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In this manuscript, we study the problem of detecting coordinated free text campaigns in large-scale so-
cial media. These campaigns—ranging from coordinated spam messages to promotional and advertising
campaigns to political astro-turfing—are growing in significance and reach with the commensurate rise
in massive-scale social systems. Specifically, we propose and evaluate a content-driven framework for ef-
fectively linking free text posts with common “talking points” and extracting campaigns from large-scale
social media. Three of the salient features of the campaign extraction framework are: (i) first, we investigate
graph mining techniques for isolating coherent campaigns from large message-based graphs; (ii) second, we
conduct a comprehensive comparative study of text-based message correlation in message and user levels;
and (ii1) finally, we analyze temporal behaviors of various campaign types. Through an experimental study
over millions of Twitter messages we identify five major types of campaigns—namely Spam, Promotion,
Template, News, and Celebrity campaigns—and we show how these campaigns may be extracted with high
precision and recall.
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1. INTRODUCTION

Social media has become very popular in recent years, leading to new opportunities
for global-scale user engagement, sharing, and interaction. Many users of social media
organically engage with social media to share opinions and interact with friends; on
the other hand, social media is a prime target for strategic influence. For example,
there is widespread anecdotal evidence of “astro-turfing” campaigns [Films 2011], in
which political operatives insert memes such as a phrase into sites like Twitter and
Facebook in an effort to influence discourse about particular political candidates and
topics. In addition, there are large campaigns of coordinated spam messages in social
media [Gao et al. 2010], templated messages (e.g., auto-posted messages to social me-
dia sites from third-party applications announcing a user action, like joining a game
or viewing a video), high-volume time-synchronized messages (e.g., many users may
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repost news headlines to social media sites in a flurry after the news has been ini-
tially reported), and so on. In the case of spam and promotion campaigns, the relative
openness of many social media sites (typically requiring only a valid email address to
register) suggests coordinated campaigns could be a low-cost approach for strategically
influencing participants.

And in a sinister direction, there is growing evidence that tightly organized strategic
campaigns are growing in significance [Motoyama et al. 2011; Wang et al. 2012]. One ex-
ample is the development of sites like SubvertAndProfit (www.subvertandprofit.com),
which claims to have access to “25,000 users who earn money by viewing, voting,
fanning, rating, or posting assigned tasks” across social media sites. Related services
can be found at fansandinvites.com, socioniks.com, and usocial.net. Even within the
great firewalls of China, we have witnessed the emergence of the so-called “Wang Luo
Shui Jun” or “Online Water Army” (e.g., http:/shuijunwang.com). According to a re-
cent CCTV report [CCTV 2010], online mercenaries in China help their customers by:
(i) promoting a specific product, company, person or message; (ii) smearing the com-
petitor or adversary or competitors’ products or services; or (iii) deleting unfavorable
posts or news articles. Most online “mercenaries” work part-time and are paid around
5 US cents per action.

User-driven campaigns—often linked by common “talking points”™—appear to be
growing in significance and reach with the commensurate rise of massive-scale so-
cial systems. However, there has been little research in detecting these campaigns “in
the wild”. While there has been some progress in detecting isolated instances of long-
form fake reviews (e.g., to promote books on Amazon), of URL-based spam in social
media, and in manipulating recommender systems [Gao et al. 2010; Hurley et al. 2007;
Lam and Riedl 2004; Lim et al. 2010; Mehta 2007; Mehta et al. 2007; O’'mahony et al.
2002; Ray and Mahanti 2009; Su et al. 2005; Wu et al. 2010], there is a significant need
for new methods to support Web-scale detection of campaigns in social media.

Hence, we focus in this manuscript on detecting one particular kind of coordinated
campaign, namely those that rely on “free text” posts, like those found on blogs, com-
ments, forum postings, and short status updates (like on Twitter and Facebook). For
our purposes, a campaign is a collection of users and their posts bound together by
some common objective, for example, promoting a product, criticizing a politician, or
inserting disinformation into an online discussion. Our goal is to link messages with
common “talking points” and then extract multimessage campaigns from large-scale
social media. Detecting these campaigns is especially challenging considering the size
of popular social media sites like Facebook and Twitter with hundreds of millions of
unique users and the inherent lack of context in short posts.

Concretely, we propose and evaluate a content-based approach for identifying cam-
paigns from the massive scale of real-time social systems. The content-driven frame-
work is designed to effectively link free text posts with common “talking points” and
then extract campaigns from large-scale social media. Note that text posts contain-
ing common “talking points” means the contents of the posts are similar or the same.
We find that over millions of Twitter messages, the proposed framework can identify
hundreds of coordinated campaigns, ranging in size up to several hundred messages
per campaign. The campaigns themselves range from innocuous celebrity support (e.g.,
fans retweeting a celebrity’s messages) to aggressive spam and promotion campaigns
(in which handfuls of participants post hundreds of messages with malicious URLs).
Through an experimental study over millions of Twitter messages we identify five
major types of campaigns—namely Spam, Promotion, Template, News, and Celebrity
campaigns—and we show how these campaigns may be extracted with high precision
and recall. We also find that the less organic campaigns (e.g., Spam and Promotion)
tend to be driven by a higher ratio of messages to participants (corresponding to a
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handful of accounts “pumping” messages into the system). Based on this observation,
we propose and evaluate a user-centric campaign detection approach. By aggregating
the messages posted by a single user, we find that the method can successfully dis-
cover cross-user correlations not captured at the individual message level (e.g., for two
users posting a sequence of correlated messages), resulting in more robust campaign
detection. In addition, we analyze each campaign type’s temporal behavior to see the
possibility to automatically determine a campaign’s campaign type.

The rest of the manuscript is organized as follows. Section 2 highlights relevant
work in spam and campaign detection, information credibility, and persuasion. Then in
Section 3, we formalize the problem statement and present the datasets and evaluation
metrics. Section 4 presents the proposed content-driven campaign detection approach
in detail. In Section 5, we experimentally test the content-driven campaign detection
in message and user levels, and analyze temporal behaviors of several campaign types
that we found in the datasets. We conclude in Section 6 with some final thoughts.

2. RELATED WORK

The prior work relevant to this manuscript covers spam and campaign detection, in-
formation credibility, trust, and persuasion. We summarize several related efforts in
this section.

Researchers have proposed several approaches to detect spam in emails and
Web pages. Representative solutions include link analysis algorithms for link farms
[Becchetti et al. 2008; Benczur et al. 2006; Gyongyi et al. 2006; Wu and Davison 2005],
data compression and machine learning algorithms for email spam [Bratko et al. 2006;
Sahami et al. 1998; Yoshida et al. 2004], and machine learning algorithms for spam
Web pages [Fetterly et al. 2004; Ntoulas et al. 2006].

As social networking sites become more popular, researchers have studied the cat-
egorization of spam content, analyzed spammers’ behaviors, and proposed possible
solutions. Grier et al. [2010] declared that blacklists are too slow in identifying incom-
ing real-time threats on Twitter, allowing more than 90% of visitors to view a malicious
Web page before it becomes blacklisted. Koutrika et al. [2008] proposed a framework
to detect spam in social tagging systems, in which they built user models such as good
user model and bad user model, and showed that tagging systems can be spammed by
bad users. Machine learning algorithms have been used to detect video content spam-
mers and promoters by Benevenuto et al. [2009]. Researchers also studied trending
topic (hashtag) spam problems on Twitter and proposed content-based and machine-
learning-based approaches to solve those problems [Irani et al. 2010; Benevenuto et al.
2010]. Social honeypots on Twitter and MySpace were deployed to collect spammers’
information and to analyze their behaviors, and machine learning algorithms were
used to detect spammers [Lee et al. 2010, 2011b].

In addition, researchers have begun studying group spammers and their tactics.
Mukherjee et al. [2011] proposed an approach which consists of frequent pattern min-
ing techniques, computing spam indicator value, and using SVM Rank to rank possible
spam groups, to detect group review spammers. Gao et al. [2010] studied spam be-
havior on Facebook; their approach finds coordinated spam messages that use the
same malicious URL. The Truthy system [Ratkiewicz et al. 2011] detects astro-turf
political campaigns on Twitter. They first define memes consisting of hashtags, men-
tions, URLSs, and phrases. If Twitter users post tweets or retweet a message containing
one of these memes, they assumed that the users participate in a coordinated effort.
The researchers detect these political campaigns as follows: (1) first identify memes;
(2) compute features (network features, sentiment scores, the number of “truthy” but-
ton clicks, etc.); (3) train a classifier with binary class (either a legitimate campaign
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or “truthy” campaign’, i.e., astro-turf political campaign); and (4) predict unlabeled
memes’ class. Their approach achieved high accuracy.

Other researchers have studied information credibility, trust, and persuasion tech-
niques in social media. Castillo et al. [2011] studied information credibility, especially
in newsworthy topics in Twitter, and built a classifier to determine whether messages
associated with a topic are credible or not. Given a set of confirmed trustworthy and un-
trustworthy nodes such as Web pages on the Web or users in social systems as inputs,
researchers have studied trust propagation methods in local computation and global
computation based on the taxonomy presented by Ziegler and Lausen [2005]. In a local
trust computation [Levien and Aiken 1998; Mui et al. 2002; Ziegler and Lausen 2005],
each node has multiple trust values measured by a single user’s perspective while in
a global trust computation, each node has a single trust value measured by the per-
spective of the whole network [Gyongyi et al. 2004; Caverlee et al. 2008; 2010]. Young
et al. [2011] present their persuasion model and the hostage negotiation corpus (a mi-
crotext corpus) [Gilbert and Henry 2010] which contains 12% persuasive utterances.
Their persuasion model, based on Cialdini’s persuasion model [Cialdini 2007], focuses
on reciprocity, commitment and consistency, scarcity, liking, authority, and social proof.
Based on the persuasion model and using the corpus, they build classifiers to detect
persuasion automatically.

In the literature, researchers have proposed solutions to detect spammers or measure
information credibility in both email and social systems. In contrast, our focus is on
identifying campaigns from massive scale of real-time social systems, understanding
what types of campaigns exist in the social systems, and analyzing temporal behaviors
of various campaign types.

3. CONTENT-DRIVEN CAMPAIGN DETECTION

In this section, we describe the problem of campaign detection in social media, introduce
the data, and outline the metrics for measuring effective campaign detection.

3.1. Problem Statement

We consider a collection of n participants across social media sites U = {u1, ue, ..., u,},
where each participant u; may post a time-ordered list of 2 messages M,, = {mj,
m;g, . .., mip}. Our hypothesis is that among these messages and users, there may exist

coordinated campaigns.

Given the set of users U, a campaign M, can be defined as a collection of messages and
the users who posted the messages: M, = {m;;, u;|lu; € U Nmy; € My, Ntheme(my;) € t;}
such that the campaign messages belong to a coherent theme #,. Themes are human-
defined logical assignments to messages and application dependent. For example, in
the context of spam detection, a campaign may be defined as a collection of messages
with a common target product (e.g., Viagra). In the context of astro-turf, a campaign
may be defined as a collection of messages promoting a particular viewpoint (e.g., the
veracity of climate change). Additionally, depending on the context, a message may
belong to one or multiple themes. For the purposes of this manuscript and to focus our
scope of inquiry, we consider as a theme all messages sharing similar “talking points”
as determined by a set of human judges.

3.2. Data

To evaluate the quality of a campaign detection approach, we would ideally have access
to a large-scale “gold set” of known campaigns in social media. While researchers have
published benchmarks for spam Web pages [Webb et al. 2006; TREC 2007], ad hoc
text retrieval [Voorhees and Dang 2005], and other types of applications [TREC 2004;
Cheng et al. 2010; Lee et al. 2011b], we are not aware of any standard social media
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campaign dataset. Hence, we take in this manuscript a twofold approach for message-
level campaign detection: (i) a small-scale validation over hand-labeled data; and (ii) a
large-scale validation over 1.5 million Twitter messages for which ground truth is not
known.

CDg,q. First, we sample a small collection of messages (1,912) posted to Twitter
in October 2010. Over this small campaign dataset (CDg,q), two judges labeled all
pairs of the 1,912 tweets as sharing similar “talking points” or not, finding 298 pairs
of messages sharing similar “talking points”. Based on these initial labels, the judges
considered all combinations of messages that may form campaigns consisting of four
messages or more, and found 11 campaigns ranging in size from four messages to eight
messages. While small in size, this hand-labeled dataset allows us to evaluate the
precision and recall of several campaign detection methods.

CD14rge- Second, we supplement the small dataset with a large collection of messages
(1.5 million) posted to Twitter between October 1 and October 7, 2010. We sampled
these messages using Twitter’s streaming API, resulting in a representative random
sample of Twitter messages. Over this large campaign dataset (CDr44.), We can test the
precision of the campaign detection methods and investigate the types of campaigns
that are prevalent in the wild. Since we do not have ground-truth knowledge of all
campaigns in this dataset, our analysis will focus on the campaigns detected for which
we can hand-label as actual campaigns or not.

Additionally, we also consider a user-based dataset, in which all of the messages
associated with a single user are aggregated.

CDy.r. Since the datasets CDgpmey and CDjpgge are collected by a random sample
method from Twitter (meaning most users were represented by only one or two mes-
sages), we collected a user-focused dataset from Twitter consisting of 90,046 user pro-
files with at least 20 English-language messages, resulting in 1.8 million total mes-
sages.

3.3. Metrics

To measure the effectiveness of a campaign detection method, we use variations of
average precision, average recall, and the average F; measure. The Average Precision
(AP) for a campaign detection method is defined as

1 < max CommonMessages(PC;, TCs)
AP =~
n 1:21 |PC;| ’

where n is the total number of predicted campaigns by the campaign detection method,
PC is a predicted campaign, and TC is an actual (true) campaign. MaxCommonMessage
function returns the maximum of the number of common messages in both the predicted
campaign i (PC;) and each of the actual (true) campaigns (T'Cs). For example, sup-
pose a campaign detection method identifies a three-message campaign: {my, myg, mso}.
Suppose there are two actual campaigns with at least one message in common:
{m30, mass, m40} and {ml, mio, Mmgs, M50, mel}. Then the precision is max(2, 1)/3 = 2/3.
In the aggregate, this individual precision will be averaged with all n predicted cam-
paigns.
Similarly, we can define the Average Recall (AR) as

AR — 1 Z max Common Messages(PC;, TCs)’
n i |TCJ|
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where n is the number of the predicted campaigns, and T'C; is a true campaign which
has the largest common messages with the predicted campaign i (PC;). Continuing the
example from before, the recall would be max(2, 1)/5 = 2/5.

Finally, we can combine precision and recall as the Average F; measure (AF).

2% AP x AR

A= TP AR

An effective campaign detection approach should identify predicted campaigns that
are composed primarily of a single actual campaign (i.e., have high precision) and that
contain most of the messages that actually belong to the campaign (i.e., have high
recall). A method that has high precision but low recall will result in only partial
coverage of all campaigns available (which could be especially disastrous in the case
of spam or promotional campaigns that should be filtered). A method that has low
precision but high recall may identify nearly all messages that belong to campaigns
but at the risk of mislabeling noncampaign messages (resulting in false positives, which
could correspond to mislabeled legitimate messages as belonging to spam campaigns).

4. CAMPAIGN DETECTION: FRAMEWORK AND METHODS

In this section, we describe the high-level approach for extracting campaigns from
social media, present the message- and user-level campaign detection in detail, and
discuss a MapReduce-based implementation for efficient campaign detection.

4.1. Overall Approach

To detect coordinated campaigns, we explore in this manuscript several content-
based approaches for identifying campaigns. Our goal is to find methods that can
balance both precision and recall for effective campaign detection. In particular, we
propose a content-driven campaign detection approach that views social media from
two perspectives.

Message Level. In the first perspective, we view each message as a potential member
of a campaign. Our goal is to identify a campaign as a collection of its constituent
messages. In this way, we can identify related messages as shown in Figure 1. Given
a set of messages (6 messages in the example), our goal is to build a message graph in
which a node represents a message and if the similarity of a pair of messages is larger
than a threshold (r) then an edge exists between the pair of messages. Note that the
similarity of a pair of messages means how much the pair of messages is similar in
terms of number of common tokens, and a token can be defined as a n-gram word or
n-gram character depending on a message similarity identification algorithm. In this
way, we can identity significant subgraphs as campaigns, which should reflect multiple
messages sharing the same key “talking points”.

User Level. In the second perspective, rather than viewing the message as the core
component of a campaign, we view each user as a potential member of a campaign. In
this way, a campaign is composed of constituent users. This second perspective may
be more reasonable in the case of campaigns that span multiple messages posted by a
single user, or in the case of campaigns in which evidence of the campaign is clear at user
level but perhaps not at the individual message level (say, in cases of 3 spam accounts
that post similar messages in the aggregate, although no two individual messages may
share the same talking points). For this perspective, we construct a graph, but where
nodes represent users and their aggregated messages. Edges exist between users based
on some overall measure of their similarity.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 9, Publication date: December 2013.



Campaign Extraction from Social Media 9:7

| > Bl Messages |

1 | Support Breast Cancer Awareness, add a #twibbon to
your avatar now! - http://bit.ly/4DQ6vq

5 | Support Breast Cancer Awareness, add a #twibbon to
our avatar now! - http://bit.ly/3mAWR1

3 [ I'm having fun with @formspring. Create an account an
d follow me at http://formspring.me/xnadjeaaa

@Wookiefoot Real Money Doubling Forex Robot Fap

IS

Turbo 129¢ http://bit.ly/ch9rlHn?=mjkx

5 [ @justinbebier Support Breast Cancer Awareness, add a
#twibbon to your avatar now! - http://bit.ly/4DQ6vq

RT @justinbebier Support ... #twibbon to your avatar
now! - http://bit.ly/4ADQ6vq

@-f@

Fig. 1. Overall approach showing how to identify campaigns given a list of messages.

6

Q)OO @@

In the following, we detail these two approaches—at message level and at user
level—in great detail.

4.2. Message-Level Campaign Detection

For the task of message-level campaign detection, we consider a graph-based frame-
work, where we model messages in social media as a message graph. Each node in the
message graph corresponds to a message; edges correspond to some reasonable notion
of content-based correlation between messages, corresponding to pairs of messages
with similar “talking points.” Formally, we have the following definition.

Definition 1 (Message Graph). A message graph is a graph G = (V, E) where every
message in M corresponds to a vertex my, in the vertex set V. An edge (m;,, mj,) € E
exists for every pair of messages (m;,, m;,) where corr(m;,, m;,) > t, for a measure of
correlation and some parameter 7.

A message graph which links unrelated messages will necessarily result in poor
campaign detection (by introducing spurious links). Traditional information retrieval
approaches for document similarity (e.g., cosine similarity [Manning et al. 2008], KL-
divergence [Manning and Schiitze 1999]) as well as efficient near-duplicate detection
methods (e.g., Shingling [Broder et al. 1997], I-Match [Chowdhury et al. 2002], and
SpotSigs [Theobald et al. 2008]) have typically not been optimized for the kind of short
posts of highly variable quality common in many social media sites (including Facebook
and Twitter). Concretely we consider six approaches for measuring whether messages
share similar “talking points”

—Unigram Overlap. The baseline unigram approach considered two messages to be
correlated if they have higher Jaccard similarity than a threshold after we extract
unigrams from each message and compute Jaccard similarity. The Jaccard coefficient
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between the unigrams of each pair of messages A and B is used to measure the
similarity of the pair of messages.

[ANB| _ min(A), |B)
|[AU B| — max(|A|, |B|)

—Edit Distance. An alternative is to consider the edit distance between two messages,
that is, two messages are correlated if the number of edits to transform one message
into the other is less than some threshold value. Concretely, we adopt the Levenshtein
distance as a metric for measuring the amount of difference between two messages
[Levenshtein 1966]. The distance is the minimum number of edits required in order
to transform one message into the other.

—Euclidean Distance. Another similarity metric is Euclidean distance which is the
length of the line segment connecting two vectors (two messages in this context).
First convert messages to vectors in the vector space model and then compute their
distance. The smaller the Euclidean distance between two messages, the more similar
they are.

—Shingling. As an exemplar of near-duplicate detection, Broder’s Shingling algorithm
[Broder et al. 1997] views a document d as a sequence of words w1 wg w3 ... w,, where
n is the number of words in d. It extracts unique k-grams {gi, g2, . .., gn}, such that
m is the number of unique k-grams. For easy processing and reduction of storage
usage, each g; is encoded by 64-bit Rabin fingerprints F. The encoded value is called
a shingle. Now, d’s shingles S = {s1, s2, s3, ... sn}, such that s; is a shingle (i.e., a
signature) and s; = F(g;). The Jaccard coefficient between the shingles of each pair
of documents A and B is used to measure the similarity of the pair of documents.

If the similarity score of a pair of documents (messages) is higher than a threshold,
they will be considered as near duplicates (and hence, correlated messages for our
purposes).

—I-Match. In contrast to Shingling, the I-Match [Chowdhury et al. 2002] approach
explicitly leverages the relative frequency of terms across messages. First, it defines
an I[-Match lexicon L based on a message frequency of each term in a collection of
documents (i.e., Twitter messages). Usually, L consists of a bag of words (i.e., terms
or unigrams) which have mid-idf values in the collection. I-Match extracts unigrams
U from a document d and only uses some unigrams P, which have mid-idf values in
the collection (i.e., P = LN U). The idea behind this approach is that infrequent and
too frequent terms are not helpful to detect near-duplicate documents. Then, I-Match
sorts P and concatenates it in order to make a single string, which is then encoded
to a single hash value 2 by SHA-1; in our case, pairs of messages with identical hash
values shall be considered correlated messages.

—SpotSigs. The final approach we consider is SpotSigs [Theobald et al. 2008], which ob-
serves that noisy content, such as navigational banners and advertisements in Web
pages, may result in poor performance of traditional Shingling-based methods. By ob-
serving that stop-words rarely occur in the noisy content, SpotSigs scans a document
to find stop-words as antecedents (anchors), and extracts special k-grams called “spot
signatures”, one of which consists of an antecedent and a k-gram after the antecedent,
excluding stop-words. A hash function is applied to detect identical duplicates.

Jaccard(A, B) =

It is of course an open question how well each of these methods performs toward
the ultimate goal of identifying campaigns in social media. Hence, we shall investigate
experimentally in Section 5 each of these approaches for determining pairwise message
correlation which guides the formation of the message graph.

Given a message graph, we propose to explore three graph-based approaches for
extracting campaigns:
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Fig. 2. In a messages graph, a node represents a message and there exists an edge between correlated
messages. This figure shows an example of a message graph before extracting campaigns.

—(1) loose extraction,;
—(i1) strict extraction; and
—({ii) cohesive extraction.

Experimentally, we compare these graph-based approaches versus a traditional k-
means clustering approach and reach poor results for clustering as compared to the
graph methods. For now, we focus our attention on extracting content-driven campaigns
via graph mining.

4.2.1. Loose Campaign Extraction. The first approach for content-driven campaign de-
tection is what we refer to as loose campaign extraction. The main idea is to identify as
a logical campaign all chains of messages that share common “talking points”. In this
way, the set of all loose campaigns is the set of all maximally connected components in
the message graph.

Definition 2 (Loose Campaign). A loose campaign is a subgraph s = (V’', E’'), such
that s is a maximally connected component of G, in which s is connected, and for all
vertices my, such that my, € V and my, ¢ V'’ there is no vertex m;j, € V' for which
(myy, mjy) € E.

As an example, Figure 2 illustrates a collection of 10 messages, edges corresponding
to messages that are highly correlated, and the two maximal components (correspond-
ing to loose campaigns): {1, 2, 3, 6, 7, 8, 9} and {4, 5}. Such an approach to campaign
detection faces a critical challenge, however: not all maximally connected components
are necessarily campaigns themselves (due to long chains of tangentially related mes-
sages). For example, a chain of similar messages A-B—C-...—Z, while displaying local
similarity properties (e.g., between A and B and between Y and Z), will necessarily
have low similarity across the chain (e.g., A and Z will be dissimilar since there is no
edge between the pair, as in the case of messages 9 and 1 in Figure 2). In practice,
such maximally connected components could contain disparate “talking points” and
not strong campaign coherence.

4.2.2. Strict Campaign Extraction. A natural alternative is to constrain campaigns to be
maximal cliques, what we call strict campaigns.

Definition 3 (Strict Campaign). A strict campaign s’ = (V”, E”) in a message graph
G = (V,E), in which V” € V and E” C E, such that for every two vertices m;, and
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mjy in V”, there exists an edge (m;,, m;y,) € E” and the clique cannot be enlarged by
including one more adjacent vertex (corresponding to a message in M).

To identify these strict campaigns, we can first identify all loose campaigns; by iden-
tifying all maximally connected components over the message graph, we can prune
from consideration all singleton messages and are left with a set of candidate cam-
paigns. Over these candidates, we can identify the strict campaigns through maximal
clique mining. However, discovering all maximal cliques from a graph is an NP-hard
problem (i.e., the time complexity is exponential). Finding all maximal cliques takes
0(3"3) in the worst case where n is the number of vertices [Tomita et al. 2006]. Over
large graphs, even with parallelized implementation over MapReduce-style compute
clusters, the running time is still O(3"/3/m) in the worst case, where n is the number
of vertices and m is the number of reducers [Wu et al. 2009].

And there is still the problem that even with a greedy approximation, strict campaign
detection may overconstrain the set of campaigns, especially in the case of loosely
connected campaigns. Returning to the example in Figure 2, the maximal cliques {1, 2,
3} and {2, 3, 6} would be identified as strict campaigns, but perhaps {1, 2, 3, 6, 7} form
a coherent campaign even though the subgraph is not fully connected. In this case the
strict approach will identify multiple overlapping campaigns and will miss the larger
and (possibly) more coherent campaign. In terms of our metrics, the expectation is that
strict campaign detection will favor precision at the expense of recall.

4.2.3. Cohesive Campaign Extraction. Hence, we also consider a third approach which
seeks to balance loose and strict campaign detection by focusing on what we refer to as
cohesive campaigns, which relaxes the conditions of maximal cliques.

Definition 4 (Cohesive Campaign). Given a message graph G = (V,E), a subgraph
G’ is called a cohesive campaign if the number of edges of G’ is close to the maximal
number of edges with the same number of vertices of G’.

The intuition is that a cohesive campaign will be a dense but not fully connected sub-
graph, allowing for some variation in the “talking points” that connect subcomponents
of the overall campaign. There are a number of approaches mining dense subgraphs
[Hu et al. 2005; Gibson et al. 2005; Wang et al. 2008] and the exact solution is again
NP-hard in computation complexity, so we adopt a greedy approximation approach fol-
lowing the intuition in Wang et al. [2008]. The approach to extract cohesive campaigns
requires a notion of maximum coclique CC(m;,, m;,) for all neighbors.

Definition 5 (Maximum Coclique: CC(myy, mjy)). Given a message graph G = (V,E),
the maximum co-clique CC(m;,, mj,) is the (estimated) size of the largest clique con-
taining both vertices m;, and m;,, where m;, € V and m;, is a neighbor vertex of m;,
(i.e., they are connected).

Considering all of a vertex’s neighbors, we define the largest of the maximum co-
cliques as C(m,).

Definition 6 (C(myy)). Then, C(m;,) is the largest value between m;, and any neigh-
bor m;,, formally defined as C(m;,) = max{CC(mj., m;,), Vm;, € Neighbor(m;,)}.

With these definitions in mind, our approach to extract cohesive campaign is as
follows.

(1) Estimate each vertex’s C(m;,). In the first step, our goal is to estimate the C values for
every vertex in a candidate campaign which indicates the upper bound of the maximum
clique size to which the vertex belongs. Starting at a random vertex m;, in s, we compute
the maximum coclique size CC(my, m;,), where m;, € V' and mj, is a neighbor vertex
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of m;,. Then, we compute C(m;,). We insert m;, into a priority queue and sort all m;, by
CC(myy, mj,). Next, we greedily advance to the mj,, which has the largest CC(m;,, m;,)
among all m;,, and remove it from the queue. Finally, we compute C(m;,). We repeat
this procedure for every vertex in the candidate campaign. At the conclusion of this
procedure, we have an estimated C(m;,) for every vertex.

(2) Cohesive campaign extraction. Given the estimated C(m;,) for every vertex in a
candidate campaign, by considering the order in which the greedy algorithm in step 1
encounters each vertex, we can consider consecutive neighbors as potential members of
the same coherent campaign. Intuitively, the C(m;,) values should be high for vertices
in dense subgraphs but should drop as the algorithm encounters nodes on the border
of the dense subgraph, then rise again as the algorithm encounters vertices belonging
to a new dense subgraph. We identify the first vertex with an increasing C(m;,) over its
neighbor as the initial boundary of a cohesive campaign. We next include all vertices
between this first boundary up to and including the vertex with a C(m;,) value larger
than or equal to some threshold (= the local peak value * A). By tuning A to 1, the
extracted cohesive campaigns will be nearly clique like; lower values of A will result
in more relaxed campaigns (i.e., with less density). We repeat this procedure until we
extract all cohesive subgraphs in the candidate campaign.

The output of the cohesive campaign extraction approach is a list of cohesive cam-
paigns, each of which contains a list of vertices forming a cohesive subgraph.

4.3. User-Level Campaign Detection

We turn our attention to a user-aggregated perspective. In the message-level campaign
detection in the previous section, we have viewed all messages without consideration
for who is posting the messages. By also considering user-level information, we are
interested to see how this impacts campaign detection. The intuition is that by aggre-
gating the messages posted by a single user, we may discover cross-user correlations
not captured at the individual message level (e.g., for two users posting a sequence of
correlated messages), leading to more robust campaign detection.

Definition 7 (User-Aggregated Message Graph). A user-aggregated message graph
is a graph G, = (V, E) where V is a collection of n users’ aggregate messages V =
{My,, My,,..M,,}. An edge (M,,, M,;) € E exists for every pair of vertices (M,,, M,;)
in V where confidence (Mu;, Mu;) > threshold, for some measure of confidence and
threshold. In the confidence computation, message similarity for every pair of messages
(mix, mjy) is computed where corr(mj,, m;y) > t, mi, € My,, m;, € M, and My, M,,, € M,
for some measure of correlation and some parameter .

An important challenge is to define the correlation across vertices in the user-
aggregated message graph, since each vertex now represents multiple messages (and
so straightforward adoption of the message-level correlation approach is insufficient).
For example, the two users in Figure 3 could have several different degrees of message-
level correlation, based on the overlap between their messages. In the figure, we show
messages M, = {mi1, mia}, and M,, = {mp1, mge} from two users u; and ug respectively.
An edge represents that a pair of two messages between M,, and M,, are correlated.

To compute user-based correlation, we propose a measure called confidence that
aggregates message-message correlation and reflects: (i) that one edge in a one-to-
many match receives same weight comparing to the edge in a one-to-one edge; (ii) that
extra edges in a one-to-many match receive less weight than the weight for the edge
in a one-to-one match, but still credits the one-to-many match for more evidence of
user-based correlation.
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Fig. 3. Four matches of correlated messages between user u; and us.

Concretely, we calculate confidence in the following way: Given two users u; and us
and their latest £ messages M,, = {m;1, mja, ..., mz} where i is a user id (i.e., 1 or 2
in our example). First, we compute pairwise message correlation across M,, and M,,,
where pairs are P = {mi,, mgy|1 < x,y < k}. If the correlation of a pair in P is larger
than threshold z, we consider the pair to be correlated. By continuing this procedure
for each pair in P, we have correlated pairs P’ and can calculate: (1) the number of
pairs in P, N = |{my,, mgy|corr(mi,, mpy) > 7,1 < x,y < k}|; and (2) the minimum n
between number of distinct messages belonging to P’ in M,, and number of distinct
messages belonging to P’ in M,,, where n = MIN(|{my,| mi, € My, and My, € P'}|,|{my,]
myy € My, and mpj € P'}|). Now, we define that confidence as

confidence = an+ (1 — a)(N — n),

where o is the weight for the only edge in a one-to-one match or one edge in a one-
to-many match, and 1 — « is the weight for each of the extra edges in a one-to-many
match. We assigned 0.95 to « to balance between an and (1 — a)(IN — n). Returning to
Figure 3(a), (b), (¢), (d), we have {N = 1, n = 1, confidence = 0.95}, {N = 2, n = 1,
confidence = 1}, {N = 2, n = 2, confidence = 1.9}, and {N = 4, n = 2, confidence = 2}
showing that in order of user-based correlationa <b < ¢ < d.

4.4. MapReduce-Based Implementation

To support scalable identification of correlated messages, we implement the proposed
approach over the MapReduce framework, which was introduced by Google to process
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Fig. 4. Logical dataflow of the three MapReduce jobs for identifying correlated messages.

large datasets on a cluster of machines [Dean and Ghemawat 2004]. In MapReduce-
style programming, each task is divided into two subfunctions: (1) a mapper: a sequence
of data is inserted to a computation to generate partial results; and (2) a reducer: the
results are then aggregated. We implemented our correlated message identification
approach on Hadoop [Apache 2012] which can facilitate the handling of large-scale
social message data.

The implementation consists of three MapReduce jobs, illustrated in Figure 4 with
the following notation: (1) d; is an auto-increasing message ID for a message; (2) my;
indicates the j;;, message from user u;; (3) a near-duplicate detection algorithm gen-
erates three signatures (si, sg, s3) from the message mj1; (4) { } means a tuple and [ ]
means a list. To calculate the correlation of the Jaccard coefficient (we use Jaccard co-
efficient in this example, but use Overlap coefficient in the experiments), we calculate
each message’s number of signatures in the map function of the signature generation
job and pass the information associated to the message ID to later jobs. The near-
duplicate detection returns pairs of near-duplicate messages (e.g., m;; and mg; have
0.66 similarity). To test the gains from a MapReduce-based implementation, we ran
the message correlation component over 1.5 million Twitter messages as a MapReduce
job on a small nine-node cluster and as a single-threaded (non-MapReduce) job on a
single machine. The MapReduce job took only 7 minutes as compared to one day in the
non-MapReduce approach, indicating the gains from parallelization.

5. EXPERIMENTAL STUDY

In this section, we explore campaign discovery over social media through an application
of the framework to messages and user-aggregated messages sampled from Twitter. For
message-level campaign detection, we begin by examining how to accurately and effi-
ciently construct the campaign message graph, which is the critical first step necessary
for campaign detection. We find that a short-text modified Shingling-based approach
results in the most accurate message graph construction. Based on this finding, we
next explore campaign detection methods over the small hand-labeled Twitter dataset,
before turning our sights to analysis of campaigns discovered over the large (1.5 mil-
lion messages) Twitter dataset. Based on the insights learned from the experiments in
message-level campaign detection, we run user-level campaign detection to see whether
we can find more evidence of spam and other coordinated campaigns. In the end of this
section, we analyze the temporal patterns of campaigns, which suggests the potential
of predicting a campaign’s category based on its temporal pattern.

5.1. Message Level

We begin by examining message graph construction, which is the critical first step
necessary for campaign detection.
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5.1.1. Message Graph Construction. Recall that each node in the message graph cor-
responds to a message; edges correspond to some reasonable notion of “relatedness”
between messages corresponding to human-labeled similar “talking points”. Our first
goal is to answer the question: can we effectively determine if two messages are cor-
related (i.e., algorithmically determine if they share similar “talking points”) across
hundreds of millions of short messages for constructing the message graph in the
first place? This step is critical for accurate message graph formation for discovering
campaigns.

Using the small campaign dataset (CDg,q11), we consider the 298 pairs of messages
sharing similar “talking points” (as determined by human judges) as the ground truth
for whether an edge should appear in the message graph between the two messages.
We can measure the effectiveness of a message correlation method by precision, recall,
and F;. Precision (P) is the fraction of predicted edges that are correct:

# of correctly predicted edges

# of predicted edges
Recall (R) is the fraction of correct edges that are predicted:
# of correctly predicted edges

# of edges

1: 2PR

The F; measure balances precision with recall: 37%.

Identifying Correlated Messages. We investigate the identification of correlated mes-
sages through a comparative study of the six distinct techniques described in Section 4:
unigram-based overlap between messages, edit distance, Euclidean distance, and
three representative near-duplicate detection algorithms (Shingling [Broder et al.
1997], I-Match [Chowdhury et al. 2002], and SpotSigs [Theobald et al. 2008]). The
near-duplicate detection approaches such as Shingling, I-Match, and SpotSigs have
shown great promise and effectiveness by Web search engines to efficiently identify
duplicate Web content, but their application to inherently short messages lacking
context is unclear.

To evaluate each approach, we considered a wide range of parameter settings. For
example, the quality of Shingling depends on the size of the shingle (2, 3, 4). I-Match
requires minimum and maximum IDF values; we varied the min and max IDF values
over the range [0.0, 1.0] in 0.1 increments and considered all possible pairs (e.g., min =
0.1, max = 0.6). SpotSigs requires a number of antecedents (which we varied across 10,
50, 100, and 500) and a specification of what antecedents will be used. As the authors
of SpotSigs [Theobald et al. 2008] did in their experiments, we used stop-words as
antecedents. And across all approaches, we must also set a predefined threshold value
7, above which a pair of messages are considered correlated (and hence and edge should
appear in the message graph).

With this large parameter space in mind, we show in Table I the results across all
approaches that optimize the F; score (the details of performance of Shingling, I-Match,
and SpotSigs with different parameter value are shown in Figure 5).

We see that the baseline Shingling approach performs the best, with an F; = 0.81.
In contrast, both I-Match and SpotSigs performed much worse (0.50, 0.70), in sharp
contrast to their performance in near-duplicate detection of Web pages (with F; near
95%) [Theobald et al. 2008; Zhang et al. 2010]. While these approaches work well in
news articles and Web pages (relatively long text), they do not work well for short text.
We also observe that unigram-, edit-distance-, and Euclidean-distance-based methods
perform poorly, primarily due to their low recall. This indicates that short messages
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Table I. Identifying Correlated Messages

Approach Fy Precision | Recall
Unigram (r = 0.8) 0.63 0.97 0.46
Edit Distance (r = 11) 0.54 0.97 0.38
Euclidean Distance (t =5) | 0.61 0.99 0.44
4-Shingling (r = 0.3) 0.81 0.89 0.73
I-Match (IDF =1[0.0, 0.8]) 0.50 0.53 0.47
SpotSigs (#A =500, =0.4) | 0.70 0.77 0.64

—— 2-Shingling
0.9} —B— 3-Shingling i 09k
—6— 4-Shingling

n L L L L L n L 8 L L L L o o o o
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1
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Fig. 5. Performance of Shingling, I-Match, and SpotSigs with different parameter value.

that do share common “talking points” may be missed by these approaches which
emphasize on only minor syntactic changes across messages.

Refining Shingling. Based on these results, we further explore refinements to the
baseline Shingling approach. First, we vary the base tokenization unit for message
comparison, which is especially critical for short messages. We consider three general
approaches for extracting tokens to generate shingles: (i) word-based k-grams, in which
k consecutive words are treated as base tokens; (ii) character-based k-grams, in which %
consecutive characters are treated as base tokens. As compared to word-based k-grams,
character-based k-grams generate more tokens but offer finer granularity of measuring
message correlation; and (iii) orthogonal sparse bigrams, introduced by Cormack [2008]
for lexically expanding a short message by generating sparse bigrams by the number
of intervening words, each of which we denote by “?”. For example, “lady gaga is unique
person” generates sparse bigrams: lady + gaga, lady + ? + is, lady + ? + ? + unique,
gaga + is, gaga + ? + unique, gaga + ? + ? + person, is + unique, is + ? + person,
unique + person.
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Table II. Refinements to Shingling

Approach Fy Precision | Recall
4-Shingling (r = 0.3) 0.81 0.89 0.73
Character k-grams (k=6,7 =0.6) | 0.74 1 0.59
OSB. (r =0.5) 0.68 0.6 0.79
With Short Message Overlap 0.88 0.92 0.83

Finally, we note that straightforward application of the Jaccard coefficient over short
messages may underestimate the degree of overlap between two messages, resulting
in the mislabeling of correlated messages as unrelated. For example, suppose we apply
4-Shingling to the following two messages, splitting each message on whitespace and
punctation:

—Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM, MSFT) -
San Francisco Chronicle: http://bit.ly/dhqDGE

—Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM, MSFT)
http://bit.1ly/d3CLlTj

With 18 and 15 shingles, respectively, and 11 shingles in common, the Jaccard coef-
ficient will identify a correlation of only 0.5 (11 / (184+15—11)), even though the two
messages are nearly identical. With a typical threshold 7 of 0.6 or above, these two mes-
sages, though clearly correlated, would not be properly identified. Hence, we propose
as a measure of correlation the overlap coefficient

|AN B
overtap(A, B) = —————
COTTgveriap( ) min(|Al, |B|)

which in this case results in a correlation value of 11/15 = 0.73. In general, smaller
number of words in two messages will give us higher Jaccard and overlap coefficients
divergence. Experimentally, we evaluate the impact of these approaches on the quality
of correlated message identification.

Interestingly, as seen in Table II, neither character-based k-grams nor orthogo-
nal sparse bigrams, which have shown promise in other short text domains, per-
formed as well as Shingling or the short-message-optimized approach presented in
this manuscript. We conjecture that word-based tokens can capture similar messages
well compared to character k-grams and orthogonal sparse bigrams which may gen-
erate too many features, leading to message correlation confusion. The short message
overlap optimization, however, results in the best results and so we shall use this as a
core approach for generating the message graphs in all subsequent experiments.

5.1.2. Campaign Detection over Small Data. In the previous set of experiments, we evalu-
ated several approaches to measuring message correlation. Now we turn our attention
to evaluating campaign detection methods. We begin in this section with the small
dataset (which recall allows us to measure precision and recall against ground truth)
before considering the large dataset.

Over the hand-labeled campaigns in CDg,,,;;, we apply the three graph-based cam-
paign extraction methods: (i) loose; (ii) strict; and (iii) cohesive, over the message graph
generated via the best performing message correlation method identified in the pre-
vious section. We also compare campaign extraction using a fourth approach based
on text clustering. For this nongraph-based approach, we consider k-means clustering,
where each message is treated as a vector with 10K bag-of-words features, weighted
using TF-IDF, with Euclidean distance as a distance function. We vary the choice of %
value, and report the best result.
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Table IIl. Effectiveness Comparison of Campaign
Detection Approaches

Approach | NumC F Precision | Recall
Loose 12 0.962 0.986 0.940
Strict 12 0.906 0.907 0.904
Cohesive 11 0.963 0.977 0.950
k-means 5 0.89 1 0.805

Table III presents the experimental results of the four campaign detection ap-
proaches. The cohesive campaign detection approach found 11 campaigns (NumC) like
the ground truth, but missed a message in two campaigns. The strict approach found
12 campaigns, missed one message in a true campaign, and divided a true campaign
to two predicted campaigns due to the strict campaign rule (all nodes in a campaign
should be completely connected). The loose approach found 12 campaigns, one of which
is not an actual campaign (false positive) and some predicted campaigns contain dis-
similar messages due to long chains. The k-means clustering algorithm found only 5
campaigns. Overall, the cohesive and strict approaches outperformed the loose and
cluster-based approaches. In practice, the ideal approach should return the same num-
ber of campaigns as the ground truth and do so quickly. In this perspective, the cohesive
approach would be preferred over the strict approach because the number of its cam-
paigns is the same with the ground truth, and it is relatively faster than the strict
approach.

5.1.3. Campaign Detection over Large Data. We next examine campaign extraction from
the large Twitter dataset, CDr4g. Can we detect coordinated campaigns in a large
message graph with 1.5 million messages? What kind of campaigns can we find? Which
graph technique is the most effective to find campaigns?

Message Graph Setup. Based on the best message graph construction approach iden-
tified in the previous section, we generated a message graph consisting of 1.5 million
vertices (one vertex per message). Of these, 1.3 million vertices are singletons, repre-
senting messages without any correlated messages in the sample (and hence, not part
of any campaign). Based on this sample, we find 199,057 vertices have at least one
edge; in total, there are 1,027,015 edges in the message graph.

Identifying Loose Campaigns. Based on the message graph, we identify as loose
campaigns all of the maximally connected components, which takes about 1 minute on
a single machine (relying on a breadth-first search with time complexity O(|E| + |V |).
Figure 6 shows the distribution of the size of the candidate campaigns on a log-log scale.
We see that the candidate campaign sizes approximately follow a power law, with most
candidates consisting of 10 or fewer messages. A few candidates have more than 100
messages, and the largest candidate consists of 61,691 messages. On closer inspection,
the largest candidate (as illustrated in Figure 7) is clearly composed of many locally
dense subgraphs and long chains. Examining the messages in this large candidate,
we find many disparate topics (e.g., spam messages, Justin Bieber retweets, quotes,
Facebook photo template) and no strong candidate-wide theme, as we would expect in
a coherent campaign.

Identifying Strict Campaigns. To refine these candidates, one approach suggested in
Section 4 is strict campaign detection, in which we consider only maximal cliques as
campaigns (in which all message nodes in a subgraph are connected to each other).
While maximal clique detection may require exponential time and not be generalizable
to all social message datasets, in this case we illustrate the maximal cliques found
even though it required ~7 days of computation time (which may be unacceptable
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Fig. 6. This figure depicts the distribution of the size of candidate campaigns on a log-log scale. It follows a
power law.
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Fig. 7. This figure depicts a candidate with 61,691 vertices. A blue dot and a black line represent a vertex
and an edge, respectively. The area in the center is dark because most vertices in the center are very densely
connected.

for campaign detection in deployed systems). Considering the top-10 strict campaigns
discovered in order of size: [559, 400, 400, 228, 228, 227, 227,217,217, 214], we find high
overlap in the campaigns discovered. For example, the 2nd and 3rd strict campaigns
(each of size 400) have 399 nodes in common. Similarly, the 4th, 5th, 6th, 7th, and 10th
strict campaigns have over 200 nodes in common, suggesting that these five different
strict campaigns in essence belong to a single coherent campaign (see Figure 8). This
identification of multiple overlapping strict campaigns—due to noise, slight changes in
message “talking points”, or other artifacts of short messages—as well as the high cost
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Fig. 8. An example dense subgraph campaign: the center area is dark because vertices in the area are
very densely connected; this subgraph is almost fully connected except a few vertices. While strict campaign
detection identifies 5 different maximal cliques, cohesive campaign detection identifies a single coherent
campaign including all vertices.

of maximal clique detection suggests the cohesive campaign detection approach may
be preferable.

Identifying Cohesive Campaigns. We next applied the cohesive campaign extraction
approach to the set of candidate campaigns corresponding to maximal connected com-
ponents. We assign A to 0.95 and use the CSV tool [Wang et al. 2008] for an efficient
implementation of computing each vertex my,’s C(m;,) by mapping edges and ver-
tices to a multidimensional space. Although computing C(m;,) of all vertices takes
O(|V|21og |V |2%) where d is a mapping dimension, the performance for real datasets
is typically subquadratic. Figure 9 shows the distribution of the size of the cohesive
campaigns in a log-log scale. Like the candidate campaign sizes, we see that the cohe-
sive campaigns follow a power law. Since the cohesive campaign extraction approach
can isolate dense subgraphs, we see that the large 61,691 message candidate has
been broken into 609 subcomponents. Compared to strict campaign detection, the co-
hesive campaign extraction approach required only 1/7 the computing time on single
workstation.

Examining the top-10 campaigns (shown in Table IV) we see that the cohesive cam-
paign detection approach overcomes the limitations of strict campaign detection by
combining multiple related cliques into a single campaign (recall Figure 8). The biggest
campaign contains 560 vertices and is a spam campaign. The “talking point” of this
campaign is an Iron Man 2 promotion of the form: “4Monthly Iron Man 2 (Three-
Disc Blu-ray/DVD Combo + Digital Copy) ... http:/bit.ly/9L0aZU”, though individual
messages vary the exact wording and inserted link.

Based on a manual inspection of the identified campaigns, we categorize the cam-
paigns into five categories.

—Spam campaigns. These campaigns typically post duplicate spam messages (chang-
ing @username with the same payload), or embed trending keywords, often with a
URL linking to a malware Web site, phishing site, or a product Web site. Example:
“Want FREE VIP, 100 new followers instantly and 1,000 new followers next week?
GO TO http://alturl.com/bpby”.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 9, Publication date: December 2013.



9:20 K. Lee et al.

10
[ ]
[ ]
[ ]
10" o
[ ]
[ ]
[ ]
) °
C [}
% 107 %o
o %
[ ..
oo o
o‘."&.
10_3 .. #o
o oo
(e}
o0 0® 0
4 ©OmD © OO e oo [ ] [ ]
10,40 10* 10? 10°

Size of Campaign

Fig. 9. This figure depicts the distribution of the size of cohesive campaigns on a log-log scale. It also follows
a power law.

Table IV. Top-10 Largest Campaigns

Msgs | Users Talking Points
560 34 Iron Man 2 spam
401 390 Facebook photo template
231 231 Support Breast Cancer Research (short link)
218 218 Formspring template
203 197 Chat template (w/ link)
166 166 Support Breast Cancer Research (full link)
165 154 Quote “send to anyone u don’t regret meeting”
153 153 Justin Bieber Retweets
145 31 Twilight Movie spam
111 111 Quote “This October has 5 Fridays ...”

—Promotion campaigns. Users in these campaigns promote a Web site or product.
Their intention is to expose it to other people. Example: “FREE SignUp!!! earn $450
Per Month Do NOTHING But Getting FREE Offers In The Mail!! http://budurl.
com/PPLSTNG”.

—Template campaigns. These are automatically generated messages typically posted
by a third-party service. Example: “I'm having fun with @formspring. Create an
account and follow me at http://formspring.me/xnadjeaaa”.

—News campaigns. Participants post recent headlines along with a URL. Example:
“BBC News UK: Rwanda admitted to Commonwealth: Rwanda becomes the 54th
member of the Commonwealth g.. http://ad.vu/nujv”.

—~Celebrity campaigns. Users in these campaigns send messages to a celebrity
or retweet a celebrity’s tweet. Example: “@justinbieber please follow me i love
youuu<3”.

Some of these campaigns are organic and the natural outgrowth of social behavior,
for example, a group of Justin Bieber fans retweeting a message, or a group posting
news articles of interest. On closer inspection, we observe that many of the less organic
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Fig. 10. 303 candidate campaigns in the user-aggregated message graph.

campaigns (e.g., spam and promotion campaigns) are driven by a higher ratio of mes-
sages to participants. For example in Table IV, the Iron Man 2 spam campaign consists
of 560 messages posted by only 34 different participants. In contrast, the Justin Bieber
retweet campaign consists of 153 messages posted by 153 different participants.

5.2. User Level

Based on this observation—of a handful of accounts aggressively promoting particular
“talking points” in Twitter—we next turn to user-aggregated campaign detection. By
collapsing multiple messages from a single user in the user-aggregated message graph,
do we find more evidence of spam and other coordinated campaigns (since edges cor-
respond to users with highly correlated messages)? What impact does the confidence
threshold have on campaign detection?

Data and Setup. Since the dataset for the previous study was based on a random
sample of Twitter (meaning most users were represented by only one message), we
use a user-focused dataset CDy,. from Twitter consisting of 90,046 user profiles with
at least 20 English-language messages. Based on these messages, we constructed a
user-aggregated message graph where each vertex corresponds to a user and an edge
exists between all users passing a threshold confidence value. For a threshold of 3.8
(i.e., n = 4) we find 2,301 vertices with at least one edge, and a total of 89,294 edges in
the user-aggregated message graph.

Campaign Detection. Following the campaign framework in Section 4.2.3, we find 303
candidate campaigns illustrated in Figure 10. Applying the cohesive campaign extrac-
tion approach we find 62 campaigns with at least four users. Through manual inspec-
tion, we labeled each of the 62 campaigns according to campaign type (see Figure 11).
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Fig. 11. Campaign type distribution (threshold = 3.8).

We observe that spam and template campaigns are major campaign types in all three
partitions divided by ranges of the size.

We next analyze whether a different campaign category has significantly different
content/terms in messages. To identify significant terms for the users in each cate-
gory type, we identify terms with high mutual information for each campaign category.
Mutual information is a standard information-theoretic measure of “informativeness”
and, in our case, can be used to measure the contribution of a particular term to a
category of campaign. Concretely, we build a unigram language model for each cate-
gory of campaign by aggregating all messages by all users belonging to a particular
campaign category (e.g, all users participating in a spam campaign). Hence, mutual

ptlc)

information is measured as: MI(¢, c) = p(t|c)p(c)logW where p(t|c) is the probability

that a user which belongs to category ¢ has posted a message containing term ¢, p(c) is
the probability that a user belongs to category ¢, and p(¢) is the probability of term ¢
over all categories. That is, p(¢) = count(¢)/n. Similarly, p(¢|c) and p(c) can be simplified
as p(tlc) = count(c, t)/count(c) and p(c) = count(c)/n respectively, where count(c, ¢) de-
notes the number of users in category ¢ which also contain term ¢, and count(c) denotes
the number of users in category c.

Table V shows the top-10 significant terms for each campaign category. In spam
campaigns, we observe that spammers have posted messages regarding increasing
followers via a software service. An example message is “Hey Get 100 followers a
day using http:/yumurl.com/p74ZY6. Its super fast!”. Note that the Twitter Safety
team considers promoting such automated friend software as spam [Twitter 2012].
Promotion campaigns promote particular links or products. An example message is
“if you like iq quize’s then check out this free iq quiz http:/tiny.cc/amazingfreeiqquiz
#donttrytoholla”. Messages of the users in the news campaign contain hot keywords
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Table V. Top-10 Significant Terms for Each Campaign Category

Category Top 10 Terms
spam followers 100 day site fast
check twitter account upload twtmuzik
promotion iq broadcasting | stickam stream quiz
michael #140kingofpop | jackson free woot
news media social bbe engadget | windows
#news apple android africa iphone
template video #epicpetwars xbox chat #tinychat
joined people playing | youtube live
celebrity @justinbieber follow justin bieber love
mee song plss hiii dream
T T T

| [ ] Spam N Fromotion Template | | News | | Celebrity
100 ce o

80

60

Percent (%)

40

20

4~5 6~8 larger than 8
Size

Fig. 12. Campaign type distribution (threshold = 9.5).

(e.g., social, media, android, and iphone) or media name (e.g., bbc, engadget). The
significant terms in template campaigns describe a user’s status (playing, xbox) or
reflect a service being used (chat, #tinycat, and live). Users participating in celebrity
campaigns often post messages targeting a particular celebrity (e.g., @justinbieber)
expressing love or asking for the celebrity to reciprocate and follow the user.

Varying the Confidence Threshold. Now, we are interested in how the confidence
threshold influences the campaigns detected. A higher confidence corresponds to more
tightly correlated users (pairs who tend to post a sequence of similar messages), and
would perhaps suggest a strategic rather than organic campaign. When we increase the
confidence threshold to 9.5 (i.e., n = 10) we find 28 campaigns as shown in Figure 12.
Compared to the lower confidence threshold, the proportion of spam campaigns in-
creases to 65% compared with 42% in the previous experiment (see Table VI). Second,
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Table VI. Campaign Categories
for Low Confidence Threshold
and High Confidence Threshold
Category Low | High
Spam 42% | 65%
Promotion 8% 3%
Template 37% 29%
News 11% 3%
Celebrity 2% 0%

Table VII. Categories of Top-50 Cohesive

Campaigns
Category | Percent | Category Percent
Spam 26% | Promotion 6%
Celebrity 34% | Template 34%

we see that for campaigns of the largest size, all are spam campaigns. This indi-
cates that the confidence threshold can be an effective tunable knob for identifying
strategic campaigns in large-scale social media. Overall, these user-aggregated mes-
sage graph results show that content-based campaign detection can effectively identify
campaigns of multiple types at low confidence and specifically of spam campaigns at
high confidence.

5.3. Temporal Analysis

We next analyze temporal behaviors of the cohesive campaigns. Especially, we study
each cohesive campaign category’s temporal behaviors to see whether each campaign
category has different temporal behavior. Using CDy,4 (one-week data) may be not
enough to study temporal patterns because of sparse data. In order to overcome this
sparsity, we extend the one-week data to three-weeks data collected between October 1
and October 21, 2010 (again, we used Twitter streaming API which allows us to collect
randomly 1% of all messages. If we can access all messages generated on Twitter, we
may just need to use one-week data or even shorter data for the temporal analysis).

For temporal analysis, we selected the top-50 cohesive campaigns detected in
Section 5.1.3, and added similar messages in the extended dataset into each cam-
paign!. Then, we manually labeled the top-50 cohesive campaigns to one of four cate-
gories: Spam, Promotion, Celebrity, and Template. The campaign category distribution
is shown in Table VII.

For temporal behavior analysis, a cohesive campaign is represented by a time-
series vector T, = (Ty1, Tyo, ..., Tyn). Each value in the vector denotes a number
of messages belonging to the campaign in a time unit (e.g., 1 day). Likewise, we
create 50 time series (campaign vectors) based on 1-day unit. To make a time-
series graph smooth (less fluctuated), we use two days moving average. For exam-
ple, given a time series T, = (Ty1, Tuo, Tys, - . ., Tan), two days moving average of T, is
T! = (TalJZrTaz , TazJZrTas . Tan—12+Tan).

We use dynamic time warping barycenter averaging (DBA) which is a global tech-
nique for averaging a set of sequences [Petitjean et al. 2011]. Compared to approaches
like balanced hierarchical averaging or sequential hierarchical averaging, DBA avoids
some of the deficiencies of these alternatives [Niennattrakul and Ratanamahatana
2007].

IThere was no news campaign in the top-50 cohesive campaigns.
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Fig. 13. Average temporal graphs of four campaign categories.

Figure 13 presents an average time series of each campaign type calculated by DBA.
Spam campaigns have a sharp spike, reflecting how spammers post many similar mes-
sages at the beginning and then reduce the frequency of messages or change payload
to avoid being caught by Twitter administrators. Users in promotion campaigns post
messages over a longer period, suggesting that promotion and spam campaigns (though
closely related) may reveal distinctions in their temporal patterns to support automatic
differentiation. Celebrity campaigns have two spikes and then the frequency drops off.
We conjecture that this phenomenon happens as people quickly retweet a celebrity’s
message (the first spike) and then the retweet passes through those users’ social net-
works and is echoed (the second spike). Template campaigns have different temporal
patterns from the others. As we can expect a temporal pattern of template campaigns,
messages forming a template campaign are posted constantly and statically over time.
This phenomenon makes sense because these messages are posted by third-party ser-
vices or tools. Overall, each type of campaigns has different temporal pattern. This
temporal analysis reveals the possibility to automatically classify a campaign type by
its temporal pattern.

5.4. Summary

Through the preceding experiments, we found that it is possible to detect content-based
campaigns in message and user levels in social media. Also, we found five campaign
categories—namely Spam, Promotion, Template, Celebrity, and News campaigns. The
proposed cohesive campaign detection approach outperformed loose and strict cam-
paign detection approaches and a k-means clustering approach in terms of effective-
ness and efficiency. The most encouraging result is that the messages posted by users
who participate in negative campaigns (spam and promotion campaigns) have higher
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content similarity. Temporal analysis of campaigns reveals that each campaign type
has different temporal pattern, showing us the possibility to automatically determine
a campaign’s category.

6. CONCLUSION AND FUTURE WORK

In this manuscript, we have investigated the problem of campaign detection in so-
cial media. We have proposed and evaluated an efficient content-driven graph-based
framework for identifying and extracting campaigns from the massive scale of real-
time social systems. Based on the success of the system we are extending this work
to incorporate adaptive statistical machine learning approaches for isolating artificial
campaigns from organic campaigns. Do we find that strategically organized campaigns
engage in particular behaviors that make them clearly identifiable? Our results in this
manuscript suggest that campaigns are not necessarily “invisible” to automated detec-
tion methods. We are also interested in exploring whether campaigns are centralized
around common types of users or are they embedded in diverse groups. How early in
a campaign’s lifecycle can a strategic campaign be detected with high confidence? Do
we find a change in campaign membership and detection effectiveness after it reaches
a critical mass? These challenges motivate our continuing research.
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