problems arising in our
attempts to build complex systems are rooted in the
lack of integration of software engineering, system
engineering, and cognitive engineering. We need to
build more bridges between these three disciplines.
The problems in building complex systems today
often arise in the interfaces between the compo-
nents—where the components may be hardware,
software, or human. We need methodologies that
ease coordinated design of the components and the
interfaces and interactions between the components
and that provide seamless transitions and mappings
between the disciplines involved.

Another important question we need to tackle is
the reasonableness of our goals in terms of replacing
humans (such as pilots, nurses, factory workers) by
computers. Aside from the moral and philosophical
questions, there are technical ones: Have we oversold
(albeit inadvertently) the ability of computers to
replace human intelligence and ability? Often, we
simply automate what can be automated while leav-
ing humans with an assortment of miscellaneous
tasks that may be harder to do correctly in isolation.
At the same time, we ask humans to perform what are
often impossible monitoring or backup tasks and

then blame them when the inevitable accidents occur.
Do we increase risk or simply change it by using

computers to provide control of potentially danger-
ous systems rather than assisting humans in doing a
better job of controlling them? The latter is more
difficult because it requires a deep understanding of
human capabilities and limitations, but will it get us
farther in the end? These are some of the new issues
I believe software engineers will have to confront. To
solve them will require recognizing the important
role of psychology in software engineering, aug-
menting our foundations with appropriate knowl-
edge, and building links with cognitive engineering.

Our links with the social sciences also need to be
strengthened. Truly understanding and advancing a
technology requires understanding its history, scien-
tific basis, and the cultural and social milieu in
which it operates.

We need to place more emphasis on understand-
ing the effects of the technology we create on the
world. We’ve had a tremendous effect on human life
and human society, but only a few computer scien-
tists seem to be considering these effects to any
degree. While caught up in the fervor and excite-
ment of developing a revolutionary new technology
with the potential to change the world in profound
ways, we might be excused for concentrating on the
technical to the exclusion of the social. But we have
now matured to the point where we need to start
assuming responsibility for what we do. A basic pre-
cept in most engineering professional codes of con-
duct is that engineers shall hold paramount the
safety, health, and welfare of the public in the per-
formance of their professional duties. As a maturing
field, we will need to develop our own standards and
codes of professional conduct and more fully accept
our responsibility for the uses and potential misuses
of our inventions, for the effect we have on society
and human life, and for our role in those events.

The history of software engineering has been one
of coming to see that what originally was viewed as
limitless actually does have limits, understanding
the nature of those limits, and then searching for
ways to expand them. To continue our progress, we
will need to continue building our scientific knowl-
edge about those limits and searching for new and
different ways to stretch them.

Nancy G. Leveson is the Boeing professor of computer sci-
ence and engineering at the University of Washington, Seattle.

Copyright held by the author

C

COMMUNICATIONS OF THE ACM February 1997/Vol. 40, No. 2 131

