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ABSTRACT 
This paper describes the results of an ITiCSE working group 
convened in 2013 to review and revisit the influential ITiCSE 
2001 McCracken working group that reported [18] on novice 
programmers’ ability to solve a specified programming problem. 
Like that study, the one described here asked students to 
implement a simple program. Unlike the original study, students’ 
in this study were given significant scaffolding for their efforts, 
including a test harness. Their knowledge of programming 
concepts was also assessed via a standard language-neutral 
survey. 
One of the significant findings of the original working group was 
that students were less successful at the programming task than 
their teachers expected, so in this study teachers’ expectations 
were explicitly gathered and matched with students’ performance. 
This study found a significant correlation between students’ 
performance in the practical task and the survey, and a significant 
effect on performance in the practical task attributable to the use 
of the test harness. The study also found a much better correlation 
between teachers’ expectations of their students’ performance 
than in the 2001 working group.  

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computers and Information 
Science Education—Computer Science Education 

General Terms 
Measurement, Experimentation. 

Keywords 
Programming, CS1, assessment, replication. 

1. INTRODUCTION 
In 2001, an ITiCSE working group led by Mike McCracken 
(known as the McCracken Working Group and hereafter 
abbreviated as MWG) met in Canterbury to complete and analyze 
a study of novice programmers at institutions around the world. 
The working group produced one of the most highly cited papers 
in SIGCSE’s publication history [18] with two significant 
outcomes: it demonstrated that CS1 students were less capable 
programmers than their teachers expected; and it set the scene for 
a number of subsequent medium- to large-scale multi-national, 
multi-institutional studies. Despite this, and an explicit call for 
replication in the original MWG paper, there has been very little 
effort since directed at replicating or extending the work of the 
original group. 

In 2013, the ITiCSE conference returned to Canterbury and the 
opportunity was taken to “reconvene” the MWG to address the 
broad questions of whether “students in 2013 are any more likely 
to fulfill our expectations than they were in 2001”, specifically 
by: 

 critically revisiting the original McCracken study and 
subsequent work, 

 partially replicating their experiment, and 
 analyzing and reflecting on the results to determine the 

extent to which the conclusions drawn by that group are 
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still valid despite the changes in CS1 teaching and 
students over the intervening years. 

The authors, five of whom were members of the MWG, 
administered both a practical programming task and a concept 
assessment test (quiz) as detailed below, and also recorded their 
expectations of their students’ performance. As in the original 
working group, not everyone managed to collect data, due in part 
to restrictions on gathering data from their own students, and in 
part to the timing constraints imposed by operating as an ITiCSE 
working group (which does not completely form until very close 
to the end of the European/US academic year).  

The task and the test data, along with notes of teachers’ 
expectations, were analyzed during the group’s meeting at 
ITiCSE. 

2. METHOD & COHORT DESCRIPTIONS 
2.1 Method 
To determine the programming ability of a cohort of students 
from several universities (see Section 2.2 below), the working 
group devised a two-part assessment.  It consisted of a CS1 
concept assessment that used The Foundational CS1 Assessment 
Instrument [24] and a programming skill assessment (the clock 
problem as described in Section 3).  Lastly, we asked the faculty 
to reflect on their expectations of the performance of their 
students on the skill and concept assessments and on the actual 
outcomes of the assessments as compared to their expectations. 

The working group decided to use the two-part assessment 
(concept and skill) to hopefully clarify or better understand the 
outcomes of the skill assessment.  In other words, if a student did 
well on the skill assessment, did they comparably do well on the 
concept assessment, and if they did poorly on the skill assessment 
did they similarly do poorly on the concept assessment? The 
linkage of skill and concepts is discussed widely in the cognitive 
science literature (e.g. [19]), in programming cognition literature 
(e.g. [20]), and examined in recent studies (e.g. [16]). 

As became apparent after the fact in the original MWG, teachers 
entering into studies like this one have a set of expectations 
regarding the performance of the students on the tasks making up 
the study. In this study we captured and reviewed these 
expectations, as described in Section 7. 

The concept assessment was a multiple-choice exam and was 
scored in two ways.  A complete score for each student was 
computed from the 27 questions that cover nine concept areas: 
Fundamentals, Logical Operators, Selection, Definite Loops, 
Indefinite Loops, Arrays, Function/Method Parameters, 
Function/Method Return Values and Recursion.  For details on 
the instrument, its validity, etc., please refer to [23].  A subset 
score was also computed from the concept areas that the working 
group determined were used in the skill assessment.  That subset 
of 15 questions was from the concept areas: Fundamentals, 
Logical Operators, Selection, Function/Method Parameters and 
Function/Method Return Values. Section 5 describes the concept 
assessment and it’s scoring. 

The skill assessment (the clock problem) was scored with a test 
harness.  The harness contained a set of black box tests that 
validated the functionality of the student’s programs as described 
in Section 3.  The students wrote their programs in their language 
of instruction.  The languages were Java, Python, and C/C++. 

2.2 Cohort 
The total cohort for our study consisted of 418 first-year students 
who have taken at least one introductory programming course at 
university level.  Some students had taken a few other non-
programming CS courses, and a few had taken a substantial 
number.  The amount of programming education for the cohort 
varied between 4 and 10 ECTS with a weighted average of 7 
ECTS. (An ECTS credit is a broad measure of student effort, 
including formal teaching and self-study time. 1 ECTS credit is 
equivalent to 25-30 hours of student effort [9]). 

Members of the working group recruited the students for the 
cohort.  Most of the students were recruited within the institution 
of the WG member, but some were from other institutions.  
Overall, the cohort represents students from 12 institutions in 10 
countries.  18% of the cohort is from the USA, and 82% is from 
Europe.  Approximately 50% of the total cohort is from a single 
European university. 

For organization of data collection and analysis, we divided the 
cohort into eight groups.  The groups vary in many ways, e.g.: 

 amount and type of programming education prior to 
data collection 

 amount of additional non-programming CS education 

 program of study (CS major, CS minor, Engineering, 
CS/programming as an elective, etc.) 

 type(s) of programming language(s) used 

 language of instruction (native/foreign) 

Table 1 provides an overview of the eight groups in the cohort 
and which parts of the assessment they took part in, although not 
all students who attempted both parts completed both parts. 

Table 1: Overview of Cohort. “Credits” reflect the volume of 
study, measured in ECTS credits 

G
ro

u
p

s 

C
ou

rs
e 

se
ct

io
n

s 

S
tu

d
y 

p
ro

gr
am

 

L
an

gu
ag

e 
an

d
 

st
yl

e 

P
ro

gr
am

m
in

g 
 

C
re

di
ts

 

O
th

er
 C

S 
C

re
di

ts
 

N
 

C
on

ce
p

t 
te

st
 

C
lo

ck
 t

es
t 

 

R1 1 Eng.   Python(proc.) 5 0 151 x x

R2 1 Eng.+CS Python (OO) 10 0-10 58 x x

P 1 CS Java (OO) 10 25 26 x x

T 8 Mostly 
CS 

Java (OO) and 
C (proc.) 

10 20 57 x x

V 1 CS C# (proc.) ~10 ? 17 x  

Q 2 CS C/C++ (proc.) 4 21 49 x x

S 1 Eng. C++ (proc.) 6 0 40 x x

U 1 CS Java (OO) 8 0 20  x

3. THE CLOCK TASK 
As a test of programming ability, students were asked to 
undertake a simple programming task. A reference 
implementation was written in Java, with the instructions to 
students embedded in comments in the code. 
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3.1 The Problem 
Students were asked to complete the implementation of a class 
(called Time) representing a 24-hour clock. The behavior of the 
clock with respect to wrap-around of the hours, minutes and 
seconds values was described with examples. The clock has four 
operations which students were asked to implement: a tick 
operation which advances the stored time by one second, a 
comparison operation which determines the order of two times, 
and add and subtract methods which calculate the sum or 
difference of two time values. 

The problem is designed to focus on students’ ability with the 
concepts of selection, arithmetic and Boolean expressions, 
although it also touches on their understanding of method 
parameters and return values. Unlike the original MWG, it is also 
designed only to require students to implement a part of a 
complete program, with a strong bias towards ADT 
implementation, rather than the original algorithm-focused input-
parse-output-loop style. 

Students undertook the task in “closed lab” settings of around 90 
minutes duration (group S had 75 minutes, and group U 110). For 
most groups, the task was completed as part of a course and most 
of the students on that course undertook it. In three cases (R1, R2 
and P) the students were volunteers comprising 10-30% of their 
respective cohorts. Analysis of their performance in the courses 
from which they were recruited suggests that the volunteers were 
representative of their cohorts. Most of the participants were 
mildly incentivized to participate, either by entry to a small-prize 
raffle (T,S and U), a coursework grade bonus (Q) or a small prize 
and a grade bonus (R1 and R2). Group P students received no 
incentive. 

3.2 Reference Implementation 
The reference version of the task was written in Java, and 
translated into other (implementation) languages by individual 
investigators. The instructions for undertaking the task were 
included (as comments) in a skeleton implementation (Time.java) 
provided as a starting point for students (see Appendix A). This 
skeleton included the class boiler-plate code down to the level of 
skeletons of the required methods as well as the descriptive 
comments. As well as the skeleton code, the reference 
implementation included an example solution and a test harness. 
The intention was that the test harness and skeleton 
implementation of the Time class should be provided to students 
as a starting point and a check for their work. In some institutions 
however, the test harness was not provided to students, although it 
was subsequently used to assess the accuracy of their 
implementations. 

The skeleton of the Time class included full implementations of 
the entire class, with the exception of the bodies of the methods 
students were required to complete. In the case of the comparator 
method the skeleton body included a return statement to ensure 
that the skeleton compiled. As well as these methods, the skeleton 
also included constructors and a toString() method (to produce a 
printable representation of the time value) to support testing of the 
implementation. 

The reference implementation also included a test harness 
containing 8-10 black-box tests for each of the four methods to be 
completed in the Time class. These tests covered both simple 
cases; all of the rollover cases for the tick() and add() methods, 
and the “borrow” cases for subtract(). In addition, the Java and 

OO Python implementations included tests for common 
implementation problems (e.g. equality/identity confusions).  

The test harness was organized so that all the tests for a particular 
method were performed, independent of any failures, but tests for 
subsequent methods were only executed if all prior tests had 
passed. This was intended to avoid presenting students with a 
long list of failure messages before they had started their work, 
but had the effect of “ordering” students’ approach to the tasks. 
Students using the test harness were discouraged from working on 
methods before all the tests on “previous” methods passed. The 
order of method tests in the reference test harness was: tick(), 
compareTo(), add(), and subtract(). 

3.3 Translations 
The reference implementation was translated into C/C++, C# 
(which was eventually unused) and two variants in Python. In 
addition, the comments in both Python versions were also 
translated into the local (natural) language for use in one of the 
institutions. Other institutions where the students’ first language 
was not English nevertheless used the English versions of the 
instruction/comment. All versions are available on request from 
the first author. 

4. THE TASK: ANALYSIS & RESULTS 

4.1 Analysis 
The participants’ Clock Task submissions were evaluated 
using black-box tests. Using the same four sets of tests – one 
for each method that needed to be implemented – provided to 
most of the participants as part of the programming task. 
However, in evaluating submissions, all tests were run, even if 
an earlier test had failed. A method in one submission was 
judged completely correct if it passed all of the tests for that 
method; passing only some of the tests for a method was a 
failure. Combining the results for each method in a submission 
determined the overall mark for that submission, which is an 
integer between 0 and 4 – a count of how many of the methods 
in a submission passed all the tests. 

4.1.1 Results 
Table 2: Results on the Clock Task 
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R1 Yes 149 3.04 82 81 72 68 

R2 Yes 57 3.86 98 98 96 93 

P Yes 26 3.27 92 92 73 73 

T Yes 38 3.21 84 89 76 71 

Q No 15 0.80 33 13 27 7 

S No 40 0.93 33 29 17 14 

U No 20 0.65 30 15 10 10 

combined Yes 270 3.26 87 87 78 74 

combined No 75 0.83 32 22 17 12 
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combined All 345 2.72 75 73 65 61 

 

Table 2 shows, for each cohort, the average number of methods 
successfully completed by the participants as well as the 
percentages of participants who successfully completed each 
individual method. On average, the participants completed 2.72 
methods out of 4. This overall average leans towards the larger 
cohorts however, and as is obvious from the table, there were 
substantial differences between the cohorts, with a group of 
cohorts scoring very high and another group very low. As Table 2 
also illustrates, a significant factor in this two-way split appears to 
be whether the cohorts had been provided with a test harness or 
not. In all cases, it was reported that students had previously been 
exposed to ideas of testing software, but had not been asked to 
take a systematic approach to it in their work. Below, we will 
discuss the results of the two groups separately. 

4.1.2 Cohorts with a Test harness 
In four cohorts (R1, R2, P, T), the students completed an average 
of 3.26 methods out of four, with the majority of students 
completing all four. In all of these cohorts, the students were 
provided with a test harness as described in Section 3.  

The test harness strongly encouraged the students to attempt each 
method in order and not skip ahead before they had a working 
solution to the previous method. It is unsurprising; therefore, the 
first method (tick()) was correctly implemented more than the 
other methods, with the number of successful submissions 
decreasing at each successive method. 

Table 2 suggests there were two points in the four-method 
sequence that caused some of the students to get stuck and not 
make further progress. Some fell at the first hurdle: about 13 % of 
the with-harness students could not produce a working 
implementation of the tick() method. Nearly all of those who 
succeeded with tick also did well on the next method, 
compareTo(); in one cohort (T), the result was better for the 
second method than the first. The second spot of difficulty arrived 
with the third method, add(); about 9 % of the students failed at 
this point, but those who succeeded went on to produce a fully 
working solution to the last method, subtract(). The correlations 
between methods shown in Table 3 bears out this interpretation: 
success in implementing tick() and compareTo() correlate 
relatively strongly with each other, as do add() and subtract() with 
respect to each other. These results suggest that the students found 
the first two methods to be easier than the other two.  

Table 3: Correlation between Performance on Sub-tasks in 
Clock Task, calculated for each student 
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tick() 1 .500 .354 .352 

compareTo() 1 .262 .391 

add() 
  

1 .591 

subtract()    1 

4.1.3 Cohorts without a Test harness 
Due to ambiguity in the methodology as explained to working 
group members, participants at some institutions were not 
provided the ‘test harness’.  Some of these participants were only 
given the Time class; others were given the Time code with a 
main method, but no test cases. 

In contrast to the cohorts discussed above, submissions from 
participant cohorts not provided with the test harness (i.e., cohorts 
Q, S, and U) have an average of 0.83 correct methods. 

A few participants left traces of creating their own test harness in 
their submissions, others may have created testing facilities but 
not submitted them. Evidence suggests that less than 5% of the 
students did any systematic testing. However, even in the absence 
of a test harness, many student code submissions pass many of the 
unit tests for one, or more, methods.  

Not having the test harness requires students to identify and 
correctly implement all the corner cases, as well as avoiding 
inserting any unrecognized bugs of their own.  

The possible implications of not having the test harness: 

 It requires participants to understand the use of the 
Clock class from its documentation alone, rather than 
from the examples provided by the harness. 

 It requires participants either to create their own test 
cases, or not test their work at all. 

 It requires participants using OO languages to realize 
the Time class will be used by an object of another 
class, which might be a novel approach for them. 

 The harness imposes an order of work – non-harness 
students may lack scaffolding without the ordering 
imposed by the harness. 

 A failing test in the harness may discourage students 
from moving on to subsequent sub-tasks. 

 
Mistakes (made less likely with the harness) seen in non-harness 
participants (cohort U): 

 including a main() method  (2/20) 
 creating a loop in the tick() method (3/20) 

Observing that several students in the no-harness group have 
partial solutions, an alternative analysis of these submissions was 
devised. The same unit tests were run for the no-harness 
submission. However, instead of recording a binary success / fail 
for each method, the numbers of tests passed for each method 
were tallied. Table 4 summarizes the results. 

45 of 75 (60%) of the submissions were judged partially correct 
code whereas only 3 of 75 (4%) of the submissions were judged 
completely correct. 

 

Table 4: Detailed success rates for non-harness students 
(n=75) 

Sub-task 
Partial success 

(%) 
Complete 

success(%) 
Total 
(%) 

tick() 19 33 52 

compareTo(
) 

37 23 60 

add() 21 19 40 

subtract() 21 12 33 
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Figure 1 shows histograms of the number of test cases passed by 
students not provided with a test harness for a) the tick() method, 
b) the compareTo() method, c) the add() method, d) the subtract() 
method, and e) all methods combined. As can be seen from this 
figure, students in these cohorts had a tendency to either pass 
none of the tests for a particular method, or pass all of them. This 
leads to an apparent bi-modality in the outcomes at the method 
level, which is not apparent at the aggregate level. This probably 
represents a relaxation of the ordering imposed by the test 
harness, with students here successfully completing some, but not 
all, method implementations. The “spike” in successful 
completion of the compareTo() method (with 2 successful unit 
tests passed) is an artifact; the skeleton provided for this method 
coincidentally passes two of the tests. 

It should be noted that: 

 3 of 75 submissions passed all N tests 
 42 of 75 submissions passed between 1 and N-1 tests 
 22 of 75 submissions passed at least one unit test for 

each method 
In these cohorts, too, a trend can be observed in that the students 
were more successful with the first methods than the later ones, 
although there is more variation in this respect in the no-harness 
group than in the with-harness one. This greater variation is likely 
to be a reflection of the no-harness students being less constrained 
in their choice of which methods to tackle and when. It may be 
that the order of appearance of the methods in the provided 
skeleton, which was the same as the order of the method tests in 
the test harness, suggested an implicit order in which students 
attempted implementation. 

  

  

 

Figure 1: Partial success for the non-harness groups 
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5. THE ASSESSMENT INSTRUMENT 

5.1.1 Assessment of Conceptual Understanding 
The Foundational CS1 (FCS1) Assessment Instrument was used 
to measure students’ conceptual understanding of programming 
concepts [24].  The FCS1 is a validated exam of topics commonly 
found in a first computer science course and is written in pseudo-
code so that it can be used in courses that use a variety of 
programming languages and pedagogies.    

The exam uses a multiple-choice question format to investigate 
topics in three different dimensions:  definition, tracing, and code-
completion.  The definition questions explore a student’s 
understanding of a concept, while the tracing questions ask 
students to predict the outcome of the execution of a piece of 
code.  Code-completion is the code-writing task, where students 
are asked to fill in missing portions of code to complete a function 
to produce a certain result.   

The validity of the assessment instrument has previously been 
demonstrated using a three-pronged mixed methods approach integrating both quantitative and qualitative techniques.  Think 
aloud interviews provided evidence that students were reading 
and reasoning with the pseudo-code to answer questions in the 
manner intended.  Statistical analysis techniques demonstrated 
both the quality of the questions themselves as well as a 
correlation with external faculty definitions and measures of CS1 
knowledge [24].   

5.1.2 Data Collection & Analysis 
The FCS1 was administered via a web-based survey tool at six 
different universities.  The exam was given under testing 
conditions – a closed laboratory setting with proctors to supervise 
the testing environment.  Students were given one hour to 
complete the assessment, and the majority (96.1%) finished 
within the time limit, or at least did not appear to have run out of 
time1.  A two-page overview of the pseudo-code syntax was 
provided to each student before the exam began and was available 
for reference throughout the assessment. 

5.1.3 Results 
We received a total of 231 valid responses to the FCS1 
assessment.  Before data analysis could begin, outliers from the 
data set that would bias or skew the results were removed. 
Exclusionary criteria include: empty submission, entered the same 
answer to 10 or more questions in a row, and spending less than 
15 minutes on the entire exam (an average of 33 seconds per 
question.)  A second researcher verified the rules for exclusion 
and independently reviewed all of the exams that were removed 
from the data set to confirm that they met one or more of the 
exclusionary criteria. After scrubbing, the final data set consisted 
of 217 responses.  

The FCS1 was then scored, awarding a 1 for a correct answer and 
a 0 for an incorrect answer. (Any question left blank was not 
scored.)  The maximum score was a 25, and the minimum score 
was a 2 out of a total of 27 questions. Student participants 

answered an average of 11.35 (42.02%, σ = 4.711) questions 
correctly.  Questions about math operators and if statements were 
among the most commonly answered correctly. The programming 

                                                                 
1 A participant was determined to have run out of time if they worked on 

the assessment for the full hour and left a significant percentage (>35%) 
of the questions at the end blank. 

constructs related to function parameters, function return values, 
and definite loops were the most difficult questions.  The 
distribution of performance on the concept assessment by cohort 
is shown in Table 5.  There was a statistically significant 
difference between groups as determined by one-way ANOVA 
(F(6,210)=23.119, p = 0.000).  A Tukey post-hoc test revealed 
that cohorts R2 and P scored significantly higher than all of the 
other cohorts (16.81 and 16.36 respectively).  Further, the Tukey 
post-hoc test identified a subset of cohorts (R1, T, and Q) that 
performed better than the remaining two cohorts.  There was no 
statistically significant difference between the remaining two 
cohorts (p = 1.000). 
 

Table 5: Overall Student Scores on the FCS1 Assessment 
Instrument by Cohort 

Cohort N 
Averag

e 
% σ Median 

R1 15 11.27 41.73 3.97 11 

R2 16 16.81 62.27 4.56 17 

P 25 16.36 60.59 4.23 15 

T 57 12.02 44.51 4.08 12 

V 17 7.53 27.89 3.47 7 

Q 49 10.31 38.17 3.38 10 

S 38 7.69 28.49 2.68 8 

 

A subsequent analysis examined the performance of students on 
the subset of topics on the FCS1 assessment that were identified 
as learning objectives in the clock task skills assessment: 
fundamentals, logical operators, selection statement, function 
parameters and function return values. The maximum score was a 
14, and the minimum score was a 0 out of a total of 15 questions. 

Student participants answered an average of 5.96 (39.76%, σ = 
2.657) questions correctly.     

Table 6: Student Scores on the FCS1 Assessment Instrument 
on Task Topics by Cohort 

 

 Questions about math operators and logical operators were 
among the most commonly answered correctly. The programming 
constructs related to function parameters and function return 
values remained the most difficult questions.  The distribution of 
performance on the concept assessment by cohort is shown in 
Table 5. There was a statistically significant difference between 
groups as determined by one-way ANOVA (F(6,211)=17.168, p = 
0.000). A Tukey post-hoc test revealed that cohorts R2 and P 
scored significantly higher than all of the other cohorts (8.81 and 
8.64 respectively).  Further the post-hoc analysis identified that 
cohort T participants performed significantly better (6.33 ± 2.42 

Cohort N Average % σ Median 
R1 15 5.47 36.44 2.45 5 
R2 16 8.81 58.75 2.81 8.5 
P 25 8.64 57.60 2.66 8 
T 57 6.33 42.22 2.42 6 
V 17 4.76 31.76 1.64 5 
Q 49 5.29 35.24 1.86 6 
S 38 4.10 27.35 1.79 4 
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points, p = 0.000) than the S cohort.  There were no statistically 
significant differences between the remaining cohorts. 

6. CORRELATIONS BETWEEN THE 
ASSESSMENT AND THE CLOCK TASK 
6.1 Overall Task Score and Concept 
Assessment 
A Pearson product-moment correlation coefficient was computed 
to assess the relationship between the scores on the skills and 
conceptual assessment instruments as enacted by the clock task 
and the FCS1 assessment instrument respectively.  There was a 
positive correlation between the two variables, r = 0.653, n =140, 
p = 000.  Overall, there was a strong, positive correlation between 
the overall score on the clock task (i.e. the number of tests a 
student passed) and their score on the FCS1 assessment (see 
Figure 2).   Further, there also exists a strong positive correlation 
between the clock task score and the score on the subset of the 
topics isolated by the task (r = .605, n = 141, p = .000).  See Table 
7 for more details. 

 

Figure 2: Graph of students' overall score on the Clock task vs 
score on the FCS1 Assessment for the overall population 

Subsequently, in order to investigate the extent to which the test 
harness mediated task performance, we conducted another 
correlation study with the total population split into two 
subgroups by whether or not they conducted the clock task 
assessment with the test harness A Pearson product-moment 
correlation coefficient was computed to assess the relationship 
between the scores on the skills and conceptual assessment 
instruments as enacted by the clock task and the FCS1 assessment 
instrument respectively by subgroup.   

Table 7: Pearson’s Correlation between Clock Task Score and 
Concept Assessment Score 

 

There was a positive correlation between the two variables clock 
task score and assessment score for both subgroups.  However, 
the decrease in correlation (r = .473 and r = .403) suggests that 
the test harness is indeed scaffolding students’ performance, 
perhaps beyond their ability to fully understand the conceptual 
material exercised in the skills task.  The weaker correlations in 
the “without test harness” subgroup are likely caused by the very 
strong floor effect in the task performance (see Figure 1). A 
general view of students’ relative performance, separated by the 
availability of the test harness is given in Figure 3 and Figure 4. 

   

Figure 3: Graph of students' overall score on the Clock task vs 
score on the FCS1 Assessment for students with a test harness. 

Cohort N 
Overall  

FCS1 Score 

Task Topics  

FCS1 Score 

  r p r p 

Total 140 .653 .000 .605 .000 

With Test Harness 89 .473 .000 .403 .000 

Without Test 
Harness 

51 .287 .041 .392 .004 
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Figure 4: Graph of students' overall score on the Clock task vs 
score on the FCS1 Assessment for students without a test 
harness 

6.2 Sub-task Test Score and Assessment 
As described in Section 4.1.3, in order to give participants without 
the benefit of the task harness an opportunity to demonstrate their 
level of programming skill, the clock task was rescored awarding 
one point for each unit test passed rather than an overall pass/fail 
score if they had successfully completed all of the unit tests.  The 
results of this more detailed scoring were used to assess the 
relationship between the scores on the skills and conceptual 
assessment instruments for those participants who were not given 
the testing harness.   

A Pearson product-moment correlation coefficient was computed.  
There was a positive correlation between the two variables, r = 
0.292, n = 48, p = .044.  Overall, the results are similar to those 
found with the simplified scoring scheme.  There was a positive 
correlation between the overall score on the clock task and their 
score on the FCS1 assessment.  Further, there also exists a 
somewhat stronger positive correlation between the clock task 
score and the score on the subset of the topics isolated by the task 
(r = .396, n = 49, p = .005) and no significant correlation between 
the clock task score and the score on the subset of the topics that 
were deemed outside of the scope of the task.   

Further investigation is needed to fully understand the extent the 
differences in the ways these two subgroups performed in the 
clock task.  However, the fact that the correlation of the task and 
assessment scores on both task and non-task isolated topics was 
similar (.403 and .454 respectively) suggests that while the test 
harness clearly scaffolded performance on the clock task it did not 
mask students’ latent understanding of the conceptual content 
highlighted in the task.   

7. TEACHERS’ EXPECTATIONS 
As mentioned above the group members who brought data cohorts 
were asked to fill in a short survey and describe their predictions 
regarding the performance of their students in the FCS1 
assessment. They were also asked to posteriori reflect on their 
expectations and the actual performances of their students in the 
Clock programming task as well as the FCS1.  Although all 
teachers were very familiar with the original MWG work, only 
one of them gathered data in both the original study and this one. 

7.1 Expectations regarding the FCS1 
The teachers were asked to predict the overall score of their 
students (0%-100%) in the FCS1, the topics and subtask that were 
easiest and most difficult to their students (they had to choose 
from the following list: Fundamentals, logical operators, 
Selection, Definite Loops, Indefinite Loops, Arrays, Function 
Parameters, Function Return Value, Recursion), and the 
percentage of students who might have run out of time.  Table 8 
presents the teachers’ response regarding the foundational CS1 
assessment instrument (FCS1) 

Table 8: Teachers’ estimations on their students’ success in 
comparison to students’ performance for the FCS1 

 

 All the teachers unanimously thought that Recursion is the most 
difficult topic. Fundamentals (i.e. variables, assignments, and so 
forth) and selections were considered to be the easiest topics.  

Teachers’ estimations were in the range of 40-63% (in literature 
the average was 42% [24]). About half of the teachers’ believed 
that the students’ conceptual knowledge was better than it 
actually was (see Table 5 and Table 6).  

In their reflections, teachers mentioned several concerns 
regarding factors that might have influenced students’ 
performance in the assessment. Two teachers were concerned that 
students did not have sufficient time. Another teacher was 
concerned about the students’ limited knowledge in English, the 
language of the test and the task. Another concern mentioned by 
one teacher about a possible cultural bias was that the concept of 
a 24-hour clock would be difficult to his students, who are 
accustomed to a 12-hour clock.  

Two teachers had concerns about their students’ conceptual 
knowledge. One was concerned that their students had not been 
exposed to some topics, such as recursion.  Another teacher 
stressed that, in his institute, they “prioritize practical 
programming skills and techniques over deep conceptual 
understanding”.   

The teachers mentioned that they were familiar with the literature 
relevant to the FCS1 assessment. This has “colored” or “biased” 
their expectations.  

7.2 Expectations from the Clock 
programming task 
The teachers were asked to rank the four sub-tasks from the 
easiest (score of 1) to the most difficult (score of 4). Table 9 
presents their ranking. The majority agreed that the subtract() sub-

 
Anticipated 

Score 
Score Easiest Topic 

Most 
Difficult 

Topic 

R1 44% 
Realist 
(2%) 

Fundamentals 
& Selection 

Recursion 

R2 63% 
Realist 
(1%) 

Fundamentals 
& Selection 

Recursion 

P 42% 
Pessimist 

(19%) 
Fundamentals Recursion 

T 56% 
Optimist 
(12%) 

Selection 
Recursion 
& Arrays 

Q 52% 
Optimist 
(14%) 

Selection Recursion 

S 40% 
Optimist 
(12%) 

Fundamentals Recursion 
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task would be the most difficult and that the add() sub-task would 
be the second most difficult.   

Their explanations emphasized the relations between these two 
sub-tasks. The most common argument was that add() is 
“algorithmically more complicated” than tick() and compareTo(), 
and subtract() is like “the add() function in reverse but will cause 
students more difficulty[.]”. 
 

Table 9: Teachers ranking of the sub-tasks 

 tick compareTo add subtrac
t 

R1+R2 1 2 3 4 

P 1 2 3 4 

T 2 1 3 4 

Q 4 1 3 2 

S 1 3 2 4 

U 2 1 3 4 

Average 1.83 1.67 2.83 3.67 

σ 1.17 0.82 0.41 0.82 

 

The tick() and the compareTo() sub-tasks were considered by the 
majority to be easier than the add() and subtract() sub-tasks 
because tick() requires “a simple manipulation” and compareTo() 
requires a “relatively simple code”.  They varied, however, in 
their choice between the two.  These estimations were correct, as 
can be seen in from Table 3.  

Teachers were also asked to estimate their a priori expectation of 
complete success in the Clock task: what proportion of their 
students they expected to be able to completely implement the 
task (to the point of passing all tests), with the results given in 
Table 10. 

 

Table 10: Teachers’ estimations on their students’ success in 
comparison to students’ performance for the Clock task 

 Overall estimation-
overall 

T 66% 50% 

S 3% 4% 

R1 68% 80% 

R2 93% 99% 

U 10% 10% 

Q 0% 5% 

P 73% 33% 

8. COMPARISON WITH THE ORIGINAL 
MCCRACKEN WORKING GROUP AND 
OTHER, MORE RECENT, STUDIES 
In this section we compare the original McCracken working 
group study [18], the Sweden Group study (SG) [17] and this 
study2.  

The MWG study conducted a multi-national, multi–institutional 
study in which the students were given one of three related 
calculator exercises which were deemed to cover all parts of the 
learning objectives framework. Two measures were used to 
evaluate the students’ attempts: a General Evaluation (GE) which 
included execution, verification, validation and style components, 
and a Degree of Closeness evaluation (DOC) in which the code 
was examined qualitatively. Overall the MWG “found that the 
students’ level of skill was not commensurate with their 
instructors’ expectations”. As measures of this we note that the 
average GE score (which was mainly objective) was 22.9 out of 
110.  

The SG took the MWG as its starting point and gave the infix, 
precedence-free calculator problem to 40 students at one 
institution. The study addressed three research questions. The first 
of these, and the goal most relevant to this paper, was how well 
can the students at one institution solve a calculator problem if 
they do not have to deal with various confounding issues 
presented in the MWG study (unfamiliar environments and 
conditions, the complex explanation of calculators, the need for a 
stack for the postfix calculator, the complexities of Java I/O, and 
no access to an online Java API). The SG results were much more 
encouraging than in MWG. The GE score average was 68.2 out of 
110. The authors conclude that “generally the students were able 
to do at least part of the problem”. They offer several possible 
explanations for these different results, which relate to the 
specific issues mentioned above, and which they categorize as 
environment, cognitive load and troublesome knowledge. 

Another research question from the SG study is “can a modified 
version of the instrument used by the MWG provide a useful 
assessment?” They refer to MWG as having the goal of 
evaluating its instrument, as well as the students. We think this is 
a slight misunderstanding, since MWG asked participants to 
choose students who “should” be able to solve the calculator 
problem. The MWG question was rather: “are instructors’ 
expectations of their students realistic?”  

In the current paper we are reporting on a study with similar goals 
to the original MWG but with different assessment instruments, 
including a (programming) language neutral test of students’ 
conceptual understandings. The cohort for this study is larger than 
both MWG and SG.  

Both MWG and SG used calculator problems. This study used the 
clock problem, which was considered to be more in line with 
object-oriented environments and less algorithmically complex. A 
more important difference between MWG, SG and this study is 
that MWG involved a problem that tested all the parts of the 
learning objectives framework which they identified. In 
particular, the first two parts (abstracting the problem and 
generating sub-problems), which have been noted by SG and 

                                                                 
2 A note on dates: the original MWG met in 2001, SG produced 

their paper for ICER 2013, but this group was able to see a 
preprint just before we met.  
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other researchers [16] as too high an expectation.  SG gave the 
participants a skeleton calculator and some I/O code as a starting 
point.  Our study also gave a quite explicit skeleton Time class 
and the students were told to fill in the method bodies.  A testing 
framework was also made available to some of the students that 
may have given them some scaffolding and a stopping criterion.  
Thus, in both the SG study and the current study the design was 
essentially given to the students. 

In summary, MWG raised the whole issue of student performance 
and instructor expectation in a multi-national context.  The SG 
study was able to remove many of the issues that confounded the 
original MWG study. They showed that expecting students to be 
able to code a no-precedence infix calculator with considerable 
amounts of scaffolding code with a smaller cohort at a single 
university produced better results than MWG.  The current study 
shows that instructors’ expectations appear to be more accurate 
than in the era of MWG, that student performance is better when 
students need not design a whole application and are able to 
easily verify their results, which coincides more closely with the 
SG study results than the MWG study. 

9. THE WORLD IS DIFFERENT 
In the 12 years between the original MWG and this study the 
world as experienced by this digital generation of CS students has 
changed. Many changes have taken place in the way we teach and 
assess our students, and students themselves have changed in 
terms of the prior knowledge they bring with them and of the way 
they discover information and solve problems. 

Changes in teaching and assessment 

One of the issues identified as central to the effort of the MWG 
was the development of CC2001[8].  The current study takes 
place within the context of the development of CS2013[14] which 
reviews and enhances CC2001 and the interim CS2008[25]. The 
draft documentation for CS2013 identifies a number of interesting 
features of the evolution of introductory CS courses from CC2001 
to CS2013: 

 Increase in the prevalence of “CS0” courses and 
multiple pathways into and through the introductory 
course sequence; 

 Growing diversity in platforms used, e.g. web 
development, mobile device programming; 

 Broadening of the list of languages used, and trend 
towards managed and dynamic and visual languages, 
with no particular paradigm or language becoming 
favored; 

 Increasing adoption of software engineering 
innovations, e.g. test-driven development[2], version 
control, use of IDEs. 

These features were reflected to a limited extent within this study. 
There was some diversity in the pathways through the course 
sequence among our cohorts, which presented difficulties in 
comparing cohorts. All students participated in the task using 
desktop or laptop computers, which matched the environments 
they were accustomed to using. The only addition to the 
languages used in the MWG was Python, while other cohorts used 
Java and C/C++ as in the earlier study. The MWG acknowledged 
the possibilities of Test-driven Development/Design (TDD) 
approaches to allow students to check work at an earlier stage, 
and the design of the task in this study made use of TDD 
techniques for scaffolding the students’ activity in some cohorts. 
However, by no means all the students in this study had 

experience in their courses of developing software using a TDD 
approach. 

In addition to the features identified in CS2013, developments 
arising from CS education research have had an impact on 
teaching and learning, for example: 

 Transition from written exam with pen and paper to 
practical exam with computer and the development 
tools and resources which students practice with in labs; 

 Transition from procedural to object-oriented 
programming;  

 Recognition of the roles of variables [21]; 
 Transition toward a systematic and structured focus on 

constructive alignment between intended learning 
outcome, course activities, and assessment[6], including 
instances of assessments specifically designed to 
address issues raised by the findings of the MWG[4]. 

Modern object-oriented programming languages come with a 
large class library and a well-documented API to ease access to it, 
and many educators take advantage of the opportunity to produce 
partially finished programs and/or provide classes as black boxes 
for the students to use when solving the problem  

In earlier days it was less common to use libraries and typically 
students built everything from scratch when they were 
programming.  With object-oriented programming entering the 
stage, it has become much more customary for students to 
contribute to already existing code either by using standard 
"slave" classes that offer various "low-level" functionality 
(typically the Model in an MVC structure) or by using 
frameworks that provide an overall structure where the students 
contribute by concretizing hot spots in the framework (by 
implementing virtual methods/subclasses)[7]. 

The building blocks that are given to students may be provided as 
black-box or white-box components [13].  The former refers to 
components that the students are supposed to use by only 
referring to the specification of the components whereas the latter 
are components that the students must open, read/study, and 
modify. In the former case, the consequence is that students read 
more APIs (specification level).  The latter case has as a 
consequence that the students read more code (implementation 
level).  Overall, students tend to spend more time studying 
existing code now than they did when the MWG study was 
conducted. 

Of course, while the above observations reflect identifiable 
trends, such developments are not universally accepted and 
practiced, as evidenced, for example by a recent discussion on the 
SIGCSE mailing list regarding written coding questions in 
examinations, where educators expressed significant support for 
requiring students to hand-write code without access to 
documentation or syntax-checking[22]. 

Changes in the students 

Today’s students have been described as belonging to the Net 
generation, or as Digital Natives[15], who are active experiential 
learners, dependent on technology for accessing information and 
interacting with others. These students may not readily engage 
with the instructional resources, such as textbooks, available to 
previous generations. The existence of this generation has been 
disputed, however, and it is not clear that a particular learning 
style or preferences can be attributed to a whole generation [5]. 
Nevertheless, while there is little evidence that the level of CS 
instruction experienced by students before coming to university 
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has increased significantly, it can be argued [12] that the 
increasing use of computers, software and online resources among 
young people leads students to have developed theories of how 
computing works by the time they start their CS courses.  

This type of digital literacy is from a user or user-programming 
rather than a professional viewpoint [3], but it carries over into 
some specific expectations when students are programming. CS 
students now expect “always on” access to the Internet as they 
code and this is likely to influence the strategies which they adopt 
in attempting to solve programming problems. Instructors and 
textbooks (e.g. [1]) often encourage use of online programming 
language API documentation while developing programs, as good 
software engineering practice. There are many more online spaces 
where students can seek answers to specific questions from 
instructors or peers within an educational context, for example 
Piazza [11] or from members of the wider developer community, 
such as StackOverflow (http://stackoverflow.com). The first 
instinct of many programmers, students or otherwise, is probably 
to search for an answer on Google, which in turn will often find 
answers to similar questions which have been asked previously. 
More general social media, such as Facebook and Twitter, are 
also widely used by students and may be used to seek support.  

The influence of these strategies on the activity within this study 
is difficult to determine as this behavior was not explicitly 
recorded or observed. The task, designed to translate easily to 
different programming languages, requires little or no use of API 
classes or functions, so online documentation would have been of 
little use here. The task was administered in a time-limited 
context, albeit with no restriction on access to the Internet. It is 
unlikely, though not impossible, that a student would be able to 
pose a question and receive an answer online within that 
timescale. This consideration influenced the choice of the 
problem for the task, as we searched to assure ourselves that this 
was not a findable problem with “canned” solutions readily 
available. 

10. DISCUSSION 
Overall, students seem to have performed better on the 
programming task used in this working group than in the one used 
in the original MWG. In fact, the low-scoring “no harness” groups 
in this study performed as well (on the “passed all tests” measure) 
as the average “general evaluation” score of 21% across all 
cohorts in the MWG.  

That having been said, there are clearly two distinct populations 
within the current study’s overall cohort: one with an average 
completion rate of >3.0 methods, and one with an average < 1.0 
(Table 2). There are a number of potentially significant factors 
involved in this difference: 

Some of the cohorts in the high-average group had more prior 
programming material in their University education than others. 
That is: the size of the “CS1” component at the end of which they 
participated in this study varied from 5-10 ECTS credits (Table 
1). Discounting any pre-university programming experience, this 
means that some students had twice as much exposure to (and 
practice in) programming before attempting the task. 

Some groups undertaking the Clock task were provided with the 
test harness. This clearly had an effect on their performance in the 
Clock task, as shown by the correlations with their performance in 
FCS1 (Table 7). We believe that this explained by a scaffolding 
effect: 

 The test harness guides students in what they need to 
do: 

o It serves as a definition of correctness for the 
students: what is a correct solution like?  

o It disambiguates requirements that may have 
otherwise been unclear: does tick() mean a 
single tick or making the clock tick 
continuously? 

o It reminds the student of corner cases that 
they may otherwise overlook. 

 Assuming the student uses the harness, they receive 
continuous, instant feedback about their program.  

On a related note, students sometimes choose not to write tests 
early, even when taught using practices such as TDD (e.g. [10]). 
It is apparent from inspection that few, if any, in the no-harness 
group wrote a set of tests and then implemented the required 
methods; consequently, they would not have had access to 
feedback as they worked incrementally on the four methods. 

Being given a test harness also meant less work and less mental 
load for the students: 

 The harness takes care of I/O. 
 The harness provides a main method and removes the 

need for the students to design any of the overall 
structure of their program, which represented two parts 
of the MWG learning objectives framework. 

 Having the harness simply means that there is less 
implementation work to be done: the student does not 
need to write tests, is less likely to run out of time, and 
is less likely to suffer from time pressure. 

Assuming that we are correct in stating that the four methods of 
the Time class were in more or less increasing order of difficulty, 
then the harness also suggested or even enforced an effective path 
from tick() to subtract() so that implementing each preceding 
method makes the next one a smaller step in difficulty. 
Sequencing learning activities on a topic in order of increasing 
complexity helps keep the students’ cognitive load in check [26]. 

Writing the tests is likely to have been difficult for some students. 
Some aspects of test-writing may even have been conceptually 
more difficult for them than aspects of the task proper. For 
instance, using the Time class from the test code requires an 
understanding of object-instantiation that is not required to 
implement any of the methods in the Time class itself. 

Finally it is worth commenting on our results in looking at 
teachers’ expectations of their students’ performance. In the 
MWG the teachers were all negatively surprised: “the first and 
most significant result was that the students did much more poorly 
than we expected” ([18] p. 132). The results of this study in this 
aspect are different. Most working group members knew what to 
expect. It should be noted that in the original study the 
expectation were not empirically measured. Nonetheless, the fact 
that in this experiment four out of six felt that the results, whether 
poor or high, matched their expectations from the students, imply 
that the teachers’ expectation were more attuned to their students. 
We cannot rule out, however, the explanation that the teachers, 
especially in this group, are familiar with previous studies 
reported on students’ behavior, and have colored their 
expectations accordingly. It may be that the longest-lasting effect 
of the original MWG has been to depress teachers’ expectations 
of their students’ ability! 
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Appendix A – Clock Task Reference Implementation Time.java 
/** 
 * Objects of the Time class hold a time value for a 
 * European‐style 24 hour clock.  
 * The value consists of hours, minutes and seconds.  
 * The range of the value is 00:00:00 (midnight) to 23:59:59 (one  
 * second before midnight). 
 *  
 * Type your UID here: 
 * How long did this take you (hours): 
 * 
 * @version 1.1 
 */ 
public class Time 
{ 
    // The values of the three parts of the time 
    private int hours; 
    private int minutes; 
    private int seconds; 
 
    /** 
     * Constructor for objects of class Time. 
     * Creates a new Time object set to 00:00:00. 
     * Do not change this constructor. 
     */ 
    public Time() 
    { 
        this.hours = 0; 
        this.minutes = 0; 
        this.seconds = 0; 
    } 
     
    /** 
     * Constructor for objects of class Time. 
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     * Creates a new Time object set to h:m:s. 
     * Assumes, without checking, that the parameter values are  
     * within bounds.  
     * For this task, you don't need to worry about invalid parameter values. 
     * Do not change this constructor.  
     */ 
    public Time(int h, int m, int s) 
    { 
        this.hours = h; 
        this.minutes = m; 
        this.seconds = s; 
    } 
 
    /** 
     * Add one second to the current time. 
     * When the seconds value reaches 60, it rolls over to zero. 
     * When the seconds roll over to zero, the minutes advance. 
     * So 00:00:59 rolls over to 00:01:00. 
     * When the minutes reach 60, they roll over and the hours advance. 
     * So 00:59:59 rolls over to 01:00:00. 
     * When the hours reach 24, they roll over to zero.  
     * So 23:59:59 rolls over to 00:00:00. 
     */ 
    public void tick() 
    { 
        // Task 1: complete the tick() method 
    } 
     
    /** 
     * Compare this time to otherTime. 
     * Assumes that both times are in the same day. 
     * Returns ‐1 if this Time is before otherTime. 
     * Returns 0 if this Time is the same as otherTime. 
     * Returns 1 if this Time is after otherTime. 
     */ 
    public int compareTo(Time otherTime) 
    { 
        // Task 2: complete the compareTo method 
        return 0; 
    } 
     
    /** 
     * Add an offset to this Time. 
     * Rolls over the hours, minutes and seconds fields when needed. 
     */ 
    public void add(Time offset) 
    { 
        // Task 3: complete the add method 
    } 
     
    /** 
     * Subtract an offset from this Time. 
     * Rolls over (under?) the hours, minutes and seconds fields when needed. 
     */ 
    public void subtract(Time offset) 
    { 
        // Task 4: complete the subtract method 
    } 
     
    /** 
     * Return a string representation of this Time. 
     * String is of the form hh:mm:ss with always two digits for h, m and s. 
     * Do not change this. 
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     */ 
    public String toString() 
    { 
        return pad(hours) + ":" + pad(minutes) + ":" + pad(seconds); 
    } 
     
    /** 
     * Returns a string representing the argument value, adding a leading  
     * "0" if needed to make it at least two digits long. 
     * Do not change this. 
     */ 
    private String pad(int value) 
    { 
        String sign = ""; 
         
        if (value < 0) { 
            sign = "‐"; 
            value = ‐value; 
        } 
         
        if (value < 10) { 
            return sign + "0" + value; 
        } else { 
            return sign + value; 
        } 
    } 
} 
 TimeTester.java 
/** 
 * Runs tests on instances of the Time class using the main method of this class. 
 * Tests are divided into four sets, one for each of the 
 * sub‐tasks described in the Time class, which are executed in the  
 * order of the sub‐tasks.  
 * Sets are only attempted if all the previous sets have passed.  
 * Tests within a set are attempted even if previous tests in the set have failed. 
 *  
 * Do not change this class. 
 *  
 * @author Ian Utting 
 * @version 1.1 
 */ 
public class TimeTester 
{ 
    /**  
     * Run all of the sets of tests, running each one only if the previous  
     * sets have all passed. 
     * This makes the results less cluttered if you are attempting the 
     * sub‐tasks in order. 
     */     
    public static void main(String [] args) 
    { 
        if (!tickTests()) return; 
        System.out.println("All tick() tests passed."); 
        if (!compareToTests()) return; 
        System.out.println("All compareTo() tests passed."); 
        if (!addTests()) return; 
        System.out.println("All add() tests passed."); 
        if (!subtractTests()) return; 
        System.out.println("All subtract() tests passed."); 
        System.out.println("All tests passed."); 
    } 

29



     
    /**  
     * Test the tick() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean tickTests() 
    { 
        boolean allPassed = true; 
   
        allPassed &= tickTest(new Time( 0, 0, 0), "00:00:01"); 
        allPassed &= tickTest(new Time( 0, 0,58), "00:00:59"); 
        allPassed &= tickTest(new Time( 0, 0,59), "00:01:00"); 
        allPassed &= tickTest(new Time( 0,58,59), "00:59:00"); 
        allPassed &= tickTest(new Time(00,59,59), "01:00:00"); 
        allPassed &= tickTest(new Time(23,59,59), "00:00:00"); 
         
        Time t = new Time(0, 0, 0); 
        allPassed &= tickTest(t, "00:00:01"); 
        allPassed &= tickTest(t, "00:00:02"); // Same t, ticked twice 
         
        return allPassed; 
    } 
     
    /**  
     * Test the compareTo() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean compareToTests() 
    { 
        boolean allPassed = true; 
         
        Time t1 = new Time(0, 0, 4); 
        Time t1Clone = new Time(0, 0, 4); 
         
        allPassed &= compareToTest(t1, t1, 0); 
        allPassed &= compareToTest(t1, t1Clone, 0); 
         
        Time t2 = new Time(0, 0, 5); 
         
        allPassed &= compareToTest(t1, t2, ‐1); 
        allPassed &= compareToTest(t2, t1, 1); 
         
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(1, 2, 2), 1); 
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 1, 2), 1); 
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 2, 1), 1); 
        allPassed &= compareToTest(new Time(1, 2, 2), new Time(2, 2, 2), ‐1); 
        allPassed &= compareToTest(new Time(2, 1, 2), new Time(2, 2, 2), ‐1); 
        allPassed &= compareToTest(new Time(2, 2, 1), new Time(2, 2, 2), ‐1); 
         
        return allPassed; 
    } 
     
    /**  
     * Test the add() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean addTests() 
    { 
        boolean allPassed = true; 
         
        allPassed &= addTest(new Time(1, 1, 1), new Time(2, 2, 2), "03:03:03"); 
        allPassed &= addTest(new Time(0, 0, 59), new Time(0, 0, 1), "00:01:00"); 
        allPassed &= addTest(new Time(0, 59, 0), new Time(0, 0, 1), "00:59:01"); 
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        allPassed &= addTest(new Time(0, 59, 59), new Time(0, 0, 1), "01:00:00"); 
        allPassed &= addTest(new Time(23, 0, 0), new Time(1, 0, 0), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 0), new Time(0, 1, 0), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 59), new Time(0, 0, 1), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 59), new Time(23, 59, 59), "23:59:58"); 
         
        return allPassed; 
    } 
     
    /**  
     * Test the subtract() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean subtractTests() 
    { 
        boolean allPassed = true; 
 
        allPassed &= subtractTest(new Time(2, 2, 2), new Time(1, 1, 1), "01:01:01"); 
        allPassed &= subtractTest(new Time(0, 1, 0), new Time(0, 0, 1), "00:00:59"); 
        allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 1, 0), "00:59:00"); 
        allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 0, 1), "00:59:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(1, 1, 1), "00:00:00"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 0, 2), "01:00:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 2, 2), "00:58:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(2, 2, 2), "22:58:59"); 
 
        return allPassed; 
    } 
     
    /** 
     * Implementation of an individual tick test. 
     */ 
    private static boolean tickTest(Time t, String expected) 
    { 
        String orig = t.toString(); 
         
        t.tick(); 
         
        if (t.toString().equals(expected)) return true; 
         
        System.out.println("Test: with Time " + orig + ", tick() failed. " +  
            "Expected \"" + expected + "\", got \""+ t + "\""); 
        return false; 
    } 
     
    /** 
     * Implementation of an individual comparison test. 
     */ 
    private static boolean compareToTest(Time t1, Time t2, int expected) 
    { 
        int result = t1.compareTo(t2); 
         
        if (result == expected) return true; 
         
        System.out.println("Test: with Time " + t1 + ", compareTo(" + t2 + ") failed. " +  
            "Expected \"" + expected + "\", got \"" + result + "\""); 
        return false; 
    } 
     
    /** 
     * Implementation of an individual addition test. 
     */ 
    private static boolean addTest(Time t1, Time t2, String expected) 
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    { 
        String hdr = "Test: with Time " + t1 + ", add(" + t2 + ") failed. "; 
        String origT2 = t2.toString(); 
         
        t1.add(t2); 
         
        if (!t2.toString().equals(origT2)) { 
            // Second parameter should not be changed 
            System.out.println(hdr +  
                "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\""); 
            return false; 
        } 
         
        if (!t1.toString().equals(expected))  
        { 
            System.out.println(hdr +  
                "Expected \"" + expected + "\", got \""+ t1 + "\""); 
            return false; 
        } 
        return true; 
    } 
     
    /** 
     * Implementation of an individual subtraction test. 
     */ 
    private static boolean subtractTest(Time t1, Time t2, String expected) 
    { 
        String hdr = "Test: with Time " + t1 + ", subtract(" + t2 + ") failed. "; 
        String origT2 = t2.toString(); 
         
        t1.subtract(t2); 
         
        if (!t2.toString().equals(origT2)) { 
            // Second parameter should not be changed 
            System.out.println(hdr +  
                "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\""); 
            return false; 
        } 
         
        if (!t1.toString().equals(expected))  
        { 
            System.out.println(hdr +  
                "Expected \"" + expected + "\", got \""+ t1 + "\""); 
            return false; 
        } 
        return true; 
    } 
} 
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