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The folk wisdom that marriage contracts cannot be
reduced to sales contracts is made precise by show-
ing that interaction cannot be expressed by algo-
rithms. Contracts over time include algorithms
that instantaneously transform inputs to out-
puts as special cases.

Interactive tasks, like driving home from
work, cannot be realized through algo-
rithms. Algorithms that execute automati-
cally without taking notice of their
surroundings cannot handle traffic and
other interactive events. Algorithms
are surprisingly versatile, but prob-
lems are more difficult to solve

when
interaction

is precluded (closed-book exams are more difficult
than open-book exams). Interaction can simplify
tasks when algorithms exist and is the only game in
town for inherently interactive tasks, like driving or
reserving a seat on an airline.

Smart bombs that interactively check observations
of the terrain against a stored map of their routes are
“smart” because they enhance algorithms with inter-
action. Smartness in mechanical devices is often real-
ized through interaction that enhances dumb
algorithms so they become smart agents. Algorithms
are metaphorically dumb and blind because they can-
not adapt interactively while they compute. They are
autistic in performing tasks according to rules rather
than through interaction. In contrast, interactive sys-
tems are grounded in an external reality both more
demanding and richer in behavior than the rule-
based world of noninteractive algorithms.

Objects can remember their past and interact with
clients through an interface of operations that share a
hidden state. An object’s operations are not algo-
rithms, because their response to messages depends on

a shared state accessed through nonlocal vari-
ables of operations. The effect of a bank
account’s check-balancing operation is not
uniquely determined by the operation alone,
since it depends on changes of state by deposit
and withdraw operations that cannot be pre-
dicted or controlled. An object’s operations
return results that depend on changes of state
controlled by unpredictable external actions.

The growing pains of software technology
are due to the fact that programming in the large is
inherently interactive and cannot be expressed by or
reduced to programming in the
small. The behavior of
airline reserva-

tion systems and other
embedded systems cannot be expressed by

algorithms. Fred Brooks’s persuasive argument [1]
that there is no silver bullet for specifying complex
systems is a consequence of the irreducibility of
interactive systems to algorithms. If silver bullets are
interpreted as formal (or algorithmic) system speci-

fications, the nonexistence of silver bullets can
actually be proved. 
Artificial intelligence has undergone a paradigm

shift from logic-based to interactive (agent-oriented)
models paralleling that in software engineering.
Interactive models provide a common framework for
agent-oriented AI, software engineering, and system
architecture [10]. 

Though object-based programming has become a
dominant practical technology, its conceptual frame-
work and theoretical foundations are still unsatisfac-
tory; it is fashionable to say that everyone talks about
it but no one knows what it is. “Knowing what it is”
has proved elusive because of the implicit assump-
tion that explanations must specify “what it is” in
terms of algorithms. Accepting irreducibility as a
fact of life has a liberating effect; “what it is” is more
naturally defined in terms of interactive models. 

From Turing Machines to 
Interaction Machines

THE BRITISH MATHEMATICIAN, COMPUTER PIO-
neer, and World War II code-breaker Alan
Turing showed in the 1930s that algorithms in

any programming language have the same transfor-
mation power as Turing machines [6]. We call the
class of functions computable by algorithms and Tur-
ing machines the “computable functions.” This pre-
cise characterization of what can be computed
established the respectability of computer science as a
discipline. However, the inability to compute more
than the computable functions by adding new primi-
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Figure 1. A Turing machine is a closed, noninteractive 
system, shutting out the external world while it computes.

Figure 2. The ant’s path reflects
the complexity of the beach.



tives proved so frustrating that this limitation of Tur-
ing machines was also called the “Turing tarpit.”
Interactive computing lets us escape from the gooey
confines of the Turing tarpit.

Turing machines transform strings of input sym-
bols on a tape into output strings by sequences of
state transitions (see Figure 1). Each step reads a
symbol from the tape, performs a state transition,
writes a symbol on the tape, and moves the reading
head. Turing machines cannot, however, accept
external input while they compute; they shut out the
external world and are therefore unable to model the
passage of external time.

The hypothesis (aka Church’s thesis) that the for-
mal notion of computability by Turing machines
corresponds to the intuitive notion of what is com-
putable has been accepted as obviously true for 50
years. However, when the intu-

itive notion of what is computable
is broadened to include interactive computations,
Church’s thesis breaks down. Though the thesis is
valid in the narrow sense that Turing machines
express the behavior of algorithms, the broader asser-
tion that algorithms capture the intuitive notion of
what computers compute is invalid. 

Turing machines extended by addition of input
and output actions that support dynamic interaction
with an external environment are called “interaction
machines.” Though interaction machines are a sim-
ple and obvious extension of Turing machines, this
small change increases expressiveness so it becomes
too rich for nice mathematical models. Interaction
machines may have single or multiple input streams
and synchronous or asynchronous actions and can
also differ along many other dimensions. Distinc-
tions among interaction machines are examined in
[9], but all forms of interaction transform closed sys-
tems to open systems and express behavior beyond
that computable by algorithms, as indicated by the
following informal argument:

Claim: Interaction-machine behavior is not reducible to
Turing-machine behavior.

Informal evidence of richer behavior: Turing
machines cannot handle the passage of time or interac-
tive events that occur during the process of computation.

Formal evidence of irreducibility: Input streams of
interaction machines are not expressible by finite tapes,
since any finite representation can be dynamically
extended by uncontrollable adversaries. 

The radical view that Turing machines are not the
most powerful computing mechanisms has a distin-

guished pedigree. It was accepted by Turing, who
showed in 1939 that Turing machines with oracles
(like the oracle at Delphi) were more powerful than
Turing machines without oracles. Milner [3] noticed
as early as 1975 that concurrent processes cannot be
expressed by sequential algorithms, while Manna
and Pnueli [2] showed that nonterminating reactive
processes, like operating systems, cannot be modeled
by algorithms. Gödel’s discovery that the integers
cannot be described completely through logic,
demonstrating the limitations of formalism in math-
ematics, may be adapted to show that interaction
machines cannot be completely described by first-
order logic.

Input and output actions are logical sensors and
effectors that affect external data even when they

have no physical effect. Objects and robots
have similar interactive models of computa-

tion; robots differ from
objects only in
that their sensors and effectors
have physical rather than logical effects. Interac-
tion machines can model objects, software engineer-
ing applications, robots, intelligent agents,
distributed systems, and networks, like the Internet
and the World-Wide Web.

The observable behavior of interaction machines
is specified by interaction histories describing the
behavior of systems over time. In the case of simple
objects, like bank accounts with deposit and with-
draw operations, histories are described by streams
of operations called traces. Operations whose effects
depend on the time of their occurrence, as in inter-
est-bearing bank accounts, require time-stamped
traces. Objects with inherently nonsequential inter-
faces, like joint bank accounts accessed from multi-
ple automatic teller machines, have inherently
nonsequential interaction histories. Interaction his-
tories of distributed systems, like the history in his-
tory books, consist of nonsequential events that
may have duration and may interfere with each
other. 

Whereas interaction histories express the external
unfolding of events in time, instruction-execution
histories express an ordering of inner events of an
algorithm without any relation to the actual passage
of time. Algorithmic time is intentionally measured
by number of instructions executed, rather than by
the actual time taken by execution, in order to pro-
vide a hardware-independent measure of logical
complexity. In contrast, the duration and the time
elapsing between the execution of operations may be
interactively significant. Operation sequences are
interactive streams with temporal as well as func-
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tional properties, while instruction sequences
describe inner state-transition semantics. 

Pure Interaction, Judo, and 
the Management Paradigm
Raw interactive power is captured by interactive-
identity machines (IIMs) that output their input
immediately without transforming it. IIMs are sim-

ple transducers that realize

nonalgorithmic behavior by harness-
ing the computing power of the environment: They
may be described in any of a number of equivalent
programming-language notations:

loop input(message); output(message); end
loop
or

while true do echo input end while
or

P = in(message).out(message).P

IIMs employ the judo principle of using the
weight of adversaries (or cooperating agents) to
achieve a desired effect. They realize the management
paradigm, coordinating and delegating tasks without
necessarily understanding their technical details.
Though IIMs are not inherently intelligent, they can
behave intelligently by replicating intelligent
inputs from the environment:

Claim: Interactive identity machines have richer
behavior than Turing machines.

Evidence: An IIM can mimic any Turing
machine and any input stream from the environ-
ment.

INTERACTION MACHINES ARE NOT SIMPLY A

theoretical trick. They embody the behavior
of managers who rely on subordinates to

perform substantive problem-solving tasks. A
person ignorant of chess can win half the games
in a simultaneous chess match against two mas-
ters by echoing the moves of one opponent on
the board of the other. A chess machine M can make
use of intelligent input actions through one interface
to deliver intelligent outputs through another inter-
face; though unintelligent by itself, M harnesses the
intelligence of one player to respond intelligently to a
second player. Clients of M, like player A, are unaware
of the interactive help M receives through its interface
to B. From A’s point of view, M is like Van Kempelen’s
17th-century chess machine whose magical mastery of
chess was due to a hidden human chess master con-

cealed in an inner compartment. From A’s viewpoint,
B’s actions through a hidden interface are indistin-
guishable from those of a daemon hidden inside the
machine.

Simon’s well-known example [5] of the irregular
behavior of an ant on a beach in finding its way home
to an ant colony illustrates that complex environments
cause simple interactive agents to exhibit complex
behavior (see Figure 2). The computing mechanism of
the ant is presumed to be simple, but the ant’s behav-

ior reflects the complexity of the beach where nonal-
gorithmic topography causes the ant to traverse a

nonalgorithmic path. The behavior of ants
on beaches cannot be described by

algorithms because the set
of all possible beaches
cannot be so described. 

Though interaction opens up limit-
less possibilities for harnessing the environ-
ment, it is entirely dependent on external resources,
while machines with built-in algorithmic cleverness
are not. High achievement, whether by machines or
by people, can be realized either by self-sufficient
inner cleverness or by harnessing the environment.
The achievements of presidents of large corporations
or of the president of the U.S. are dependent on the
effective use of a supporting environmental infra-
structure. Interaction scales up to very large prob-

lems better than inner cleverness, because it
expresses delegation and coordination.

Interaction, Parallelism, 
Distribution, and Openness
Interaction, parallelism, and distribution are concep-
tually distinct concepts:

• Interactive systems interact with an external envi-
ronment they cannot control.

84 May 1997/Vol. 40, No. 5 COMMUNICATIONS OF THE ACM
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even for identity machines.
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Figure 3. Design space for interactive computing.



• Parallelism (concurrency) occurs when computa-
tions of a system overlap in time.

• Distribution occurs when components of a system
are separated geographically or logically. 

Parallel and distributed computation can, in the
absence of interaction, be expressed by algorithms.

Parallel algorithms, studied in many textbooks
and university courses, are necessarily nonin-

teractive. Distributed algorithms, in
textbooks on distributed computing,

are likewise noninteractive.
The insight that interaction
rather than parallelism or

distribution is the key
element in provid-

ing greater

behavioral richness is nontrivial,
requiring a fundamental reappraisal of the roles of
parallelism and distribution in complex systems.
The horizontal base plane of Figure 3 includes many
interesting and important algorithmic systems; sys-
tems not in the base plane are nonalgorithmic, even
when they are as simple as the interactive identity
machine.

Agents in the environment can interact in a coop-
erative, neutral, or malicious way with an interaction

machine. Adversaries interfering with algorithmic
goals provide a measure of the limits of interaction
machine behavior. Synchronous adversaries control
what inputs an agent receives, while asynchronous
adversaries have additional power over when an input
is received. Asynchronous adversaries who can decide
when to zap an interaction machine are interactively
more powerful than synchronous adversaries.

Interactiveness provides a natural and precise def-
inition of the notion of open and closed systems.
Open systems can be modeled by interaction
machines, while closed systems are modeled by algo-
rithms. Interaction machines provide a precise defi-
nition not only for open systems but for other fuzzy
concepts, like empirical computer science and pro-
gramming in the large. They robustly capture many
alternative notions of interactive computing, just as
Turing machines capture algorithmic computing
[9].

Open systems have very rich behavior to handle
all possible clients, while the individual interface
demands of clients are often quite simple. Open sys-
tems whose unconstrained behavior is nonalgorith-
mic can become algorithmic by strongly
constraining their interactive behavior [9], summa-
rized as:

Supplied behavior of an interactive system >> demanded
behavior at a given interface.

Interfaces are a primitive building block of interac-
tive systems, playing the role of primitive instruc-
tions. Interactive programmers compose (plug
together) interfaces, just as algorithmic programmers
compose instructions. Interactive software technology
for interoperability, patterns, and coordination can be
expressed in terms of relations among interfaces [10].
Frameworks constrain the interface behavior of their
constituent components to realize goal-directed

behavior through graphical user interfaces [11].
Interfaces express the mode of use or pragmatics

of an interactive system, complementing
syntax and semantics (see Figure 4). 

Closed systems with algorithmic
behavior have open subsystems

with nonalgorithmic behavior.
For example, an engine of a

car may behave unpre-
dictably when a spark
plug is removed. Animals
(or people) with an established
behavior routine may behave errat-
ically in unfamiliar environments.
Subsystems with predictable (algorith-
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Figure 4. A user’s view of computational modeling, using 
representation to express multiple meanings.
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rule-based world of 
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mic) constrained behavior have unpredictable (non-
algorithmic) behavior when the constraint is
removed, and a greater range of possible behaviors
must be considered in these situations.

Interactiveness (openness) is nonmonotonic in
that decomposition of systems may create interactive
unpredictable subsystems, or equivalently, composi-

tion of interactive systems may produce non-
interactive algorithms. In contrast,

concurrency and distribution
are monotonic; if a

system is not concurrent
or not distributed, all subsystems
also have this property. Nonmonotonicity
is an untidy formal property of interaction since it
implies that noninteractive systems with algorith-
mic behavior may have interactive subsystems whose
behavior is nonalgorithmic. 

Interfaces as Behavior Specifications
The negative result that interaction is not express-
ible by algorithms leads to positive new approaches
to system modeling in terms of interfaces. Giving up
the goal of complete behavior specification requires
a psychological adjustment but makes respectable
software-engineering methods of incomplete partial
system specification by interfaces. Since a complete
elephant cannot be specified, the focus shifts to spec-
ifying its parts and its forms of behavior (such as its
trunk or its mode of eating peanuts). Complete spec-
ification must be replaced by partial specification of
interfaces, views, and modes of use. Airline reserva-
tion systems can be partially specified by multiple
interfaces:

• Travel agents: Making reservations on behalf of
clients

• Passengers: Making direct reservations
• Airline desk employees: Making inquiries on behalf

of clients and checking their tickets
• Flight attendants: Aiding passengers during the

flight itself
• Accountants: Auditing and checking financial

transactions
• System builders: Developing and modifying 

systems

Airline reservation systems have a large number of
geographically distributed interfaces, each with a
normal mode of use that may break down under
abnormal overload conditions. The requirements of
an airline reservation system may be specified by the
set of all interfaces (modes of use) it should support.
The description of systems by their modes of use is a

starting point for system design; interfaces play a
practical as well as a conceptual role in interactive
system technology.

ASYSTEM SATISFIES ITS REQUIREMENTS IF IT

supports specified modes of use, even though
correct behavior for a given mode of use is

not guaranteed and complete system behavior
for all possible modes of use is unspecifi-
able. Though correctness of programs
under carefully qualified condi-
tions can still be proved,
result checking is

needed during execution
to verify that results actually

obtained are valid. Techniques for
systematic online result checking will

play an increasingly important practical
and formal role as a supplement to off-line testing
and verification. Result checking is performed auto-
matically by people for such tasks as driving with
visual feedback, but must be performed by instru-
ments or programs as safeguards against airplane
crashes and other costly embedded-system failures.

Interface descriptions are called harnesses, since
they serve both to constrain system behavior (like
the harness of a horse) and to harness behavior for
useful purposes. Harnesses have a negative connota-
tion as constraints and a positive connotation as
specifications of useful behavior; interfaces focus pri-
marily on the positive connotation. We distinguish
between open harnesses, which permit interaction
through other harnesses or exogenous events, and
closed harnesses, which cause the system (together
with its harness) to become closed and thereby algo-
rithmic.

Airline reservation systems are naturally
described by a collection of open harnesses.
Microsoft’s Component Object Model (COM)
describes components according to the interfaces
they support. The key property possessed by every
COM component is an interface directory through
which the complete set of interfaces may be accessed.
Every component has an interface I-unknown with a
queryinterface operation for checking the existence of
an interface before it is used. Industrial-strength
object-based models suggest that components with
open-harness multiple interfaces are a more flexible
framework than inheritance of interface functional-
ity for modeling complex objects. Interaction
machines conform more closely to industrial models
like COM than to inheritance models.

The goal of proving correctness for algorithms is
replaced for interactive systems by the more modest
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goal of showing that components have collections of
interfaces (harnesses) corresponding to desired forms
of useful behavior. Interaction machines specifying
software systems are described by multiple interfaces
expressing functionality for different purposes. Peo-
ple are likewise better described as collections of
interfaces; the behavioral effect of “thinking” is bet-
ter modeled by interaction machines with multiple
interfaces than by Turing machines.

From Rationalism to Empiricism
Plato’s parable of the cave, comparing humans to
cave dwellers who observe only shadows of reality
on their cave walls, not actual objects in the out-
side world, shows that observation cannot com-
pletely specify the inner structure or behavior
of observed objects. For example, a person
spending his or her entire life in the Blue
Grotto sea cave in Capri, Italy, would imag-
ine the outside world to be blue. Projec-
tions of light on our retinas serve as
incomplete cues for constructing our
world of solid tables and chairs. 

Plato concluded that abstract ideas
are more perfect and therefore more
real than physical

objects like tables and
chairs. His skepticism concerning empirical science
contributed to the 2,000-year hiatus in the evolution
of empiricism. Empiricists accept the view that per-
ceptions are reflections of reality but disagree with
Plato on the nature of reality, believing that the
physical world outside the cave is real but unknow-
able. Fortunately, complete knowledge is unneces-
sary for empirical models of physics because they
achieve their pragmatic goals of prediction and con-
trol by dealing entirely with incomplete observable
reflections. 

Modern empirical science rejects Plato’s belief
that incomplete knowledge is worthless, using par-
tial descriptions (shadows) to control, predict, and
understand the objects that shadows represent. Dif-
ferential equations capture quantitative properties of
phenomena they model without requiring a com-
plete description. Similarly, computing systems can
be specified by interfaces describing properties
judged to be relevant while ignoring properties
judged irrelevant. Plato’s cave, properly interpreted,
is a metaphor for empirical abstraction in both nat-
ural science and computer science.

Turing machines correspond to Platonic ideals by
focusing on mathematical models at the expense of
empirical models. To realize logical completeness,

they sacrifice the ability to model external interac-
tion and real time. The extension from Turing to
interaction machines, and from procedure-oriented
to object-based systems, is the computational analog
of liberation from the Platonic world view that led to
development of empirical science. Interaction
machines liberate computing from the Turing tarpit
of algorithmic computation, providing a conceptual
model for software engineering, AI agents, and the
real (physical) world. 

The contrast between algorithmic and interactive
models parallels interdisciplinary distinctions in
other domains of modeling, arising in its purest form
in philosophy, where the argument between rational-
ists and empiricists has been central and passionate
for more than 2,000 years. Descartes’ quest for cer-
tainty led to the rationalist credo “cogito ergo sum,”
succinctly asserting that thinking is the basis of exis-
tence and implying that certain knowledge of the
physical world is possible through inner processes of
algorithmic thinking. Hume was called an
empiricist because he showed that inductive infer-
ence and causality are not deductive
and that rationalist

models of the world are
inadequate. Kant, “roused from his dog-

matic slumbers” by Hume, wrote the Critique of Pure
Reason to show that pure reasoning about necessarily
true knowledge was inadequate to express contin-
gently true knowledge of the real world. 

Rationalism continued to have great appeal in
spite of the triumph of empiricism in modern sci-
ence. Hegel, whose “dialectical logic” extended rea-
son beyond its legitimate domain, influenced
political philosophers like Marx as well as mathe-
matical thinkers like Russell. George Boole’s treatise
The Laws of Thought demonstrated the influence of
rationalism by equating logic with thought. Mathe-
matical thought in the early 20th century was dom-
inated by Russell’s and Hilbert’s rationalist
reductions of mathematics to logic. Gödel’s incom-
pleteness result showed the flaws of rationalist math-
ematics, but logicians and other mathematicians
have not fully appreciated the limitations on formal-
ism implied by Gödel’s work.

The term “fundamental,” as in “fundamental par-
ticles,” or “foundations of mathematics,” is a code
word for rationalist (reductionist) models in both
physics and computing. The presence of this code
word in terms like “religious fundamentalism” sug-
gests that social and scientific rationalism have com-
mon roots in the deep-seated human desire for
certainty. Rationalism is an alluring philosophy with
many (dis)guises. 
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Though empiricism has displaced rationalism in
the sciences, Turing machines reflect rationalist rea-
soning paradigms of logic rather than empirical par-
adigms of physics. Algorithms and Turing
machines, like Cartesian thinkers, shut out the
world during the process of problem solving. Turing
was born in 1912 and matured at about the time
Gödel delivered his coup de grace to formalist math-
ematics. But the effects of Gödel’s incompleteness
result were slow to manifest themselves among  such
logicians as Church, Curry, and Turing who shaped
the foundations of computer science.

Abstraction is a key tool in simplifying systems
by focusing on subsets of relevant attributes and
ignoring irrelevant ones. Incompleteness is the key
distinguishing mechanism between rationalist,

algorithmic abstraction and empiricist,
interactive abstraction. The comfort-

able completeness and pre-
dictability of algorithms

is inherently inade-
quate in modeling
interactive computing tasks
and physical systems. The sacri-
fice of completeness is frightening to
theorists who work with formal models like
Turing machines, just as it was for Plato and
Descartes. But incomplete behavior is comfortably
familiar to physicists and empirical model
builders. Incompleteness is the essential ingredi-
ent distinguishing interactive from algorithmic
models of computing and empirical from rational-
ist models of the physical world.

Models in Logic and Computation
Models in logic and computation aim to capture
semantic properties of a domain of discourse or mod-
eled world by syntactic representations for the prag-
matic benefit of users. They express properties of
physical or mathematical modeled worlds in a form
that is pragmatically useful.

A model M = (R, W, I) is a representation R of a
modeled world W interpreted by a human or mechan-
ical interpreter I that determines semantic properties
of W in terms of syntactic expressions of R. R, W, and
I determine, respectively, the syntax, semantics, and
pragmatics of the model as in Figure 4.

Interactive models have multiple pragmatic
modes of use, while algorithms have a single
intended pragmatic interpretation determined by
the syntax. The goal of expressing semantics by syn-
tax is replaced by the interactive goal of expressing
semantics by multiple pragmatic modes of use. The
goal of complete behavior specification is replaced

by the goal of harnessing useful forms of partial
behavior through interfaces.

Logical proof involves step-by-step progress from
a starting point to a result as in:

logical system ]]. programming language
well-formed formulae ]]. programs
theorem to be proved ]]. initial input
rules of inference ]]. nondeterministic rules of computation
proofs ]]. sequential algorithmic computations

Reasoning is weaker than interactive computing
or physics for modeling and problem solving [7].
Hobbes was correct in saying that “reasoning is but
reckoning,” but the converse assertion “reckoning is
but reasoning” is false, since interactive reckoning is
richer than reasoning.

The inherent incompleteness of interactive sys-
tems has the practical consequence that maximal
goals of logic and functional programming and of
formal methods cannot be achieved. The result that
logic programming is too weak to model interactive
systems, presented by the author at the closing ses-
sion of the fifth-generation computing project in
Tokyo in 1992 [7], showed that the project could

not have achieved its software-engineering goals
even with a tenfold increase in effort or a

10-year extension. 
Algorithms and logical

formulae take their
meanings in the same
semantic world of computable functions, but
logic is a purer paradigm that expresses the relation
between syntax and semantics with fewer distrac-
tions. Well-formed formulae are semantically inter-
preted as assertions about a modeled world that
may be true or false. Formulae true in all interpre-
tations are called tautologies. 

A logic is sound if all syntactically provable for-
mulae are tautologies and complete if all tautologies
are provable. Soundness and completeness measure
the adequacy of syntactic proofs in expressing
semantic meaning. They relate the syntactic repre-
sentation R of a logical model to its semantic mod-
eled world W:

Soundness: Implies that syntactically proved theo-
rems express meaning in the modeled world. 

Completeness: Implies that all meanings can be syn-
tactically captured as theorems. 

Soundness ensures that representations cor-
rectly model behavior of their modeled worlds,
while completeness ensures that all possible
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behavior is modeled. Soundness and completeness
together ensure that (for each model) a representa-
tion is correct and that it captures all behavior in
the world being modeled. But completeness
restricts the kinds of modeled worlds completely
expressible by a representation. Completeness
constrains modeling so only modeled worlds
whose semantics are completely expressible by
syntax can be expressed. 

Soundness ensures that proofs are semantically
correct, while completeness measures the compre-
hensiveness of the proof system in expressing
semantic meaning. Soundness and completeness
together imply that W is reducible to R (W and R
are isomorphic abstractions). Reducibility of W to
R implies completeness of R in expressing proper-
ties of W, while incompleteness implies irre-
ducibility.

Though soundness and completeness are desirable
formal properties, they are often abandoned for prac-
tical reasons. For example, logics for finding errors in
programs are sound if they generate error messages
only when the program has an error and complete if
they discover all errors:

Soundness: If error message then error
Completeness: If error then error message

In this case, insisting on soundness conservatively
excludes useful error messages because they are occa-

sionally wrong, while complete logics recklessly
generate many spurious error messages in their quest
for completeness. Practical logics are neither sound
nor complete, generating some erroneous messages
and missing some errors to strike a balance between
caution and aggressiveness.

THE GOAL OF ERROR ANALYSIS IS TO CHECK

that a syntactically defined error-detection
system captures an independent semantic

notion of error. Since the semantic notion of error
in dynamically executed programs cannot be stati-
cally defined, error detection cannot be completely
formalized, but the semantic notion of error can be
syntactically approximated. In choosing an
approximation, the extreme conservatism of
soundness and the extreme permissiveness of com-
pleteness are avoided by compromising (in both
the good and bad senses of the word) between con-
servatism and permissiveness.

Gödel’s incompleteness result for a particular
mathematical domain (arithmetic over the integers)

has an analog in computing. The key property of
incomplete domains is irreducibility. Completeness
is possible only for a restricted class of relatively
trivial logics over semantic domains reducible to
syntax. Completeness restricts behavior to that
behavior describable by algorithmic proof rules.
Models of the real world (and even of integers) sac-
rifice completeness in order to express autonomous
(external) meanings. Incompleteness is a necessary
price for modeling independent domains of dis-
course whose semantic properties are richer than the
syntactic notation by which they are modeled, sum-
marized as:

Open, empirical, falsifiable, or interactive systems are nec-
essarily incomplete.

MATHEMATICALLY, THE SET OF TRUE STATE-
ments of a sound and complete logic can be
enumerated as a set of theorems and is

therefore recursively enumerable.
Gödel showed incompleteness of the integers by
showing that the set of true statements about inte-
gers was not recursively enumerable using a diago-
nalization argument. Incompleteness of interaction
machines can be proved by showing that the set of
computations of an interaction machine cannot be
enumerated. Incompleteness follows from the fact
that dynamically generated input streams are math-
ematically modeled by infinite sequences. The set of
inputs of an interactive input stream has the cardi-

nality of the set of infi-
nite sequences over a

finite alphabet, which is not
enumerable.

The proof of incompleteness of an interaction
machine is actually simpler than Gödel’s incom-
pleteness proof since interaction machines are more
strongly incomplete than the integers. Interaction-
machine incompleteness follows from nonenumer-
ability of infinite sequences over a finite alphabet
and does not require diagonalization.

Before Gödel, the conventional wisdom of com-
puter scientists assumed that proving correctness
was possible (in principle) and simply needed
greater effort and better theorem provers. However,
incompleteness implies that proving correctness of
interactive models is not merely difficult but
impossible. This impossibility result parallels the
impossibility of realizing Russell and Hilbert’s pro-
grams of reducing mathematics to logic. The goals
of research on formal methods must be modified to
acknowledge this impossibility. Proofs of existence
of correct behavior (type-1 correctness) are in many
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cases possible, while proofs of the nonexistence of
incorrect behavior (type-2 correctness) are generally
impossible.

The Interactive Turing Test
Turing [6] proposed a behavioral test, now called the
Turing test, that answers the question “Can
machines think?” affirmatively if the machine’s
responses are indistinguishable from human
responses to a broad range of questions. He not
unexpectedly equated “machines” with Turing
machines, assuming that machines always answer

questions sequentially. Turing permits machines
to delay their answer in

games like
chess to mimic the slower response
time of humans but does not consider that machines
may sometimes be inherently slower than
humans or interact through hidden inter-
faces while answering questions. 

Agents that can receive help from
oracles, experts, and natural processes have
greater question-answering ability than Tur-
ing machines. Though IIMs have less
thinking power than clever algorithms, their range
of potential behaviors dominates that of Turing
machines. 

Interaction machines can make use of external as
well as inner resources to solve problems more
quickly than disembodied machines. They are more
expressive in solving inherently nonalgorithmic
problems but also solve certain algorithmic prob-
lems more efficiently through interactive tech-
niques. They can play chess, perform scene analysis
of complex photographs, or even plan a business trip
with partial help from an expert more efficiently and
more expressively than Turing machines. Outside
help can generally be obtained without knowledge
of the client (questioner). 

The Turing test constrains interaction to closed-
book exam conditions, while interaction machines
that support open-book exams can expect superior
performance. Open-book exams that allow access
through a computer to the Library of Congress and
the Web amplify exam-taking power through inter-
active access to an open, evolving body of knowl-
edge. Note that real open-book exams, which allow
students to add a fixed set of textbooks, become
closed exams for an augmented but closed body of
knowledge, while exams with access to email and the
Web are truly open and interactive and allow a
larger, nonalgorithmic set of questions to be
answered.

Interaction machines that solve problems through

a combination of algorithmic and interactive tech-
niques are more human in their approach to problem
solving than Turing machines, and it is plausible to
equate such interactive problem solving with think-
ing.

Skeptics who believe machines cannot think can
be divided into two classes:

• Intensional skeptics who believe that
machines that simulate thinking
cannot think. Machine
behavior does not

capture inner awareness
or understanding.

• Extensional skeptics who believe
that machines have inherently weaker
behavior than humans. Machines can
inherently model neither physics or

consciousness. 

SEARLE ARGUED THAT PASSING the
test did not constitute thinking
because competence did not

imply inner understanding, while Penrose [4]
asserted that Turing machines are not as expressive
as physical models. I agree with Penrose that Turing
machines cannot model the real world but disagree
that this implies extensional skepticism because
interaction machines can model physical and mental
behavior. 

Penrose builds an elaborate house of cards on the
noncomputability of physics by Turing machines.
However, the cards collapse if we accept that inter-
active computing can model physics. Penrose’s error
in equating Turing machines with the intuitive
notion of computing is similar to Plato’s identifica-
tion of reflections on the walls of a cave with the
intuitive richness of the real world. Penrose is a self-
described Platonic rationalist, whose arguments,
based on the acceptance of Church’s thesis, are dis-
guised forms of rationalism, denying first-class sta-
tus to empirical models of computation. Penrose’s
argument that physical systems are subject to elusive
noncomputable laws yet to be discovered is unneces-
sary, since interaction is sufficiently expressive to
describe physical phenomena, like action at a dis-
tance, nondeterminism, and chaos [9], that Penrose
cites as examples of physical behavior not expressible
by computers. 

Penrose’s dichotomy between computing on the
one hand and physics and cognition on the other is
based on a misconception concerning the nature of
computing that was shared by Church and Turing
and that has its historical roots in the rationalism
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of Plato and Descartes. The insights that the ratio-
nalism/empiricism dichotomy corresponds to algo-
rithms and interactions and that “machines” can
model physics and cognition through interaction
allow computing to be classified as empirical,
along with physics and cognition. By identifying
interaction as the key ingredient distinguishing
empiricism from rationalism and showing that
interaction machines express empirical computer
science, we can show that the arguments of Plato,

Penrose, Church, Turing, and other rational-
ists are rooted in a common fal-

lacy concerning
the role of nonin-
teractive algorithmic
abstractions in modeling the real world.

Conclusions
The paradigm shift from algorithms to interaction
is a consequence of converging changes in system
architecture, software engineering, and human-
computer interface technology. Interactive models
provide a unifying framework for understanding
the evolution of computing technology, as well as
interdisciplinary connections to physics and phi-
losophy. 

The irreducibility of interaction to algorithms
enhances the intellectual legitimacy of computer sci-
ence as a discipline distinct from mathematics and,
by clarifying the nature of empirical models of com-
putation, provides a technical rationale for calling
computer science a science. Interfaces of computing
systems are the computational analog of shadows on
the walls of Plato’s cave, providing a framework for
system description more expressive than algorithms
and that captures the essence of empirical computer
science. 

Trade-offs between formalizability and expressive-
ness arise in many disciplines but are especially sig-
nificant in computer models. Overemphasis on
formalizability at the expense of expressiveness in
early models of computing is evident in principles
like “Go to considered harmful” and the more sweep-
ing “Assignment considered harmful” of functional
programming. Functional and gotoless program-
ming, though beneficial to formalizability, are harm-
ful to expressiveness. However, both these forms of
programming merely make certain kinds of pro-
grams more difficult to write without reducing algo-
rithmic problem-solving power. The restriction of
models of computation to Turing machines is a more
serious harmful consequence of formalization, reduc-
ing problem-solving power to that of algorithms so
the behavior of objects, PCs, and network architec-

tures cannot be fully expressed. 
Computer science is a lingua franca for modeling,

allowing applications in a variety of disciplines to be
uniformly expressed in a common form. Interac-
tion machines provide a unifying frame-
work not only for modeling
practical applications but for

talking precisely about
the conceptual foundations of

model building, so fuzzy philosophi-
cal distinctions between rationalism and

empiricism can be concretely expressed in computa-
tional terms. The crisp characterization of rationalist
vs. empiricist models by “algorithms vs. interaction”
expresses philosophical distinctions by concepts of
computation, allowing the interdisciplinary intuition
that empirical models are more expressive than ratio-
nalist models to be precisely stated and proved. 

The insight that interactive models of empirical
computer science have observably richer behavior
than algorithms challenges accepted beliefs concern-
ing the algorithmic nature of computing, allowing us
to escape from the Turing tarpit and to develop a uni-
fying interactive framework for models of software
engineering, AI, and computer architecture.
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