

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Evaluating Industry-Inspired Pair Programming

Communication Guidelines with Undergraduate Students
Mark Zarb Janet Hughes John Richards

School of Computing
University of Dundee

Dundee, Scotland
+44 (0)1382 384 150

School of Computing
University of Dundee

Dundee, Scotland
+44 (0)1382 385 195

IBM T.J. Watson Research Center
Yorktown Heights
New York, USA
+1 914 945 2632

markzarb, jhughes @computing.dundee.ac.uk ajtr@us.ibm.com

ABSTRACT

A set of industry-inspired pair programming guidelines have been
derived from qualitative examinations of expert pairs in order to
aid novice programmers with their intra-pair communication. This
research describes the evaluation of these guidelines with a set of
student pairs, and demonstrates how novice pairs who were
exposed to the guidelines were more comfortable communicating
within their pairs.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education.

General Terms
Measurement, Performance, Experimentation, Human Factors,
Standardization.

Keywords
Pair programming; communication skills; software engineering;
collaboration; students.

1. INTRODUCTION
Pair programming is a method which describes two programmers
working together on the same computer, sharing one keyboard.
Typically, each member of the pair takes on a different role,
swapping roles frequently: the driver creates the code while the
navigator reviews it [16]. Pair programming requires its pairs to
communicate frequently, which leads the pair to experience
certain benefits over “solo” programming, such as a greater
enjoyment, and an increased knowledge distribution [2].

Pair programming is one of the key aspects of Extreme
Programming, which “favours both informal and immediate
communication over the detailed and specific work products
required by any number of traditional design methods” [14].

Novices find communication to be a barrier when they are pair

programming, and industry-inspired guidelines have been
presented as a possible solution [11, 16]. Initial student feedback
with regards to their perceptions of the guidelines was positive.
This research investigates an evaluation of the guidelines, in order
to present evidence that they can be used to assist novice pairs in
learning to communicate more effectively when working together.

2. BACKGROUND
Due to the nature of pair programming, communication, both
verbal and non-verbal, occurs constantly. Williams and Kessler
[13] write that effective communication is “paramount”, whereas
Sharp and Robinson [10] describe pairing as a highly
communication-intensive process.

Within the classroom, pair programming is seen as being
generally valuable [1, 13], with research showing that its use in
educational settings has rapidly increased within the last decade,
with reported usage in the US, the UK, Germany, New Zealand,
India and Thailand [4]. Furthermore, students working in pairs
can be seen to be more satisfied with their work output, solve
problems faster than non-paired students, and have improved team
effectiveness, with pairing students being more likely to complete
CS courses when compared to their solo counterparts, as well as
gaining an improved comprehension of unfamiliar topics, as well
as increased levels of confidence [5, 7, 11, 14, 15].

Many programmers approach their first pairing experience with
scepticism, having doubts about their partner’s working habits
and programming style, and about the added communication
aspects that this programming style entails [14]. In a pilot study,
roughly 50% of first-time novice pair programmers reported that
they perceived communication to be the main problem with the
pairing process [9].

Freudenberg et al. write that “the cognitive aspects of pair
programming are seldom investigated and little understood” [3].
Furthermore, many authors simply attribute theoretical importance
to communication as an issue – as a result, few studies have
investigated the aspect of communication within an agile team in
detail [10, 12].

3. PAIR PROGRAMMING GUIDELINES
The industry-inspired pair programming guidelines [18] were
created with the aim of delivering concise, industry-derived
instructions to novice pairs to improve their understanding of
successful pair communication.

An analytic coding schema was derived from the observation of
the communication of expert pairs working in industry, with over
35 hours of communication being analysed across 11 different
pairs was reported in [17]. This coding schema was further
analysed, and led to the creation of industry-inspired pair
programming guidelines, as reported in [18]. A preliminary
qualitative examination suggested that the guidelines could be
used by novice pairs to aid them in their intra-pair
communication; this was evaluated in the present paper, and
found to be true.

The guidelines are presented in three separate sections: restarting,
planning and action [18]; they are summarised in the following
section:

3.1 Restarting Guidelines
These guidelines should be used when the novice pair is stuck,
and cannot seem to make good progress:

 If your pair is stuck in a thinking/silent loop and cannot
seem to progress, actively break your focus by
discussing something completely off-topic and
unrelated to the issues at hand. This will allow you to
tackle the problem with a fresh outlook. Following this
stage, attempt to:

 Look back on your last couple of steps and
review your previous work;

 Try to suggest next steps related to your end-
goal in order to make progress;

 Identify a fresh thought process.

 If your partner is attempting to break focus, don’t
dismiss this. Breaking one’s focus using jokes, private
conversations, etc. can lead to a fresh perspective,
which your partner may need.

3.2 Planning Guidelines
These guidelines should be used when the novice pair needs to
review legacy code, or start to plot future steps:

 Suggestions and reviews are optimal states that will
allow you to drive your work forward. When in these
states, feel free to alternate (e.g. review previous code,
suggest an improvement, review methods to be changed,
suggest potential impact).

 At each stage, do not hesitate to ask your partner for
clarification as to what they are working on, or
suggesting.

 Think about what your partner is saying and doing.
Offering an explanation of the current state can help
move the work forward.

3.3 Action Guidelines
These guidelines should be used when the novice pair needs to
discuss code logistics, or start to write code:

 NAVIGATOR: While the driver is coding, actively look
to make suggestions that contribute to the code.

 NAVIGATOR: If the driver is muttering, use this
opportunity to make sure your suggestions have been
properly understood.

 DRIVER: While you are programming, or thinking
about your code, voice your thoughts (even if it is just
mumbling and muttering while you’re typing). This
helps the navigator know that you are actively working,
and will allow for them to make suggestions based on
your current actions.

4. EVALUATION
A class of undergraduate third years was exposed to the guidelines
during one of their taught modules (“Agile Software
Engineering”). Exposure occurred during a 60-minute lecture
where the guidelines were introduced by the lecturer and
discussed within the class. A printed copy of these guidelines was
given to the students for reference whilst they completed their lab
work in the following weeks. Initial feedback was largely positive,
as evidenced by the following quote:

“There’s a definite benefit in introducing this. In pair
programming, we’re told to ‘work in pairs: go!’, and
there weren’t formal steps, apart from the
fundamentals. There wasn’t a lot of what to do if you
became stuck.”

At this stage, it is imperative to understand whether there is any
quantitative value to be gained by using these guidelines with
novice pairs, and whether this exposure can improve novice intra-
pair communication. For this purpose, a study was devised with
the aim of producing quantitative data, with the following
hypotheses:

 Exposure to the pair programming guidelines positively
impacts the pair’s success rate.

 Exposure to the pair programming guidelines leads to
an improvement in the pair’s ease of communication.

 Exposure to the pair programming guidelines positively
affects the way partners contribute to the pairing
session.

4.1 Methodology
In 2010, Murphy et al. researched conversations within pairs,
focusing on transactive statements that were primarily about
debugging. Their initial study was carried out with ten
undergraduate Java students, and the authors note that “the pairs
that talked more […] attempted to solve more problems” [6]. Due
to the study’s focus on communication, the measurement of pair
success, and a validated methodology, a similar process was
proposed for this study, borrowing elements described in Murphy
et al.’s research. The authors were contacted, and gave consent for
permission to replicate the methodology, as well as providing a
copy of the buggy code used in their original study.

Participants were recruited from the School of Computing at the
University of Dundee, and a local college. An e-mail was
circulated to all students, asking for their participation in
exchange for a small compensation in the form of vouchers.
Twelve students were recruited from Level 1, and eight students
from Level 3, with six students studying at college-level.

All students were randomized into pairs – with each pair
consisting of students who were matched to peers within the same
level of study. A control group was set up, consisting of 12
students (6 pairs) from across all three levels of study, leaving an

experimental group of 14 students (7 pairs). Informed consent was
obtained from all participants.

The study was carried out during a 2-week period during the
students’ second semester of study. Pairs were invited to the test
room separately, and on different days. The test room was
equipped with one laptop, and consisted of a camera and a voice
recorder. In line with the methodology used by Murphy et al. [6],
all pairs were given a list of programs which consisted of buggy
code. It was explained to all pairs that each program would
compile – but consisted of one logical error. The pair was given
45 minutes to sequentially locate and fix as many errors as
possible. During this time, the recording equipment was switched
on, and the researcher left the room.

Both the control group and the test group followed the process
described above; prior to the task, pairs within the test group were
exposed to the pair programming guidelines by means of a verbal
presentation, as well as a short 3-minute video showing an
experienced pair applying the guidelines to try and overcome
various situations.

Following the test period, the researcher would return, log the
number of programs completed by the pair, and distribute post-
test surveys, which were completed individually by the members
of the pair. Each survey consisted of Likert-scale questions
relating to their experience with communication and partner
contribution during the test, as well as questions on the student’s
experience with programming, which were used to measure
central tendencies and variance within the groups, in order to
ascertain that there were no significant difference between the
groups which would lead to threats to validity.

4.2 Results
Several measures were taken for each pair: success was measured
by the number of programs completed successfully (when
compared to the number of programs attempted); ease of
communication and perceived partner contribution were
measured using post-test Likert scales as discussed above.

4.2.1 Previous Pairing Experience
The post-test surveys consisted of questions relating to the
individual’s experience with solo programming, pair
programming, and previous pair programming experience with the
session’s partner. These results were analysed to understand group
tendencies and variance, as reported in Table 1 below:

Table 1: Student programming experience.

 Experimental

Group

Control

Group

 M SD M SD

Solo Programming
Experience
(weeks)

192.4 203.031 123.3 88.108

Pair Programming
Experience
(weeks)

10.8 11.359 326.9 631.992

Previous Pair
Programming
Experience with
this Session’s
Partner (weeks)

1.9 4.721 0.0 0.000

The data shows that there was differing experience between the
groups; on average, more individuals in the experimental group
(exposed pairs) had solo programming experience, but more
individuals in the control group (unexposed pairs) pairs had pair
programming experience. Furthermore, two pairs within the
experimental group had previous experience in pairing together.
Statistical tests were therefore carried out in order to establish
whether the differences between the two groups were significant,
and whether they would establish threats to validity of the data.
Mann-Whitney U tests were used for this analysis, as these tests
are not affected by outliers to the same degree as independent-
samples t-tests.

Differences in ‘Solo’ Programming Experience
A Mann-Whitney U test shows that there were no significant
differences in ‘solo’ programming experience (in weeks) prior to
the test between students who were exposed to the pair
programming guidelines, and students who were not; U = 69.5, z
= -0.414, p = 0.687 (p > 0.05).

Difference in Pair Programming Experience
A Mann-Whitney U test shows that there were no significant
differences in pair programming experience (in weeks) prior to the
test, between students who were exposed to the pair programming
guidelines, and students who were not; U = 91, z = 0.386, p =
0.742 (p > 0.05).

Difference in Pair Programming Experience with this Session’s
Partner
A Mann-Whitney U test shows that there were no significant
differences between students who were exposed to the pair
programming guidelines, and students who were not when
looking at the data for previous pair experience with this session’s
partner; U = 72, z = -1.336, p = 0.560 (p > 0.05).

From the analysis, it can be seen that any differences between the
two groups (with respect to solo and pair programming
experience) were not significant, suggesting that there would be
no validity issues when analysing data between the two groups.

4.2.2 Success
Following the pair’s 45-minute test, the number of tasks
attempted was noted by the researcher, and scored at a later date.
Each attempt was scored by the researcher, and also compiled, to
see if the whether the code successfully compiled and produced
the correct result. The total number of successfully completed
tasks was then noted for each pair.
Independent-samples t-tests were used to analyse completion
rates, which in turn were used to determine whether there were
any differences in success levels between the exposed pairs and
the control group.
There were no outliers in the data, as assessed by inspection of a
boxplot (Figure 1). The exposed pairs have a marginally higher
number of tasks completed (2.71 ± 3.04) than the unexposed pairs
in the control group (2.17 ± 2.14) – however, this difference is not
statistically significant: t(11) = 0.369, p = 0.718 (p > 0.05).

Figure 1: A boxplot showing the number of tasks completed

between experimental group and the control group.

4.2.3 Ease of Communication
‘Ease of Communication’ was reported as a Likert scale on the
post-test survey through the following statement: “During this
session, I found communicating with my partner to be easy”. The
scale ranged from 1 (strongly disagree) to 5 (strongly agree).

Figure 2: A boxplot showing the reported scores for ease of

communication (ranging from 1 (strongly disagree) to 5

(strongly agree)) between the experimental group and the

control group.

A boxplot (Figure 2) depicts the distribution of Likert scale scores
reported by the individual students. It can be seen that students
who were exposed to the guidelines generally reported a higher
score (M=4.6; SD=0.514) than students who were not (M=3.9;
SD=0.900).
As the data used is extracted from Likert scales, a Mann-Whitney
U test was used for its analysis [8]. This test was run to determine
any differences in ease of communication between the exposed
group, and the control group.
There was a statistically significant difference in Ease of
Communication scores between exposed students (Mdn = 5.00)

and unexposed students (Mdn = 4.00), U = 48, z = -2.037, p =
0.042.
As p < 0.05, it can be seen that students who were exposed to the
guidelines found their intra-pair communication to be easier than
the students from the control group.

4.2.4 Perceived Partner Contribution
‘Perceived Partner Contribution’ was reported as a Likert scale on
the post-test survey through the following statement: “Rate your
partner’s contribution to today’s session”. The scale ranged from
1 (no participation) to 5 (excellent).

Figure 3: A boxplot showing the reported scores for the

perceived partner contribution (ranging from 1 (no

participation) to 5 (excellent) between the experimental group

and the control group.

A boxplot (Figure 3) depicts the distribution of Likert scale scores
reported by the individual students. It can be seen that students
who were exposed to the guidelines generally rate their partner’s
contribution to be quite high, with low variance (M=4.8;
SD=0.426) than students who were in the control group (M=4.1;
SD=0.835).
The asterisk seen in the boxplot indicates outliers in SPSS, the
statistics package used to carry out analyses for this study. The
data in this case shows that 3 of the exposed students reported
their perceived partner contribution to be ‘4’ on the Likert scale,
whereas the rest of the exposed group rated this as ‘5’.
A Mann-Whitney U test was run to determine if there were
differences in Perceived Partner Contribution between the
exposed and unexposed groups. There was a statistically
significant difference in perceived partner contribution scores
between exposed students (Mdn = 5.00) and unexposed students
(Mdn = 4.00), U = 48.5, z = -2.113, p = 0.035.
As p < 0.05, it can be seen that students who were exposed to the
guidelines were rated by their partners to have contributed more
to the session, when compared to students from the control group.

4.3 Discussion
Following the analysis presented above, the following hypotheses
are accepted:

1. The mean completion rate for pairs who were exposed
to the guidelines and pairs who were not exposed is
equal in the population.

2. The distribution of the pair’s ease of communication
scores differs by exposure to the guidelines.

3. The distribution of the pair’s perceived partner
contribution scores differs by exposure to the
guidelines.

These results therefore suggest that exposure to the guidelines
leads to the novice pair experiencing easier communication and
improved perceived partner contribution – however, there are no
changes to the task completion rates between the two groups.
Each pair had 45 minutes to debug as many programs as possible,
following an ordered list of programs that had been presented to
them. The fact that the exposed pairs did not perform significantly
better than the pairs who were not exposed is perhaps to be
expected: the students were exposed to the guidelines at the start
of the 45 minute session, and whilst evidence shows that the
guidelines were used to improve their intra-pair communication
skills, one session might not have been enough time to completely
take the guidelines on board and adopt them to improve their
work output.

4.4 Feedback
All exposed students were invited to give detailed feedback on
their experiences with using the guidelines by means of an online
survey. A total of six students completed the survey. Their
reported usage of the guidelines is reported in Figure 4 below.

Figure 4: A bar chart plotting the answers to the question:

“have you used this guideline?” from the online student

survey.

It can be seen that most guidelines were used by most or all
students who completed the survey. Two of the guidelines from
the Action set were not as frequently used as the others (this is
depictured as ‘Action G#1’ and ‘Action G#2’ in Figure 4 above,
and correspond to the two ‘Navigator’ guidelines from section 3.3
above).
As both these guidelines are only relevant to the navigator, it is
possible that most of the respondents only contributed to the
session as drivers, and therefore did not need to make use of these
guidelines.
Furthermore, the second guideline actively points towards the
driver muttering: if the respondents were navigating, it is also

possible that their driver had not been muttering at the time, thus
rendering the guideline ineffective.

4.4.1 Feedback regarding the Restarting Guidelines
All students who answered the survey indicated that they had
made use of these guidelines whilst pair programming; “When we
were stuck, we lost focus and ended up going off-topic anyway
before bringing it back to the task at hand” / “It was helpful to go
for a walk, and then return less frustrated.”
Students indicated that they found this to “usually work quite
well”, commenting that the “use of jokes or venting frustrations
were helpful towards giving us a break”.
Comments were positive – “This was a useful technique” / “Quite
happy with using it; worked well”, with some students suggesting
that these guidelines tended to occur naturally to them, without
much planning required – “Tended to use this naturally” / “We
both used it intuitively without thinking about it”.
Some comments focused on the possibilities of having problems
when working with a new partner: “I can imagine if you do not
know your partner very well it would be more tempting to dismiss
an attempt to break focus” / “If one of us lost focus, the other was
generally losing focus at the same time”. Other comments, on the
other hand, discuss possible solutions to this issue: “Sometimes
identifying when your partner wishes to break focus for this
purpose can be difficult, particularly if you do not know your
partner well or feel uncomfortable working with them. Having
said this, it can be as simple as merely saying, ‘let’s take a quick
break’ – this can provide a clear indication of intentions.”

4.4.2 Feedback regarding the Planning Guidelines
Feedback for these guidelines was positive – students felt that
they had “a natural flow” and that “group coding would be
impossible without this”.
Students reported that “[it was] helpful to know what [their]
partner was thinking”, and explain that “this can help to ensure
that [both partners] understand the on-going work and are on the
same page.”
One student felt that “asking what the partner is doing at every
stage can be irritating and detrimental; sometimes it’s best to sit
back and watch”, suggesting that for some students, the constant
offer or request for explanations might prove to be distracting.
This shows that in some cases, it might be more beneficial for the
pair to discuss the guidelines between themselves prior to
adopting them, and develop a way for them both to be
comfortable with their usage in terms of distractions and
interruptions.

4.4.3 Feedback regarding the Action Guidelines
The reported feedback was quite positive; students expressed that
their muttering “helped keep the navigator involved and
encouraged them to contribute”, meaning that at times, the
problem is solved “before you waste time getting neck-deep in
useless code”. By looking at overall comments, it can be seen that
this guideline was considered beneficial in helping the survey
respondents understand the underlying logic behind their code.
Students felt that reading the code as it was being typed by the
driver “helped save time”, and agreed that following the code

allowed them to be more proactive when helping, as they could
make suggestions where the driver appeared to be struggling.

4.5 Further Work
As part of this study, it was not possible to determine a change in
the pairs’ success levels based on their limited exposure to the
guidelines.

Further evaluations in the form of a longitudinal study are
currently planned in order to determine whether repeated
exposure to the guidelines can significantly affect the pair’s
measured success rate.

5. CONCLUSIONS
Research shows that novice pair programmers are sceptical about
pair programming due to the added communication that will be
required of them. This research has presented an evaluation of
industry-inspired pair programming guidelines, to understand
whether exposing novice pairs to the guidelines can have a
positive impact on their success levels and communication.

Significant differences were identified between students who had
been exposed to the guidelines and the control group when
considering the individual members’ perception of their
experienced intra-pair communication, as well as their partner’s
contribution to the session. Furthermore, feedback obtained from
the exposed students shows that the guidelines were found to be
to be naturally-occurring, and complementary to the students’
pairing approaches.

The results presented in this study show that the industry-inspired
pair programming guidelines can be used to allow novices to
communicate better within their pairs. This is of benefit to
educators and students alike, as using these guidelines allows for a
more structured introduction to pair programming, with clearer
instructions on how to communicate with a new pairing partner.

6. ACKNOWLEDGMENTS
The authors would like to thank all the student pairs who have
contributed time and effort towards giving feedback and
evaluating these guidelines.

The research work disclosed in this publication is funded by the
Strategic Educational Pathways Scholarship (Malta). The
scholarship is part-financed by the European Union – European
Social Fund (ESF) under Operational Programme II – Cohesion
Policy 2007-2013, “Empowering People for More Jobs and a
Better Quality of Life”.

7. REFERENCES
[1] Begel, A. and N. Nagappan. Pair programming: what's in it

for me? in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering
and measurement. 2008: ACM.

[2] Bryant, S., P. Romero, and B. du Boulay, The Collaborative
Nature of Pair Programming, in Extreme Programming and
Agile Processes in Software Engineering, P. Abrahamsson,
M. Marchesi, and G. Succi, Editors. 2006, Springer
Berlin/Heidelberg. p. 53-64.

[3] Freudenberg, S., P. Romero, and B. Du Boulay. "Talking the
talk": Is intermediate-level conversation the key to the pair

programming success story? in Agile Conference (AGILE),
2007. 2007.

[4] Hanks, B., S. Fitzgerald, R. McCauley, L. Murphy, and C.
Zander, Pair programming in education: a literature review.
Computer Science Education, 2011. 21(2): p. 135-173.

[5] McDowell, C., B. Hanks, and L. Werner, Experimenting with
pair programming in the classroom. SIGCSE Bull., 2003.
35(3): p. 60-64.

[6] Murphy, L., S. Fitzgerald, B. Hanks, and R. McCauley. Pair
debugging: a transactive discourse analysis. in Proceedings
of the Sixth international workshop on Computing education
research. 2010: ACM.

[7] Nagappan, N., L. Williams, M. Ferzli, E. Wiebe, K. Yang, C.
Miller, and S. Balik. Improving the CS1 experience with pair
programming. in ACM SIGCSE Bulletin. 2003: ACM.

[8] Ryu, E. and A. Agresti, Modeling and inference for an
ordinal effect size measure. Statistics in Medicine, 2008.
27(10): p. 1703-1717.

[9] Sanders, D., Student Perceptions of the Suitability of Extreme
and Pair Programming, in Extreme Programming
Perspectives, M. Marchesi, et al., Editors. 2002, Addison-
Wesley Professional. p. 168-174.

[10] Sharp, H. and H. Robinson, Three ‘C’s of agile practice:
collaboration, co-ordination and communication, in Agile
Software Development. 2010, Springer. p. 61-85.

[11] Srikanth, H., L. Williams, E. Wiebe, C. Miller, and S. Balik,
On Pair Rotation in the Computer Science Course, in
Proceedings of the 17th Conference on Software Engineering
Education and Training. 2004, IEEE Computer Society. p.
144-149.

[12] Stapel, K., E. Knauss, K. Schneider, and M. Becker, Towards
Understanding Communication Structure in Pair
Programming, in Agile Processes in Software Engineering
and Extreme Programming, A. Sillitti, et al., Editors. 2010,
Springer Berlin Heidelberg. p. 117-131.

[13] Williams, L. and R.R. Kessler, Pair Programming
Illuminated. 2002: Addison-Wesley Longman Publishing
Co., Inc. 288.

[14] Williams, L., R.R. Kessler, W. Cunningham, and R. Jeffries,
Strengthening the Case for Pair Programming. IEEE
Software, 2000. 17(4): p. 19-25.

[15] Williams, L., E. Wiebe, K. Yang, M. Ferzli, and C. Miller, In
Support of Pair Programming in the Introductory Computer
Science Course. Computer Science Education, 2002. 12(3):
p. 197-212.

[16] Williams, L.A. and R.R. Kessler, All I really need to know
about pair programming I learned in kindergarten.
Communications of the ACM, 2000. 43(5): p. 108-114.

[17] Zarb, M., J. Hughes, and J. Richards, Analysing
Communication Trends in Pair Programming Using
Grounded Theory, in Proceedings of the 26th BCS
Conference on Human-Computer Interaction. 2012, British
Computer Society: Birmingham, United Kingdom.

[18] Zarb, M., J. Hughes, and J. Richards, Industry-inspired
guidelines improve students' pair programming
communication, in Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education. 2013, ACM: Canterbury, England, UK. p. 135-
140.

	coversheetConferences
	ZARB 2014 Evaluating industry-inspired pair
	coversheetConferences
	ZARB 2014 Evaluating industry-inspired pair

		2017-04-14T14:27:24+0100
	OpenAIR at RGU

	OA: GREEN
	OA Logo:
	AUTHORS: ZARB, M., HUGHES, J. and RICHARDS, J.
	TITLE: Evaluating industry-inspired pair programming communication guidelines with undergraduate students.
	YEAR: 2014
	Publisher citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2014. Evaluating industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 45th ACM technical symposium on computer science education (SIGCSE 2014), 5 - 8 March 2014, Atlanta, USA. New York: ACM [online], pages 361-366. Available from: https://doi.org/10.1145/2539962.2538980.
	OpenAIR citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2014. Evaluating industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 45th ACM technical symposium on computer science education (SIGCSE 2014), 5 - 8 March 2014, Atlanta, USA. New York: ACM, pages 361-366. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Conference: 45th ACM technical symposium on computer science education (SIGCSE 2014), 5 - 8 March 2014, Atlanta, USA.
	ISBN: 9781450326056
	eISBN:
	ISSN:
	Set statement: © Zarb | ACM 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SIGCSE 2014, http://dx.doi.org/10.1145/2538862.2538980.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:

