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ABSTRACT
The power grid is incorporating high throughput sensor de-
vices into power distribution networks. The future power
grid needs to guarantee accuracy and responsiveness of ap-
plications that consume data from multiple sensor streams.
The end-to-end performance and overall scalability of cyber-
physical energy applications depend on the middleware’s
ability to handle multi-source sensor data, which exhibits
uncertain behavior under highly variable numbers of sen-
sors and middleware topologies. In this paper, we present a
parametric approach to model middleware uncertainty and
to analyze its effect on distributed power applications. The
models encapsulate the entire data flow paths from sensor
devices, through network and middleware components to the
power application nodes that utilize sensor data streams.
Using the Ptolemy II framework for modeling and simula-
tion, we generate Monte Carlo samples of uncertain param-
eters that are used to generate parameterized middleware
models that are used in end-to-end Discrete-Event(DE) sys-
tem simulation simulation. The simulation results are fur-
ther analyzed using regression methods to reveal the param-
eters that are influential in the limiting middleware behavior
to achieve temporal requirements of the power applications.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event, distributed, Monte Carlo; C.2.4 [Computer-
Communication Networks]: Distributed Systems—dis-
tributed applications; D.2.11 [Software Engineering]: Soft-
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ware Architectures—domain-specific architectures
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1. INTRODUCTION
Power grid operators rely on data to make real-time con-

trol decisions. With high-fidelity and trustworthy phasor
sensor data from hundreds of thousands of measurement
data points, the future electric power grid will enable the
use of numerous advanced and innovative distributed con-
trol methods. Phasor Measurement Units (PMUs) provide
real-time and precisely time stamped grid measurements,
which is a feature that enables the measurements to be
time-aligned and merged at aggregation nodes for a bet-
ter indication of grid stress. The challenge of combining
phasor measurements for distributed power applications has
been investigated by power engineers and researchers [5,7,8].
From a distributed cyber-physical system perspective, the
challenge is to autonomously coordinate the data flow and
access within distributed power systems [10].

In the distributed systems architecture, the entire power
system is decomposed into non-overlapping subsystems that
are connected via tie lines (buses). Each subsystem, usually
corresponding to a balancing authority or a control center
of a power utility, is able to run a local application and
then exchange data with neighboring substations for coor-
dination. Middleware that mediates data exchange between
partitions of the grid is an integral to the communication
infrastructure. Local results from each area are transferred
into the middleware to be aggregated and time-aligned. The
middleware also merges the time-aligned faulty phasor read-
ings of the entire system, and broadcasts this information to
all remote participants for global situational awareness [10].
An additional decision component, which is also part of the
middleware, receives these intermediate results and notifies
each area when global convergence of power system states
has been achieved.



In this middleware centric architecture, a number of fac-
tors such as the number of iterations required for data ex-
change prior to global convergence, sensor data quality, the
amount of sensors, and the grid partitioning affect the end-
to-end response time of the power application. A systematic
quantification of these factors gain importance in the overall
and worst-case performance evaluation of the middleware.

In this paper, we present a model-based approach to spec-
ifying uncertain parameters in the middleware architecture.
We develop models that represent the entire data flow from
sensor devices, through network and middleware compo-
nents to distributed application nodes. We use the Ptolemy
II framework both to derive Monte Carlo (MC) samples of
the uncertain parameters and to generate and execute DE
models of the system with the sampled values of these pa-
rameters. The modeling approach for domain-specific com-
ponents in the power application is presented in Section 2,
followed by a detailed specification of the end-to-end discrete-
event power system models, parameterization and sampling
methods in Section 3. Finally, uncertainty analysis using
regression techniques and evaluation of the significant pa-
rameters for robust middleware design are studied in Section
4.

2. MODELING APPROACH
The initial problem we study is the uncertainty model-

ing workflow for power grid application middleware. Fig-
ure 1 summarizes the followed methodology. This method
aims at deriving the most significant uncertainty parameters
from the systems architecture as random variables. Under
the circumstances of a set of possible correlated variables,
mathematical procedures such as principle component anal-
ysis (PCA) can be applied to convert correlated variables
into a set of uncorrelated variables. Samples are generated
by the Monte Carlo (MC) sampling method.

Figure 1: Middleware design guided by uncertainty analysis

For accurate representation of timing in the system, it is
required to model the entire data flow through the systems
entities including sensors, network and middleware compo-
nents. Communication delays, software scheduling and tim-
ing properties are also considerations of the modeling pro-
cess. We use the Ptolemy II framework for modeling and
simulation purposes [4]. Ptolemy II is a heterogeneous actor-
oriented design tool that provides an integrated modeling
and simulation environment for the conceptual procedure in
Figure 1. Ptolemy has a long history in Cyber-Physical Sys-
tems (CPS) modeling and is a robust modeling tool, since it

enables heterogeneous compositions of models of computa-
tion, which is an essential feature for modeling energy sys-
tems that intrinsically include interactions of physical com-
ponents and communication fabric [3, 6, 9].

3. MODELING SYSTEM ARCHITECTURE
We first model the top level systems architecture and then

develop a hierarchical model to concentrate on middleware
coordination.

3.1 Top Level Model
In Ptolemy, actors are components that communicate via

ports. Using Ptolemy II, the high-throughput devices com-
municating over the network with packets can be abstracted
to discrete-event (DE) components communicating via time
stamped events, where each network packet is represented
by a discrete event in the Ptolemy execution. DE execution
is based on events composed of a token (value) and a tag
(time stamp). The discrete event scheduler guarantees that
events are processed in time stamp order. More precisely,
actors that have the earliest time stamp input events are
executed first. In a DE model, all actors share a global no-
tion of time, namely the model time at the particular level
of hierarchy. This imposes a global ordering of events within
the model and therefore ensures determinacy. The modeling
details of the domain-specific system entities are presented
below.

Modeling PMUs. Phasor Measurement Units are the
main sources of phasor data, abstracted as DE events as they
are represented in the Ptolemy execution. We collectively
model the PMUs residing within a local area in the grid as a
cluster and denote this component as a PMUCluster_i, where
i refers to the area number. This actor is parameterized by
the PMUCount parameter and generates the corresponding
number of events every iteration interval (parameterized by
the PMUPeriod parameter). PMUCount is one of the inputs
to the executable model, which in the outer hierarchy, sam-
pled from a user-defined prior distribution.

Modeling Phasor Data Concentrators (PDCs). A
PDC is responsible for receiving data from multiple PMUs
and producing an aggregated data packet for each PMU at
an application specific rate. We only model the relaying
function of the PDC, where it produces data packets for
each PMU and processes the packets in a FIFO pattern.

Modeling Distributed Power Applications. Each
distributed power application is locally run on a computa-
tion cluster and is expected to consist of multiple iterations,
interleaved with peer-to-peer communications with the co-
ordinating areas. We use a generic computation node model
that accepts SCADA and PDC packets and produces inter-
mediate packets after each algorithm iteration. The passage
of time is characterized by a stochastic delay that allows the
user to tie a stochastic profile with the algorithm execution
time at each iteration.

The top-level model is illustrated in Figure 2. In this ar-
chitecture, the PMUs of each area produce data at 30 sam-
ples per second that are transmitted to the local PDC. Then
data are relayed at the PDC and sent to the local computa-
tion node of each area to be utilized in the periodic power
applications. We assume these deliveries use network con-
nection links specified by North American SynchroPhasor
Initiative (NASPI) [https://www.naspi.org]. In this case,
each PMU is connected to the local PDC by a 56Kbps com-
munication line. The packet size of each PMU message is
assumed to be 128 bytes in compliance with the data format



Figure 3: Middleware Aggregation Top Level Model

of IEEE C37.118 [1]. Each of these links is chosen to be 50
miles long, representing an average physical distance from
a bus to the nearest PDC. We assume each PDC is placed
300 miles away from the local area and the middleware com-
ponent is symmetrically located, at a maximum distance of
350 miles from the PDCs.

3.2 Middleware Model
Middleware models represent the data exchange behavior

of the distributed power applications. We consider two main
roles of the middleware function:

Aggregation. Middleware is responsible for receiving
packets from the PMUs of all distributed areas and aggre-
gating the packets into a universal index file. The functional
model of the top-level middleware aggregator is given in Fig-
ure 3. PMU streams from each area are first taken into a
local aggregator (named Aggregator in the Ptolemy model),
where they are processed on a per-file basis. A synchro-
nization unit, called CombinedIndexFile then aggregates the
streams from all areas into one global output packet.

Convergence Control. Another important role of the
middleware simulation is to determine whether a distributed
power application has reached a global convergence state.
For DSE and similar iterative power applications, the num-
ber of iterations until global convergence relies on several pa-
rameters such as PMU data redundancy and quality. To be
comprehensive, we assume a variable number of iterations,
ranging in the discrete set {1, 2, ..., 20} until convergence has
been reached.

3.3 Model Calibration
For calibrating the model to accurately represent the dis-

tribution of packet processing times, we use the data ob-
tained from benchmark results carried out on the Apache
ActiveMQ message broker that implements the aggregation
and queuing behavior of the middleware. Following the dis-
tributions for the benchmarked number of sensor streams
per area, we carry out a regression analysis on the time
series obtained by the benchmarks to yield a fit estimate
for the middleware processing overhead distribution. The
maximum-likelihood distribution fit for the benchmarked
data range is given by a Rice distribution parameterized
as follows:

Ti ∼ Rice(ν(NPMUi), σ(NPMUi))

ν(NPMUi) = 0.0302 log(NPMUi) + 0.055

σ(NPMUi) = 0.0007 ∗NPMUi + 0.0414

(1)

where Ti is the random variable that denotes the processing
time in seconds of a PMU stream associated with Area i,
Rice() denotes a Rician distribution with parameters ν and
σ, and NPMUi is the number of PMU streams delivered to
Area i.

Figure 4 demonstrates a sample histogram for the distri-
butions of per-file middleware processing times, for 250 con-
current PMU files. The Rician distribution fitting is then
used in the local aggregators, denoted as Aggregator_i in
Figure 3.
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Figure 4: Histograms for simulation generated (estimate)
and experimentally obtained (actual) middleware delay

To further simulate the concurrent queue architecture, we
make use of the Ptolemy actor called MultiInstanceCom-
posite, which is capable of generating a user-defined num-
ber of copies of a component and to run the instances con-
currently. The local aggregator model allows each received
PMU stream to be randomly assigned to one of the process-
ing unit instances within a thread pool, each simulating a
server with stochastic latency that follows (1). The outputs
of all instances are then merged to yield a stream containing
all the processed PMU streams for this particular area.

The top level model and the middleware models are gov-
erned by a Director, which implements a model of computa-
tion. Passage of time at each compositional level is governed
by a local clock that enables the user to define different clock
rates, clock drifts and each local clock’s relation to real time,
if desired, for further time-alignment simulation.

3.4 Monte Carlo Sampling
Smart Grid topologies are expected to be highly variable

in the number of PMUs per area and the inter-area network
characteristics. Monte-Carlo simulations integrated with the
distribution system topology is a useful tool to evaluate the
effect of certain model parameters on middleware perfor-
mance. Figure 5 displays the top level Ptolemy model that
is used to generate Monte Carlo samples of selected model
parameters, explained in detail in Table 1. Here, the param-
eters are assumed to be uniformly distributed over a finite
set of integers to avoid any bias towards a particular fashion
for the PMU distribution. However, it should be noted that
the number of iterations may follow a Gaussian-like distri-
bution in practice.

In this paper, for a power system involving three dis-
tributed areas, we are interested in the 5-tuple <PMU_Count_1,
PMU_Count_2, PMU_Count_3, concurrencyLevel, numberOf-
Iterations> samples of the parameters. The simulation is
run for 6000 seconds in model time for each sample tuple,
roughly corresponding to 100 complete runs of an power ap-
plication, in the specific case of the DSE, assuming each run
of distributed state estimation needs to complete within 60



Figure 2: Overall System Architecture Simulation Model

Figure 5: Monte Carlo sampling in Ptolemy

Table 1: Monte Carlo Variables and Respective Probability
Mass Functions (range format:initial:increment:final )

Parameter Name PMF Range
PMU Count 1 Uniform 10:10:500
PMU Count 2 Uniform 10:10:500
PMU Count 3 Uniform 10:10:500

concurrencyLevel Uniform 2:2:20
numberOfIterations Uniform 1:1:20

seconds. The average and maximum run time per run is
recorded in addition to the Monte-Carlo parameter values.

4. UNCERTAINTY ANALYSIS
Following data collection using Monte-Carlo methods, we

perform polynomial regression analyses to account for the
effect and significance of the model parameters on the max-
imum end-to-end run time. We define the variables to be
used in the regression analysis on Table 2.

The initial question addressed is the influence of the mid-
dleware concurrency level and the maximum number of PMUs
per area on the end-to-end Distributed State Estimation
(DSE) runtime. The polynomial curve fitting methods that
use x1 and x2 as independent variables and y as the depen-

Table 2: Variables for Regression Analysis

Variable Explanation
x1 concurrency level
x2 max{PMU_Count_1,PMU_Count_2,PMU_Count_3}
x3 number of iterations
y maximum end-to-end runtime

Table 3: Polynomial Regression Coefficient Estimates

Coefficient Estimate Confidence Interval
Intercept 18.32 [14.73, 21.93]

x1 -6.9699 [-7.47, -6.46]
x2 0.14869 [0.13, 0.17]
x21 0.73883 [ 0.70, 0.78]
x1x2 -0.01544 [-0.02, -0.01]
x31 -0.02236 [-0.02, -0.02]

dent variable that are run up to order 3 for each explanatory
variable reveal that a bivariate polynomial regression equa-
tion that is cubic in x1 and quadratic in x2 is the best-fitting
model in the studied set of polynomial fits. The best fit is
evaluated in terms of highest Bayesian Information Criterion
(BIC) and lowest sum-of-squares error (SSE) among the set
of fits.

Table 3 presents the best estimates of the polynomial co-
efficients for the regression fit, together with the confidence
intervals for the coefficients. The p-value, which indicates
the false alarm probability for the variable being estimated,
is less than 1E-6 for all the variables taken into account.
This provides high confidence that the regression model is
accurate and avoids over-fitting.

The goodness of fit metrics presented in Table 3 further
confirm that the variables chosen for Monte Carlo simulation
sufficiently relate to the trend in the runtime distribution.
The R2 value indicates that the independent variables x1
and x2 account for explaining 96.8% of the observed data.
Moreover, the fit yields the highest BIC among all bivariate
fits of up to order 3. Since AIC and BIC are goodness of
fit metrics that establish a tradeoff between model accuracy
and complexity, maximizing these while minimizing the fit
error of the model helps in avoiding parameter over fitting.

The regression analysis that best fits obtained simulated
outputs with the input data set is given in Figure 6 with
the 95% confidence bounds. The concurrency level of at



Table 4: Goodness of Fit for Polynomial Regression Analysis

SSE R2 RMSE AIC BIC
2519 0.968 1.784 3209 3251

least 10 is necessary for the middleware to scale in handling
increasing number of PMUs. The response surface has linear
trend as the number of PMU increases, but remains planar
as the concurrency level increases. This indicates further
increasing the concurrency level from 10 to 20 has marginal
benefit.
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Figure 6: Polynomial Regression Analyses of Significant
Monte Carlo Variables

Having shown a significant relationship between end-to-
end maximum runtime and the model parameters middle-
ware concurrency the maximum number of PMUs per area,
we move on to investigate the effect of less significant model
variables. The additional polynomial regression analysis in-
cludes the number of iterations (x3) as the third explanatory
variable candidate. The notation follows from the previous
analysis.

The best fit is selected by evaluating the Akaike Infor-
mation Criterion(AIC) and BIC on a set of polynomial fits
up to order 3 in each explanatory variable. AIC favors the
model order of {3, 2, 2} and BIC favors the model of or-
der {3, 2, 3}, respectively, in {x1, x2, x3}. The AIC-optimal
polynomial fit is chosen, and the results are presented in Ta-
ble 5. The significant coefficient estimates are given, and the
higher-order parameters with confidence intervals centered
around zero are omitted from the result.

Comparison of Tables 4 and 6 reveal that, incorporating
x3 in the regression analysis has little improvement on the
overall fit. Moreover, the coefficient estimates given in Table
5 that depend on x3 are either numerically insignificant or
have confidence bounds that intersect 0, suggesting that the
coefficient values most likely do not express a significant
explanatory relation to the observed variable y. This result
provides more confidence that the number of iterations is
a less significant variable that influences the maximum run
time of the distributed state estimation algorithm, compared
to the concurrency level and the maximum number of PMU
streams per area.

To explain the insignificance of number of DSE iterations
in the analysis, we refer to the system model presented in
section 3. As only intermediate estimate data on tie-line
buses are exchanged, the data communication load is only
approximately 65K bytes per iteration. Even for a larger
scale power system such as the Western Electricity Coor-
dinating Council (WECC) with more than 1300 buses and

Table 5: Extended Polynomial Regression Coefficient Esti-
mates

Coefficient Estimate Confidence Interval
x1 12.2991 [7.82, 16.7761]
x2 -6.9866 [-7.49, -6.4822]
x3 0.1743 [0.15, 0.1997]
x21 0.6242 [0.21, 1.0379]
x1x2 0.7524 [0.72, 0.7884]
x22 -0.0162 [-0.02, -0.0145]
x1x3 0.0001 [0.00, 0.0001]
x2x3 -0.0065 [-0.03, 0.0185]
x23 -0.0019 [-0.00, -0.0003]
x31 -0.0091 [-0.02, 0.0064]
x21x2 -0.0225 [-0.02, -0.0214]

Table 6: Goodness of Fit for Extended Polynomial Regres-
sion Analysis

SSE R2 RMSE AIC BIC
2093 0.974 1.63 3079 3163

6700 loads, the data exchange between neighboring areas
would remain to be a relatively small overhead and would
have little contribution to the end-to-end algorithm runtime.
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Figure 7: Effect of Iterations and Number of PMU Streams
on end-to-end Runtime

5. RELATED WORK
In software architecture design, the accuracy of model-

based quality evaluation relies on the parameters used in
the evaluation methods. The value of some parameters are
only available during system run-time. In our case, such
parameters are the number of iterations of distributed state
estimation, number of PMU devices, data quality of sensor
streams and the concurrency level for adaptive middleware.
To what degree these parameters have effects on the quality
attributes provides insights on the optimal design of soft-
ware architecture. This is especially useful for designing
essential adaptive components that target the most signifi-
cant parameters to the quality attributes in priority. Hausi



et al. [12] proposed a framework for mapping the adapta-
tion properties derived from control theory properties and
quality attributes.

Current model-based quality evaluation methods commonly
delegate different sets of probabilistic models to quality at-
tributes. Markov chains, petri nets, queuing networks, finite
state automata, stochastic processes, dependency graphs and
fault trees are some widely-applied models for quality at-
tributes of reliability, performance, safety, energy consump-
tion. A comprehensive survey on the topic over 188 research
papers is presented in [2]. These quality models are mathe-
matically complex, and in general, it is an involved task to
derive quality metrics as a function of input distributions.

An improvement to the paradigm was proposed by Mee-
deniya et al. [11]. The proposed approach still quantifies
probabilistic properties using conventional reliability eval-
uation models, but Monte Carlo simulation is used to re-
evaluate the model for the samples taken from input pa-
rameter distributions repeatedly. The demonstration of this
approach was on an embedded anti-lock brake system that
features adaptive cruise control. This approach only applies
to a single function component within the system, it is not
yet addressed how to integrate multiple quality models for
different components, and correlate the quality effects of un-
certain parameters to the entire system.

In our approach, we model the whole end-to-end data flow
of a distributed power application including sensor streams,
network, middleware components and distributed power ap-
plications. Our model allows refining the behavior and prop-
erties of the system in hierarchical heterogeneous models.
We also generate samples of uncertain parameters using MC
sampling method. Unlike in [11], MC sample generation is
part of the power application model itself and is executable
as the simulation runs. We demonstrate automated and
scalable techniques of simulating complex distributed appli-
cations on large input sequences and show the interactions
of the generated samples in the overall model workflow.

6. CONCLUSION
In this paper, a modeling based approach for quantify-

ing model uncertainty in middleware that affect distributed
power application timing behavior is presented. The models
encompass the entire data flow from sensors to application
nodes, through network and middleware components. Using
the Ptolemy II framework, we create an integrated design
environment that supports random sampling of model pa-
rameters and subsequent execution of the simulation model
using the generated parameter set. We additionally carry
out regression analysis to discover significant model param-
eters and evaluate their degree of effect on the end-to-end
runtime. The results show that among the considered pa-
rameters, the maximum number of PMU streams for each
area and the middleware concurrency level directly account
for the maximum runtime of the end-to-end process. How-
ever, data exchange caused by iterations until convergence
is a less effective parameter in determining the empirical
worst-case runtime. This indicates that power applications
can benefit from the distributed architecture with accept-
able data communication overhead. It is key to communi-
cate these results to power engineers to help calibrate the
scale and configuration of distributed power applications for
the future power grid and to determine additional scalabil-
ity analyses to investigate using a model based design ap-
proach. Future directions include incorporating additional
design parameters into the Monte Carlo analysis and inves-

tigating alternative distribution patterns for the probability
distributions of the parameters.
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