skip to main content
research-article

2D Linear oculomotor plant mathematical model: Verification and biometric applications

Published:01 October 2013Publication History
Skip Abstract Section

Abstract

This article assesses the ability of a two-dimensional (2D) linear homeomorphic oculomotor plant mathematical model to simulate normal human saccades on a 2D plane. The proposed model is driven by a simplified pulse-step neuronal control signal and makes use of linear simplifications to account for the unique characteristics of the eye globe and the extraocular muscles responsible for horizontal and vertical eye movement. The linear nature of the model sacrifices some anatomical accuracy for computational speed and analytic tractability, and may be implemented as two one-dimensional models for parallel signal simulation. Practical applications of the model might include improved noise reduction and signal recovery facilities for eye tracking systems, additional metrics from which to determine user effort during usability testing, and enhanced security in biometric identification systems. The results indicate that the model is capable of produce oblique saccades with properties resembling those of normal human saccades and is capable of deriving muscle constants that are viable as biometric indicators. Therefore, we conclude that sacrifice in the anatomical accuracy of the model produces negligible effects on the accuracy of saccadic simulation on a 2D plane and may provide a usable model for applications in computer science, human-computer interaction, and related fields.

References

  1. Bahill, A. T. 1980. Development, validation, and sensitivity analyses of human eye movement models. Crit. Rev. Bioeng. 4, 4, 311--355.Google ScholarGoogle Scholar
  2. Bahill, A. T., Clark, M. R., and Stark, L. 1975. The main sequence, a tool for studying human eye movements. Math. Biosci. 24, 3--4, 191--204.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bahill, A. T., Latimer, J. R., and Troost, B. T. 1980. Linear homeomorphic model for human movement. IEEE Trans. Biomed. Eng. 27, 11, 631--639.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bahill, A. T. and Stark, L. 1977. Oblique saccadic eye movements: Independence of horizontal and vertical channels. Arch. Ophthalmol. 95, 7, 1258--1261.Google ScholarGoogle ScholarCross RefCross Ref
  5. Carpenter, R. H. S. 1977. Movements of the Eyes. Pion Ltd., London, UK.Google ScholarGoogle Scholar
  6. Ciuffreda, K. J. and Stark, L. 1975. Descartes’ law of reciprocal innervation. Am. J. Optom. Physiol. Opt. 52, 10, 663--673.Google ScholarGoogle ScholarCross RefCross Ref
  7. Clark, M. R. and Stark, L. 1974. Control of human eye movements: I. Modelling of extraocular muscles; II. A model for the extraocular plant mechanism; III. Dynamic characteristics of the eye tracking mechanism. Math. Biosci. 20, 3--4, 191--265.Google ScholarGoogle Scholar
  8. Collewijn, H., Erkelens, C. J., and Steinman, R. M. 1988a. Binocular co-ordination of human horizontal saccadic eye movements. J. Physiol. 404, 1, 157--182.Google ScholarGoogle ScholarCross RefCross Ref
  9. Collewijn, H., Erkelens, C. J., and Steinman, R. M. 1988b. Binocular co-ordination of human vertical saccadic eye movements. J. Physiol. 404, 1, 183--197.Google ScholarGoogle ScholarCross RefCross Ref
  10. Collins, C. C. 1975. The human oculomotor control system. In G. Lennerstrand and P. Bach-y-Rita, Eds., Basic Mechanisms of Ocular Motility and Their Clinical Implications. Pergamon Press, Oxford, 145--180.Google ScholarGoogle Scholar
  11. Duchowski, A. T. 2007. Eye Tracking Methodology: Theory and Practice. Springer-Verlag, London, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eggert, T. 2007. Eye movement recordings: Methods. Dev. Ophthalmol. 40, 15--34.Google ScholarGoogle ScholarCross RefCross Ref
  13. Enderle, J. D., Engelken, E. J., and Stiles, R. N. 1991. A comparison of static and dynamic characteristics between rectus eye muscle and linear muscle model predictions. IEEE Trans. Biomed. Eng. 38, 12, 1235--1245.Google ScholarGoogle ScholarCross RefCross Ref
  14. Enderle, J. D. and Zhou, W. 2010. Models of Horizontal Eye Movements, Part 2: A 3rd Order Linear Saccade Model. Morgan & Claypool Publishers, San Rafael, CA.Google ScholarGoogle Scholar
  15. EyeLink 1000 Eye Tracker. SR Research, http://www.sr-research.com/.Google ScholarGoogle Scholar
  16. Fioravanti, F., Inchingolo, P., Pensiero, S., and Spanio M. 1995. Saccadic eye movement conjugation in children. Vision Res. 35, 23--24, 3217--3228.Google ScholarGoogle ScholarCross RefCross Ref
  17. Goossens, H. H. and Opstal, A. J. 1997. Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res. 114, 3, 542--560.Google ScholarGoogle ScholarCross RefCross Ref
  18. Grossman, G. E. and Robinson, D. A. 1988. Ambivalence in modelling oblique saccades. Biol. Cybern. 58, 1, 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Harwood, M. R. and Herman, J. P. 2008. Optimally straight and optimally curved saccades. J. Neurosci. 28, 30, 7455--7457.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hotelling, H. 1931. The generalization of student's ratio. Ann. Math. Stat. 2, 3, 360--378.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hsu, F. K., Bahill, A. T., and Stark, L. 1976. Parametric sensitivity analysis of a homeomorphic model for saccadic and vergence eye movements. Comput. Programs Biomed. 6, 2, 108--116.Google ScholarGoogle ScholarCross RefCross Ref
  22. Huaman, A. G. and Sharpe, J. A. 1993. Vertical saccades in senescence. Invest. Ophthalmol. Vis. Sci. 34, 8, 2588--2595.Google ScholarGoogle Scholar
  23. Jain, A. K., Flynn, P., and Ross, A. A. 2007. Handbook of Biometrics. Springer, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jayarathna, U. K. S., Holland, C., and Komogortsev, O. V. 2011. Two-dimensional linear homeomorphic oculomotor plant mathematical model equations. Technical report TR2011-07-31, Texas State University.Google ScholarGoogle Scholar
  25. King, W. M., Lisberger, S. G., and Fuchs, A. F. 1986. Oblique saccadic eye movements of primates. J. Neurophysiol. 56, 3, 769--784.Google ScholarGoogle ScholarCross RefCross Ref
  26. Komogortsev, O. V. 2007. Eye Movement Prediction by Oculomotor Plant Modeling with Kalman Filter, 2003--2007. Kent State University, Kent, OH.Google ScholarGoogle Scholar
  27. Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., and Gowda, S. 2010. Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 57, 11, 2635--2645.Google ScholarGoogle ScholarCross RefCross Ref
  28. Komogortsev, O. V. and Jayarathna, U. K. S. 2008. 2D oculomotor plant mathematical model for eye movement simulation. In Proceedings of the 8th IEEE International Conference on Bioinformatics and Bioengineering (BIBE'08), IEEE, Athens, Greece, 1--8.Google ScholarGoogle Scholar
  29. Komogortsev, O. V., Karpov, A., Holland, C., and Proença, H. P. 2012a. Multimodal ocular biometrics approach: A feasibility study. In Proceedings of the IEEE 5th International Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE, Washington, DC, 1--8.Google ScholarGoogle Scholar
  30. Komogortsev, O. V., Karpov, A., Price, L., and Aragon, C. 2012b. Biometric authentication via oculomotor plant characteristics. In Proceedings of the 5th IARP International Conference on Biometrics (ICB), IEEE, New Delhi, India, 413--420.Google ScholarGoogle Scholar
  31. Komogortsev, O. and Khan, K. 2007. Perceptual multimedia compression based on predictive Kalman filter eye movement modeling. In Proceedings of the 14th SPIE/ACM Annual Multimedia Computing and Networking Conference (MMCN’07). San Jose, CA, 1--12.Google ScholarGoogle Scholar
  32. Komogortsev, O. V. and Khan, J. I. 2008. Eye movement prediction by Kalman filter with integrated linear horizontal oculomotor plant mechanical model. In Proceedings of the 2008 Symposium on Eye Tracking Research and Applications. ACM, New York, NY, 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Komogortsev, O. V. and Khan, J. I. 2009. Eye movement prediction by oculomotor plant Kalman filter with brainstem control. JCTA 7, 1, 14--22.Google ScholarGoogle Scholar
  34. Komogortsev, O. V., Ryu, Y. S., Do, H. K., and Gowda, S. A. M. 2009. Instantaneous saccade driven eye gaze interaction. In Proceedings of the International Conference on Advances in Computer Entertainment Technology (ACE'09). ACM, Athens, Greece, 140--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kumar, A. N., Han, Y. H., Liao, K., Rucker, J. C., Ramat, S., and Leigh, R. J. 2005. Evaluating large saccades in patients with brain-stem or cerebellar disorders. Ann. N. Y. Acad. Sci. 1039, 1, 404--416.Google ScholarGoogle ScholarCross RefCross Ref
  36. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. 1998. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 1, 112--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Leigh, R. J. and Zee, D. S. 2006. The Neurology of Eye Movements. Oxford University Press, Oxford, NY.Google ScholarGoogle Scholar
  38. Martin, C. F. and Schovanec, L. 1998. Muscle mechanics and dynamics of ocular motion. J. Math. Syst. Est. Control 8, 2, 1--15.Google ScholarGoogle Scholar
  39. Massey, F. J. 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Statist. Assoc. 46, 253, 68--78.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nichols, M. J. and Sparks, D. L. 1996a. Component stretching during oblique stimulation-evoked saccades: The role of the superior colliculus. J. Neurophysiol. 76, 1, 582--600.Google ScholarGoogle ScholarCross RefCross Ref
  41. Nichols, M. J. and Sparks, D. L. 1996b. Independent feedback control of horizontal and vertical amplitude during oblique saccades evoked by electrical stimulation of the superior colliculus. J. Neurophysiol. 76, 6, 4080--4093.Google ScholarGoogle ScholarCross RefCross Ref
  42. Pelisson, D. and Prablanc, C. 1988. Kinematics of centrifugal and centripetal saccadic eye movements in man. Vision Res. 28, 1, 87--94.Google ScholarGoogle ScholarCross RefCross Ref
  43. Quaia, C. and Optican, L. M. 1997. Model with distributed vectorial premotor bursters accounts for the component stretching of oblique saccades. J. Neurophysiol. 78, 2, 1120--1134.Google ScholarGoogle ScholarCross RefCross Ref
  44. Quaia, C. and Optican, L. M. 2003. Dynamic eye plant models and the control of eye movements. Strabismus 11, 1, 17--31.Google ScholarGoogle ScholarCross RefCross Ref
  45. Quaia, C., Ying, H. S., and Optican, L. M. 2010. The viscoelastic properties of passive eye muscle in primates. III: Force elicited by natural elongations. PLoS One 5, 3, 1--19.Google ScholarGoogle ScholarCross RefCross Ref
  46. Rayner, K. 1998. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 3, 372--422.Google ScholarGoogle ScholarCross RefCross Ref
  47. Robinson, D. A. 1973. Models of the saccadic eye movement control system. Biol. Cybern. 14, 2, 71--83.Google ScholarGoogle Scholar
  48. Rodgers, J. L. and Nicewander, A. W. 1988. Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 1, 59--66.Google ScholarGoogle ScholarCross RefCross Ref
  49. Smit, A. C., Van Opstal, A. J., and Van Gisbergen, J. A. 1990. Component stretching in fast and slow oblique saccades in the human. Exp. Brain Res. 81, 2, 325--334.Google ScholarGoogle ScholarCross RefCross Ref
  50. Sparks, D. L. 2002. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 3, 12, 952--964.Google ScholarGoogle ScholarCross RefCross Ref
  51. Tamir, D., Komogortsev, O. V., and Mueller, C. J. 2008. An effort and time based measure of usability. In Proceedings of the 6th International Workshop on Software Quality (WoSQ'08). ACM, New York, NY, 47--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tweed, D. and Vilis, T. 1987. Implications of rotational kinematics for the oculomotor system in three dimensions. J. Neurophysiol. 58, 4, 832--849.Google ScholarGoogle ScholarCross RefCross Ref
  53. Van Opstal, A. J. and Van Gisbergen, J. A. 1987. Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades. Vision Res. 27, 5, 731--745.Google ScholarGoogle ScholarCross RefCross Ref
  54. Westheimer, G. 1954. Mechanism of saccadic eye movements. Arch. Ophthalmol. 52, 5, 710--723.Google ScholarGoogle ScholarCross RefCross Ref
  55. Wilkie, D. R. 1970. Muscle (2nd ed.). Arnold, London.Google ScholarGoogle Scholar
  56. Yee, R. D., Schiller, V. L., Lim, V., Baloh, F. G., Baloh, R. W., and Honrubia, V. 1985. Velocities of vertical saccades with different eye movement recording methods. Invest. Ophthalmol. Vis. Sci. 26, 7, 938--944.Google ScholarGoogle Scholar

Index Terms

  1. 2D Linear oculomotor plant mathematical model: Verification and biometric applications

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Applied Perception
        ACM Transactions on Applied Perception  Volume 10, Issue 4
        October 2013
        190 pages
        ISSN:1544-3558
        EISSN:1544-3965
        DOI:10.1145/2536764
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 October 2013
        • Revised: 1 July 2013
        • Accepted: 1 July 2013
        • Received: 1 May 2013
        Published in tap Volume 10, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader