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Abstract. We implement a new algorithm for listing all maximal cliques in
sparse graphs due to Eppstein, Löffler, and Strash (ISAAC 2010) and analyze its
performance on a large corpus of real-world graphs. Our analysis shows that this
algorithm is the first to offer a practical solution to listing all maximal cliques in
large sparse graphs. All other theoretically-fast algorithms for sparse graphs have
been shown to be significantly slower than the algorithm of Tomita et al. (The-
oretical Computer Science, 2006) in practice. However, the algorithm of Tomita
et al. uses an adjacency matrix, which requires too much space for large sparse
graphs. Our new algorithm opens the door for fast analysis of large sparse graphs
whose adjacency matrix will not fit into working memory.

Keywords: maximal clique listing, Bron–Kerbosch algorithm, sparse graphs, d-
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1 Introduction

Clique finding procedures arise in the solutions to a wide variety of important appli-
cation problems. The problem of finding cliques was first studied in social network
analysis, as a way of finding closely-interacting communities of agents in a social
network [19]. In bioinformatics, clique finding procedures have been used to find fre-
quently occurring patterns in protein structures [17,26,27], to predict the structures of
proteins from their molecular sequences [43], and to find similarities in shapes that may
indicate functional relationships between proteins [14]. Other applications of clique
finding problems include information retrieval [5], computer vision [20], computational
topology [50], and e-commerce [49].

For many applications, we do not want to report one large clique, but all maximal
cliques. Any algorithm which solves this problem must take exponential time in the
worst-case because graphs can contain an exponential number of cliques [37]. However,
graphs with this worst-case behavior are not typically encountered in practice. More
than likely, the types of graphs that we will encounter are sparse [16]. Therefore, the
feasibility of clique listing algorithms lies in their ability to appropriately handle sparse
input graphs. Indeed, it has long been known that certain sparse graph families, such as
planar graphs and graphs with low arboricity, contain only a linear number of cliques,
and that all maximal cliques in these graphs can be listed in linear time [10,11]. In
addition, there are also several methods to list all cliques in time polynomial in the
number of cliques reported [46], which can be done faster if parameterized on a sparsity
measure such as maximum degree [36].
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Many different clique-finding algorithms have been implemented, and an algorithm
of Tomita et al. [45], based on the much earlier Bron–Kerbosch algorithm [8], has been
shown through many experiments to be faster by orders of magnitude in practice than
others. An unfortunate drawback of the algorithm of Tomita et al., however, is that both
its theoretical analysis and implementation rely on the use of an adjacency matrix rep-
resentation of the input graph. For this reason, their algorithm has limited applicability
for large sparse graphs, whose adjacency matrix may not fit into working memory. We
therefore seek to have the best of both worlds: we would ideally like an algorithm that
rivals the speed of the Tomita et al. result, while having linear storage cost.

Recently, together with Maarten Löffler, the authors developed and published a new
algorithm for listing maximal cliques, particularly optimized for the case that the in-
put graph is sparse [13]. This new algorithm combines features of both the algorithm
of Tomita et al. and the earlier Bron–Kerbosch algorithm on which it was based, and
maintains through its recursive calls a dynamic graph data structure representing the
adjacencies between the vertices that remain relevant within each call. When analyzed
using parameterized complexity in terms of the degeneracy of the input graph (a mea-
sure of its sparsity) its running time is near-optimal in terms of the worst-case number
of cliques that a graph with the same sparsity could have. However, the previous work
of the authors with Löffler did not include any implementation or experimental results
showing the algorithm to be good in practice as well as in theory.

1.1 Our Results

We implement the algorithm of Eppstein, Löffler, and Strash for listing all maximal
cliques in sparse graphs [13]. Using a corpus of many large real-world graphs, together
with synthetic data including the Moon–Moser graphs as well as random graphs, we
compare the performance of our implementation with the algorithm of Tomita et al.
We also implement for comparison, a modified version of the Tomita et al. algorithm
that uses adjacency lists in place of adjacency matrices, and a simplified version of the
Eppstein–Löffler–Strash algorithm that represents its subproblems as lists of vertices
instead of as dynamic graphs. Our results show that, for large sparse graphs, the new
algorithm is as fast or faster than Tomita et al., and sometimes faster by very large fac-
tors. For graphs that are not as sparse, the new algorithm is sometimes slower than the
algorithm of Tomita et al., but remains within a small constant factor of its performance.

2 Preliminaries

We work with an undirected graph G = (V,E) with n vertices and m edges. For a vertex
v, let Γ (v) be its neighborhood {w | (v,w) ∈ E}, and similarly for a subset W ⊂ V let
Γ (W ) be the set

⋂
w∈W Γ (w), the common neighborhood of all vertices in W .

2.1 Degeneracy

Definition 1 (degeneracy). The degeneracy of a graph G is the smallest number d such
that every subgraph of G contains a vertex of degree at most d.



proc Tomita(P, R, X)
1: if P∪X = /0 then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P∪X to maximize |P∩Γ (u)|
5: for each vertex v ∈ P\Γ (u) do
6: Tomita(P∩Γ (v), R∪{v}, X ∩Γ (v))
7: P← P\{v}
8: X ← X ∪{v}
9: end for

Fig. 1. The Bron–Kerbosch algorithm with the pivoting strategy of Tomita et al.

Every graph with degeneracy d has a degeneracy ordering, a linear ordering of the
vertices such that each vertex has at most d neighbors later than it in the ordering.
The degeneracy of a given graph and a degeneracy ordering of the graph can both be
computed in linear time [6].

2.2 The Algorithm of Tomita et al.

The algorithm of Tomita et al. [45] is an implementation of Bron and Kerbosch’s
algorithm [8], using a heuristic called pivoting [26,9]. The Bron–Kerbosch algorithm is
a simple recursive algorithm that maintains three sets of vertices: a partial clique R, a set
of candidates for clique expansion P, and a set of forbidden vertices X . In each recursive
call, a vertex v from P is added to the partial clique R, and the sets of candidates for
expansion and forbidden vertices are restricted to include only neighbors of v. If P∪X
becomes empty, the algorithm reports R as a maximal clique, but if P becomes empty
while X is nonempty, the algorithm backtracks without reporting a clique.

In the basic version of the algorithm, |P| recursive calls are made, one for each
vertex in P. The pivoting heuristic reduces the number of recursive calls by choosing a
vertex u in P∪X called a pivot. All maximal cliques must contain a non-neighbor of u
(counting u itself as a non-neighbor), and therefore, the recursive calls can be restricted
to the intersection of P with the non-neighbors.

The algorithm of Tomita et al. chooses the pivot so that u has the maximum number
of neighbors in P, and therefore the minimum number of non-neighbors, among all
possible pivots. Computing both the pivot and the vertex sets for the recursive calls can
be done in time O(|P| ·(|P|+ |X |)) within each call to the algorithm, using an adjacency
matrix to quickly test the adjacency of pairs of vertices. This pivoting strategy, together
with this adjacency-matrix-based method for computing the pivots, leads to a worst-
case time bound of O(3n/3) for listing all maximal cliques [45].

2.3 The Algorithm of Eppstein, Löffler, and Strash

Eppstein, Löffler, and Strash [13] provide a different variant of the Bron–Kerbosch
algorithm that obtains near-optimal worst-case time bounds for graphs with low degen-
eracy. They first compute a degeneracy ordering of the graph; the outermost call in the



proc Degeneracy(V , E)
1: for each vertex vi in a degeneracy ordering v0, v1, v2, . . . of (V,E) do
2: P← Γ (vi)∩{vi+1, . . . ,vn−1}
3: X ← Γ (vi)∩{v0, . . . ,vi−1}
4: Tomita(P, {vi}, X)
5: end for

Fig. 2. The algorithm of Eppstein, Löffler, and Strash.

recursive algorithm selects the vertices v to be used in each recursive call, in this order,
without pivoting. Then for each vertex v in the order, a call is made to the algorithm
of Tomita et al. [45] to compute all cliques containing v and v’s later neighbors, while
avoiding v’s earlier neighbors. The degeneracy ordering limits the size of P within these
recursive calls to be at most d, the degeneracy of the graph.

A simple strategy for determining the pivots in each call to the algorithm of Tomita
et al., used as a subroutine within this algorithm, would be to loop over all possible
pivots in X∪P and, for each one, loop over its later neighbors in the degeneracy ordering
to determine how many of them are in P. The same strategy can also be used to perform
the neighbor intersection required for recursive calls. With the pivot selection and set
intersection algorithms implemented in this way, the algorithm would have running
time O(d2n3d/3), a factor of d larger than the worst-case output size, which is O(d(n−
d)3n/3).

However, Eppstein et al. provide a refinement of this algorithm that stores, at each
level of the recursion, the subgraph of G with vertices in P∪X and edges having at
least one endpoint in P. Using this subgraph, they reduce the pivot computation time
to |P|(|X |+ |P|), and the neighborhood intersection for each recursive call to time
|P|2(|X |+ |P|), which reduces the total running time to O(dn3d/3). This running time
matches the worst-case output size of the problem whenever d≤ n−Ω(n). As described
by Eppstein et al., storing the subgraphs at each level of the recursion may require as
much as O(dm) space. But as we show in Section 3.1, it is possible to achieve the same
optimal running time with space overhead O(n+m).

2.4 Tomita et al. with Adjacency Lists

In our experiments, we were only able to run the algorithm of Tomita et al. [45] on
graphs of small to moderate size, due to its use of the adjacency matrix representation.
In order to have a basis for comparison with this algorithm on larger graphs, we also
implemented a simple variant of the algorithm which stores the input graph in an adja-
cency list representation, and which performs the pivot computation by iterating over
all vertices in P∪X and testing all neighbors for membership in P. When a vertex v is
added to R for a recursive call, we can intersect the neighborhood of r with P and X by
iterating over its neighbors in the same way.

Let ∆ be the maximum degree of the given input graph; then the pivot computa-
tion takes time (O∆(|X |+ |P|)). Additionally, preparing subsets for all recursive calls
takes time O(|P|∆). Fitting these facts into the analysis of Tomita et al. gives us a



O(∆(n−∆)3∆/3) time algorithm. ∆ may be significantly larger than the degeneracy,
so this algorithm’s theoretical time bounds are not as good as those of Tomita et al. or
Eppstein et al.; nevertheless, the simplicity of this algorithm makes it competitive with
the others for many problem instances.

3 Implementation and experiments

We implemented the algorithm of Tomita et al. using the adjacency matrix representa-
tion, and the simple adjacency list representation for comparison. We also implemented
three variants of the algorithm of Eppstein, Löffler, and Strash: one with no data struc-
turing, using the fact that vertices have few later neighbors in the degeneracy ordering,
an implementation of the dynamic graph data structure that only uses O(m+ n) extra
space total, and an alternative implementation of the data structure based on bit vectors.
The bit vector implementation executed no faster than the data structure implemen-
tation, so we omit its experimental timings and any discussion of its implementation
details.

3.1 Implementation Details

We maintain the sets of vertices P and X in a single array, which is passed between
recursive calls. Initially, the array contains the elements of X followed by the elements
of P. We keep a reverse lookup table, so that we can look up the index of a vertex
in constant time. With this lookup table, we can tell whether a vertex is in P or X in
constant time, by testing that its index is in the appropriate subarray. When a vertex
v is added to R in preparation for a recursive call, we reorder the array. Vertices in
Γ (v)∩X are moved to the end of the X subarray, and vertices in Γ (v)∩P are moved
to the beginning of the P subarray (see Figure 3). We then make a recursive call on
the subarray containing the vertices Γ (v)∩ (X ∪P). After the recursive call, we move
v to X by swapping it to the beginning of the P subarray and moving the boundary so
that v is in the X subarray. Of course, moving vertices between sets will affect P and X
in higher recursive calls. Therefore, in a given recursive call, we maintain a list of the
vertices that are moved from P to X , and move these vertices back to P when the call
ends.

1 8 3 12 7 6 9 4 2 11 8 36 1127 11 92 4

X ∩ Γ(v) P ∩ Γ(v)
X P

10 10

Fig. 3. When a vertex v is added to the partial clique R, its neighbors in P and X (highlighted in
this example) are moved toward the dividing line in preparation for the next recursive call.
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Fig. 4. For each vertex in P∪X , we keep an array containing neighbors in P. We update these
arrays whenever a vertex is moved from P to R, and whenever we need to intersect a neighborhood
with P and X for a recursive call.

The pivot computation data structure is stored as set of arrays, one for each potential
pivot vertex u in P∪X , containing the neighbors of u in P. Whenever P changes, we
reorder the elements in these arrays so that neighbors in P are stored first (see Figure 4).
Computing the pivot is as simple as iterating through each array until we encounter a
neighbor that is not in P. This reordering procedure allows us to maintain one set of
arrays throughout all recursive calls, requiring linear space total. Making a new copy of
this data structure for each recursive call would require space O(dm).

3.2 Results

We implemented all algorithms in the C programming language, and ran experiments
on a Linux workstation running the 32-bit version of Ubuntu 10.10, with a 2.53 GHz
Intel Core i5 M460 processor (with three cache levels of 128KB, 512KB, and 3,072KB
respectively) and 2.6GB of memory. We compiled our code with version 4.4.5 of the
gcc compiler with the -O2 optimization flag.

In our tables of results, “tomita” is the algorithm of Tomita et al., “maxdegree” is the
simple implementation of Tomita et al.’s algorithm for adjacency lists, and “hybrid” and
“degen” are the implementations of Eppstein, Löffler, and Strash with no data structure
and with the linear space data structure, respectively. We provide the elapsed running
running times (in seconds) for each of these algorithms; an asterisk indicates that the
algorithm was unable to run on that problem instance due to time or space limitations.
In addition, we list the number of vertices n, edges m, the degeneracy d, and the number
of maximal cliques µ .

Our primary experimental data consisted of four publicly-available databases of
real-world networks, including non-electronic and electronic social networks as well as
networks from bioinformatics applications.

– A data base curated by Mark Newman [40] (Table 1) which consists primarily of
social networks; it also includes word co-occurrence data and a biological neural
network. Many of its graphs were too small for us to time our algorithms accurately,
but our algorithm was faster than that of Tomita et al. on all four of the largest
graphs; in one case it was faster by a factor of approximately 130.



– The BioGRID data [44] (Table 2) consists of several protein-protein interaction
networks with from one to several thousand vertices, and varying sparsities. Our
algorithm was significantly faster than that of Tomita et al. on the worm and fruitfly
networks, and matched or came close to its performance on all the other networks,
even the relatively dense yeast network.

– We also tested six large social and bibliographic networks that appeared in the Pajek
data set but were not in the other data sets [7] (Table 3). Our algorithm was consis-
tently faster on these networks. Due to their large size, the algorithm of Tomita et
al. was unable to run on two of these networks; nevertheless, our algorithm found
all cliques quickly in these graphs.

– We also tested a representative sample of graphs from the Stanford Large Network
Dataset Collection [32] (Table 4). These included road networks, a co-purchasing
network from Amazon.com data, social networks, email networks, a citation net-
work, and two Web graphs. Nearly all of these input graphs were too large for the
Tomita et al. algorithm to fit into memory. For graphs which are extremely sparse,
it is no surprise that the maxdegree algorithm was faster than our algorithm, but
our algorithm was consistently fast on each of these data sets, whereas the maxde-
gree algorithm was orders of magnitude slower than our algorithm on the large
soc-wiki-Talk network.

Table 1. Experimental results for Mark Newman’s data sets [40]

graph n m d µ tomita maxdegree hybrid degen
zachary [48] 34 78 4 39 < 0.01 < 0.01 < 0.01 < 0.01
dolphins [35] 62 159 4 84 < 0.01 < 0.01 < 0.01 < 0.01
power [47] 4,941 6,594 5 5,687 0.29 < 0.01 0.01 0.01
polbooks [28] 105 441 6 199 < 0.01 < 0.01 < 0.01 < 0.01
adjnoun [29] 112 425 6 303 < 0.01 < 0.01 < 0.01 < 0.01
football [15] 115 613 8 281 < 0.01 < 0.01 < 0.01 < 0.01
lesmis [25] 77 254 9 59 < 0.01 < 0.01 < 0.01 < 0.01
celegensneural [47] 297 1,248 9 856 < 0.01 < 0.01 < 0.01 < 0.01
netscience [39] 1,589 2,742 19 741 0.02 < 0.01 < 0.01 < 0.01
internet [40] 22,963 48,421 25 39,275 6.68 0.28 0.11 0.11
condmat-2005 [38] 40,421 175,693 29 34,274 39.65 0.22 0.32 0.35
polblogs [4] 1,490 16,715 36 49,884 0.08 0.28 0.18 0.12
astro-ph [38] 16,706 121,251 56 15,794 3.44 0.19 0.22 0.23

As a reference point, we also ran our experimental comparisons using the two sets
of graphs that Tomita et al. used in their experiments. First, Tomita et al. used a data
set from a DIMACS challenge, a collection of graphs that were intended as difficult
examples for clique-finding algorithms, and that have been algorithmically generated
(Table 5). And second, they generated graphs randomly with varying edge densities;
in order to replicate their results we generated another set of random graphs with the
same parameters (Table 6). The algorithm of Eppstein, Löffler, and Strash runs about



Table 2. Experimental results for BioGRID data sets (PPI Networks)[44].

graph n m d µ tomita maxdegree hybrid degen
mouse 1,455 1,636 6 1,523 0.01 < 0.01 < 0.01 < 0.01
worm 3,518 3,518 10 5,652 0.14 0.01 0.01 0.01
plant 1,745 3,098 12 2,302 0.02 < 0.01 < 0.01 < 0.01
fruitfly 7,282 24,894 12 21,995 0.62 0.03 0.03 0.04
human 9,527 31,182 12 23,863 1.06 0.03 0.05 0.05
fission-yeast 2,031 12,637 34 28,520 0.06 0.12 0.09 0.07
yeast 6,008 156,945 64 738,613 1.74 11.37 4.22 2.17

Table 3. Experimental results for Pajek data sets [7].

graph n m d µ tomita maxdegree hybrid degen
foldoc [21] 13,356 91,471 12 39,590 2.16 0.11 0.14 0.13
eatRS [23] 23,219 304,937 34 298,164 7.62 1.52 1.55 1.03
hep-th [3] 27,240 341,923 37 446,852 12.56 3.40 2.40 1.70
patents [18] 240,547 560,943 24 482,538 * 0.56 1.22 1.65
days-all [12] 13,308 148,035 73 2,173,772 5.83 62.86 9.94 5.18
ND-www [1] 325,729 1,090,108 155 495,947 * 1.80 1.81 2.12

Table 4. Experimental results for Stanford data sets [32].

graph n m d µ tomita maxdegree hybrid degen
roadNet-CA [34] 1,965,206 2,766,607 3 2,537,996 * 2.00 5.34 5.81
roadNet-PA [34] 1,088,092 1,541,898 3 1,413,391 * 1.09 2.95 3.21
roadNet-TX [34] 1,379,917 1,921,660 3 1,763,318 * 1.35 3.72 4.00
amazon0601 [30] 403,394 2,443,408 10 1,023,572 * 3.59 5.01 6.03
email-EuAll [31] 265,214 364,481 37 265,214 * 4.93 1.25 1.33
email-Enron [24] 36,692 183,831 43 226,859 31.96 2.78 1.30 0.90
web-Google [2] 875,713 4,322,051 44 1,417,580 * 9.01 8.43 9.70
soc-wiki-Vote [33] 7,115 100,762 53 459,002 0.96 4.21 2.10 1.14
soc-slashdot0902 [34] 82,168 504,230 55 890,041 * 7.81 4.20 2.58
cit-Patents [18] 3,774,768 16,518,947 64 14,787,032 * 28.56 49.22 58.64
soc-Epinions1 [42] 75,888 405,740 67 1,775,074 * 27.87 9.24 4.78
soc-wiki-Talk [33] 2,394,385 4,659,565 131 86,333,306 * > 18,000 542.28 216.00
web-berkstan [34] 685,231 6,649,470 201 3,405,813 * 76.90 31.81 20.87

2 to 3 times slower than that of Tomita et al. on many of these graphs; this confirms
that the algorithm is still competitive on graphs that are not sparse, in contrast to the
competitors in Tomita et al.’s paper which ran 10 to 160 times slower on these input
graphs. The largest of the random graphs in the second data set were generated with
edge probabilities that made them significantly sparser than the rest of the set; for those
graphs our algorithm outperformed that of Tomita et al by a factor that was as large



as 30 on the sparsest of the graphs. The maxdegree algorithm was even faster than our
algorithm in these cases, but it was significantly slower on other data.

Table 5. Experimental results for Moon–Moser [37] and DIMACS benchmark graphs [22].

Graphs n m d µ tomita maxdegee hybrid degen
M-M-30 30 405 27 59,049 0.04 0.04 0.06 0.04
M-M-45 45 945 42 14,348,907 7.50 15.11 20.36 10.21
M-M-48 48 1080 45 43,046,721 22.52 48.37 63.07 30.22
M-M-51 51 1224 48 129,140,163 67.28 150.02 198.06 91.80
MANN a9 45 918 27 590,887 0.44 0.88 0.90 0.53
brock 200 2 200 9876 84 431,586 0.55 2.95 2.61 1.22
c-fat200-5 200 8473 83 7 0.01 0.01 0.01 0.01
c-fat500-10 500 46627 185 8 0.04 0.04 0.09 0.12
hamming6-2 64 1824 57 1,281,402 1.36 4.22 4.15 2.28
hamming6-4 64 704 22 464 < 0.01 < 0.01 < 0.01 < 0.01
johnson8-4-4 70 1855 53 114,690 0.13 0.35 0.40 0.24
johnson16-2-4 120 5460 91 2,027,025 5.97 27.05 31.04 12.17
keller4 171 9435 102 10,284,321 5.98 24.97 26.09 11.53
p hat300-1 300 10933 49 58,176 0.07 0.29 0.25 0.15
p hat300-2 300 21928 98 79,917,408 91.31 869.34 371.72 163.16

4 Conclusion

We have shown that the algorithm of Eppstein, Löffler, and Strash is a practical algo-
rithm for large sparse graphs. This algorithm is highly competitive with the algorithm
of Tomita et al. on sparse graphs, and within a small constant factor on other graphs.
The advantage of this algorithm is that it requires only linear space for storing the graph
and all data structures. It does not suffer from the drawback of requiring an adjacency
matrix, which may not fit into memory. Its closest competitor in this respect, the Tomita
et al. algorithm modified to use adjacency lists, is sometimes faster by a small factor
but is also sometimes slower by a large factor. Thus, the algorithm of Eppstein et al. is
a fast and reliable choice for listing maximal cliques, especially when the input graphs
are large and sparse.

For future work, it would be interesting to compare our results with those of other
popular clique listing algorithms. We attempted to include results from Patric Östergård’s
popular Cliquer program [41] in our tables; however, at the time of writing, its newly
implemented functionality for listing all maximal cliques returns incorrect results.

Acknowledgments We thank Etsuji Tomita and Takeaki Uno for helpful discussions.
This research was supported in part by the National Science Foundation under grant
0830403, and by the Office of Naval Research under MURI grant N00014-08-1-1015.



Table 6. Experimental results on random graphs.

Graphs d µ tomita maxdegree hybrid degen
n p

100

0.6 51 59,898 0.08 0.26 0.25 0.14
0.7 59 439,928 0.50 2.04 1.85 0.99
0.8 70 5,776,276 6.29 28.00 24.86 11.74
0.9 81 240,998,654 249.15 1136.15 1028.84 425.85

300

0.1 21 3,663 < 0.01 0.01 0.01 < 0.01
0.2 47 18,911 0.02 0.07 0.08 0.05
0.3 74 86,179 0.10 0.44 0.49 0.24
0.4 101 555,724 0.70 4.24 3.97 1.67
0.5 130 4,151,668 5.59 42.37 36.35 13.05
0.6 162 72,454,791 101.35 958.74 755.86 227.00

500

0.1 39 15,311 0.02 0.03 0.06 0.04
0.2 81 98,875 0.11 0.46 0.61 0.27
0.3 127 701,292 0.86 5.90 6.10 2.29
0.5 225 103,686,974 151.67 1888.20 1521.90 375.23

700

0.1 56 38,139 0.04 0.10 0.19 0.09
0.2 117 321,245 0.37 2.01 2.69 1.00
0.3 184 3,107,208 4.06 36.13 38.12 11.47

1,000
0.1 82 99,561 0.11 0.34 0.70 0.28
0.2 172 1,190,899 1.45 10.35 14.48 4.33
0.3 266 15,671,489 21.96 262.64 280.58 66.05

2,000 0.1 170 750,991 1.05 5.18 11.77 3.13

3,000 0.1 263 2,886,628 4.23 27.51 68.52 13.62

10,000

0.001 7 49,716 1.19 0.04 0.07 0.07
0.003 21 141,865 1.30 0.11 0.36 0.26
0.005 38 215,477 1.47 0.25 1.03 0.51
0.01 80 349,244 2.20 1.01 5.71 1.66
0.03 262 3,733,699 9.96 20.66 133.94 20.67
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