skip to main content
research-article

Nanoarray architectures multilevel simulation

Published:13 January 2014Publication History
Skip Abstract Section

Abstract

Density and regularity are deemed as the major advantages of nanoarray architectures based on nanowires. Literature demonstrated that proper reliability analyzes must be performed and solutions have to be devised to improve nanoarrays yield. Their complexity and high-fault probability claim for specific design automation tools able to explore circuit solutions, performance and fault-tolerant approaches.

We envision a simulator conceived to carry on characterizations in terms of logic behavior, defect-induced output error rate assessment, switching activity, power and timing performance. Though already existing for traditional technology, a simulator based on specific technological and topological tiled nanoarray descriptions, and conceived to join both device and architecture levels, has never been attempted at the degree of accuracy we present.

Our contribution is twofold. First, marking a difference with respect to the state of the art, we developed an algorithm based on an event-driven engine which works at switch level and is not simply built on top of cost functions evaluations. The straightforward advantage is the possibility to follow the evolution of dynamic control sequences throughout all the inner components of the nanoarray, and, as a consequence, to obtain circuit level characterization as a projection of the real internal parameters.

Second, we added to our simulator the capability to inject faults with specific statistical distributions associated to the nanoarray topology. Here we extract output error rates and yield for one of the possible nanoarray structures proposed in literature, the NASIC. Results specificity and accuracy demonstrate the simulator trustworthiness, its effectiveness for extensive nanoarrays characterization and its suitability as a foundation for both higher architectural and lower device simulation levels.

The aim of this work, then, is to provide insights into the intertwined relation between actual technology and circuit design for these emerging fabrics, and, as a consequence, to clarify how defects and variability affect circuits and systems performance.

References

  1. Ahn, S., Patitz, Z., Park, N., Kim, H. J., and Park, N. 2009. A floorprint-based defect tolerance for nano-scale application-specific IC. IEEE Trans. Instrum. Measure. 58, 5, 1283--1290.Google ScholarGoogle ScholarCross RefCross Ref
  2. Angiolini, F., Jamaa, M., Atienza, D., Benini, L., and De Micheli, G. 2007. Improving the fault tolerance of nanometric PLA designs. In Proceedings of the Design, Automation Test in Europe Conference Exhibition, 2007 (DATE'07). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Awais, M., Vacca, M., Graziano, M., and Masera, G. 2012. Fft implementation using QCA. In Proceedings of the 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Seville, Spain. IEEE, 741--744.Google ScholarGoogle Scholar
  4. Awais, M., Vacca, M., Graziano, M., Ruo Roch, M., and Masera, G. 2013. Quantum dot Cellular automata check node implementation for ldpc decoders. IEEE Trans. Nanotech. 99, 10.Google ScholarGoogle Scholar
  5. Bhaduri, D. and Shukla, S. 2004. Nanolab: A tool for evaluating reliability of defect-tolerant nano architectures. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI. 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chiolerio, A., Allia, P., and Graziano, M. 2012. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magnet. Magnetic Mat. 324, 7.Google ScholarGoogle ScholarCross RefCross Ref
  7. Compaño, R., Molenkamp, L., and Paul, D. J. 2000. Technology roadmap for nanoelectronics. European Commission, Microelectronics Advanced Research Initiative MEL-ARI NANO, http://www.cordis.ln/esprit/src/melari/.htm.Google ScholarGoogle Scholar
  8. Crepaldi, M., Rattalino, I., Motto, P., Demarchi, D., and Civera, P. 2013. A 0.13 murmm CMOS operational schmitt trigger r-to-f converter for nanogap-based nanosensors read-out. IEEE Trans. Circ. Syst. I: Regular Papers, 60, 4, 975--988.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dehon, A. 2002. Array based architectures for molecular electronics. In Proceedings of the 1st Workshop on Non-Silicon Computations (NSC-1).Google ScholarGoogle Scholar
  10. DeHon, A. 2005. Nanowire-based programmable architectures. J. Emerg. Technol. Comput. Syst. 1, 2, 109--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dezan, C., Teodorov, C., Lagadec, L., Leuchtenburg, M., Wang, T., Narayanan, P., and Moritz, A. 2009. Towards a framework for designing applications onto hybrid nano/cmos fabrics. Microelectron. J. 40, 45, 656--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., and Zamboni, M. 2012. Topolinano: Nanoarchitectures design made real. In Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (Amsterdam, The Netherlands). IEEE, 160--167.Google ScholarGoogle Scholar
  13. Frache, S., Graziano, M., and Zamboni, M. 2010. A flexible simulation methodology and tool for nanoarray-based architectures. In Proceedings of the 28th IEEE International Conference on Computer Design (ICCD 2010) (Amsterdam, The Netherlands). IEEE, 60--67.Google ScholarGoogle Scholar
  14. Graziano, M., Chiolerio, A., and Zamboni, M. 2009. A technology aware magnetic QCA NCL-HDL architecture. In Proceedings of the International Conference on Nanotechnology (Genova, Italy). 763--766.Google ScholarGoogle Scholar
  15. Graziano, M., Frache, S., and Zamboni, M. 2013. A hardware viewpoint on biosequence analysis: What's next? J. Emerg. Technol. Comput. Syst. 9, 4, Article 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Graziano, M., Vacca, M., Blua, D., and Zamboni, M. 2011a. Asynchrony in quantum-dot cellular automata nanocomputation: Elixir or Poison? IEEE Design Test of Computers 28, 5, 72--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Graziano, M., Vacca, M., Chiolerio, A., and Zamboni, M. 2011b. An NCL-HDL snake-clock-based magnetic qca architecture. IEEE Trans. Nanotech. 10, 5, 1141--1149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. He, C. and Jacome, M. 2006. RAS-NANO: A reliability-aware synthesis framework for reconfigurable nanofabrics. In Proceedings of the Design, Automation and Test in Europe (DATE'06). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K.-H., and Lieber, C. M. 2001. Logic gates and computation from assembled nanowire building blocks. Science 294, 5545, 1313--1317.Google ScholarGoogle Scholar
  20. Hutchby, J., Cavin, R., Zhirnov, V., Brewer, J. E., and Bourianoff, G. 2008. Emerging nanoscale memory and logic devices: A critical assessment. Computer 41, 5, 28--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lent, C. S., Tougaw, P., Porod, W., and Bernstein, G. 1993. Quantum cellular automata. Nanotechnology 4, 49--57.Google ScholarGoogle ScholarCross RefCross Ref
  22. Likharev, K. K. 2004. CMOL: A New Concept for Nanoelectronics. S. Pietroburgo, Russia.Google ScholarGoogle Scholar
  23. Likharev, K. K., Mayr, A., Muckra, I., and Türel, O. 2003. Crossnets: High-performance neuromorphic architectures for CMOL circuits. Ann. New York Acad. Sci. 1006, 146--156.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lu, W. and Lieber, C. M. 2006. Semiconductor nanowires. J. Phys. D: Applied Physics, 39, 387--406.Google ScholarGoogle ScholarCross RefCross Ref
  25. Luo, Y., Collier, C. P., Jeppesen, J. O., Nielsen, K. A., Deionno, E., Ho, G., Perkins, J., Tseng, H.-R., Yamamoto, T., Stoddart, J. F., and Heath, J. R. 2002. Two-dimensional molecular electronics circuits. ChemPhysChem 3, 6, 519--525.Google ScholarGoogle ScholarCross RefCross Ref
  26. Martina, M. and Masera, G. 2010. Turbo NOC: A framework for the design of network-on-chip-based turbo decoder architectures. IEEE Trans. Circ. Syst. I, Regular Papers 57, 10, 1776--1789. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Moritz, C., Wang, T., Narayanan, P., Leuchtenburg, M., Guo, Y., Dezan, C., and Bennaser, M. 2007. Fault-tolerant nanoscale processors on semiconductor nanowire grids. IEEE Trans. Circuits and Systems I: Regular Papers, 54, 11, 2422--2437.Google ScholarGoogle ScholarCross RefCross Ref
  28. Moritz, C. A., and Wang, T. 2004. Latching on the wire and pipelining in nanoscale designs. In NSC-3. 1--7.Google ScholarGoogle Scholar
  29. Moritz, C. A. and Wang, T. 2006. Towards defect-tolerant nanoscale architectures. In Proceedings of the 6th IEEE Conference on Nanotechnology (IEEE-NANO 2006). 331--334.Google ScholarGoogle Scholar
  30. Motto, P., Dimonte, A., Rattalino, I., Demarchi, D., Piccinini, G., and Civera, P. 2012. Nanogap structures for molecular nanoelectronics. Nanoscale Res. Lett. 7, 113, 7.Google ScholarGoogle ScholarCross RefCross Ref
  31. Narayanan, P. and Moritz, C. A. 2009. Validating cascading of crossbar circuits with an integrated device-circuit exploration. In Proceeding of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOANCH'09). IEEE, 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Narayanan, P., Park, K. W., Chui, C. O., and Moritz, C. 2009. Manufacturing pathway and associated challenges for nanoscale computational systems. In Proceedings of 9th IEEE Conference on Nanotechnology (IEEE-NANO 2009). 119--122.Google ScholarGoogle Scholar
  33. Narayanan, P., Leuchtenburg, M., Wang, T., and Moritz, C. 2008a. CMOS control enabled single-type fet nasic. In Proceedings of the IEEE Symposium on VLSI (ISVLSI'08). 191--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Narayanan, P., Wang, T., Leuchtenburg, M., and Moritz, C. 2008b. Comparison of analog and digital nanosystems: Issues for the nano-architect. In Proceedings of the 2nd IEEE International Nanoelectronics Conference (INEC 2008). 1003--1008.Google ScholarGoogle Scholar
  35. Narayanan, P., Wang, T., Leuchtenburg, M., and Moritz, C. A. 2008c. Image processing architecture for semiconductor nanowire based fabrics. In Proceedings of the 8th IEEE Conference on Nanotechnology (NANO'08). 677--680.Google ScholarGoogle Scholar
  36. Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., and Piccinini, G. 2011. Molecular QCA: A write-in system based on electric fields. In Proceeding of the 2011 IEEE 4th International Nanoelectronics Conference (INEC). 1--2.Google ScholarGoogle Scholar
  37. Pulimeno, A., Graziano, M., Demarchi, D., and Piccinini, G. 2012a. Towards a molecular QCA wire: Simulation of write-in and read-out systems. In Solid-State Electronics. Elsevier 1, 7.Google ScholarGoogle Scholar
  38. Pulimeno, A., Graziano, M., and Piccinini, G. 2012b. UDSM Trends Comparison: From technology roadmap to ultrasparc niagara2. IEEE Trans. Very Large Scale Integ (VLSI) Syst. 20, 7, 1341--1346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Pulimeno, A., Graziano, M., Sanginario, A., Cauda, V., Demarchi, D., and Piccinini, G. 2013. Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanoelectron. 10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L., and Lieber, C. M. 2000. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 5476, 94--97.Google ScholarGoogle Scholar
  41. Semiconductor Industry Association 2010. International Technology Roadmap of Semiconductors, 2010 Update. http://public.itrs.net.Google ScholarGoogle Scholar
  42. Vacca, M., Graziano, M., and Zamboni, M. 2012. Nanomagnetic logic microprocessor: Hierarchical power model. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 8, 8.Google ScholarGoogle Scholar
  43. Wang, K., Khitun, A., and Galatsis, K. 2007. More than moore's law: Nanofabrics and architectures. In Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM'07). IEEE. 139--143.Google ScholarGoogle Scholar
  44. Wang, T., Narayanan, P., and Andras, M. C. 2009. Heterogeneous two-level logic and its density and fault tolerance implications in nanoscale fabrics. IEEE Trans. Nanotechnology 8, 1, 22--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, T., Narayanan, P., Leuchtenburg, M., and Moritz, C. 2008. (NASICs): A nanoscale fabric for nanoscale microprocessors. In Proceedings of the 2nd IEEE International Nanoelectronics Conference (INEC 2008). 989--994.Google ScholarGoogle Scholar
  46. Wang, Z. and Chakrabarty, K. 2007. Built-in self-test and defect tolerance in molecular electronics-based nanofabrics. J. Electron. Test. 23, 2--3, 145--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zhang, S., Choi, M., and Park, N. 2004. Modeling yield of carbon-nanotube/silicon-nanowire FET-based nanoarray architecture with h-hot addressing scheme. In Proceedings of the 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2004). 356--364. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nanoarray architectures multilevel simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 10, Issue 1
        Special Issue on Reliability and Device Degradation in Emerging Technologies and Special Issue on WoSAR 2011
        January 2014
        210 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/2543749
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 January 2014
        • Accepted: 1 August 2012
        • Revised: 1 July 2012
        • Received: 1 April 2012
        Published in jetc Volume 10, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader