
Utting, Ian, Elliott Tew, Allison, McCracken, Mike, Thomas, Lynda, Bouvier,
Dennis, Frye, Roger, Paterson, James, Caspersen, Michael, Kolikant, Yifat
Ben-David, Sorva, Juha and and others (2013) A Fresh Look at Novice Programmers’
Performance and Their Teachers’ Expectations. In: Proceedings of the
ITiCSE working group reports conference on Innovation and technology
in computer science education-working group reports. ITiCSE Innovation
and Technology in Computer Science Education . ACM, New York, USA,
pp. 15-32. ISBN 978-1-4503-2665-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/44804/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2543882.2543884

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/44804/
https://doi.org/10.1145/2543882.2543884
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Fresh Look at Novice Programmers’ Performance
and Their Teachers’ Expectations

Ian Utting
University of Kent,

 UK
I.A.Utting@kent.ac.uk

Allison Elliott Tew

University of Washington,
Tacoma, USA

aetew@u.washington.edu

Mike McCracken
Georgia Institute of Technology,

USA
mike@cc.gatech.edu

Lynda Thomas

Aberystwyth University,
UK

ltt@aber.ac.uk

Dennis Bouvier
Southern Illinois University

Edwardsville, USA
djb@acm.org

Roger Frye

Southern Illinois University
Edwardsville, USA

rfrye@siue.edu

James Paterson
Glasgow Caledonian University,

UK
James.Paterson@gcu.ac.uk

Michael Caspersen
Aarhus University,

 Denmark
mec@cse.au.dk

Yifat Ben-David Kolikant

The Hebrew University of Jerusalem,
Israel

yifat.kolikant@mail.huji.ac.il

Juha Sorva
Aalto University,

Finland
juha.sorva@aalto.fi

Tadeusz Wilusz

Cracow University of Economics,
Poland

wiluszt@uek.krakow.pl

ABSTRACT
This paper describes the results of an ITiCSE working group
convened in 2013 to review and revisit the influential ITiCSE
2001 McCracken working group that reported [18] on novice
programmers’ ability to solve a specified programming problem.
Like that study, the one described here asked students to
implement a simple program. Unlike the original study, students’
in this study were given significant scaffolding for their efforts,
including a test harness. Their knowledge of programming
concepts was also assessed via a standard language-neutral
survey.
One of the significant findings of the original working group was
that students were less successful at the programming task than
their teachers expected, so in this study teachers’ expectations
were explicitly gathered and matched with students’ performance.
This study found a significant correlation between students’
performance in the practical task and the survey, and a significant
effect on performance in the practical task attributable to the use
of the test harness. The study also found a much better correlation
between teachers’ expectations of their students’ performance
than in the 2001 working group.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and Information
Science Education—Computer Science Education

General Terms
Measurement, Experimentation.

Keywords
Programming, CS1, assessment, replication.

1. INTRODUCTION
In 2001, an ITiCSE working group led by Mike McCracken
(known as the McCracken Working Group and hereafter
abbreviated as MWG) met in Canterbury to complete and analyze
a study of novice programmers at institutions around the world.
The working group produced one of the most highly cited papers
in SIGCSE’s publication history [18] with two significant
outcomes: it demonstrated that CS1 students were less capable
programmers than their teachers expected; and it set the scene for
a number of subsequent medium- to large-scale multi-national,
multi-institutional studies. Despite this, and an explicit call for
replication in the original MWG paper, there has been very little
effort since directed at replicating or extending the work of the
original group.

In 2013, the ITiCSE conference returned to Canterbury and the
opportunity was taken to “reconvene” the MWG to address the
broad questions of whether “students in 2013 are any more likely
to fulfill our expectations than they were in 2001”, specifically
by:

 critically revisiting the original McCracken study and
subsequent work,

 partially replicating their experiment, and
 analyzing and reflecting on the results to determine the

extent to which the conclusions drawn by that group are

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org
ITiCSE-WGR’13 June 29--July 3, 2013, Canterbury, England, UK.
Copyright 2014 ACM 978-1-4503-2665-0/13/07...$15.00.
http://dx.doi.org/10.1145/2543882.2543884

15

still valid despite the changes in CS1 teaching and
students over the intervening years.

The authors, five of whom were members of the MWG,
administered both a practical programming task and a concept
assessment test (quiz) as detailed below, and also recorded their
expectations of their students’ performance. As in the original
working group, not everyone managed to collect data, due in part
to restrictions on gathering data from their own students, and in
part to the timing constraints imposed by operating as an ITiCSE
working group (which does not completely form until very close
to the end of the European/US academic year).

The task and the test data, along with notes of teachers’
expectations, were analyzed during the group’s meeting at
ITiCSE.

2. METHOD & COHORT DESCRIPTIONS
2.1 Method
To determine the programming ability of a cohort of students
from several universities (see Section 2.2 below), the working
group devised a two-part assessment. It consisted of a CS1
concept assessment that used The Foundational CS1 Assessment
Instrument [24] and a programming skill assessment (the clock
problem as described in Section 3). Lastly, we asked the faculty
to reflect on their expectations of the performance of their
students on the skill and concept assessments and on the actual
outcomes of the assessments as compared to their expectations.

The working group decided to use the two-part assessment
(concept and skill) to hopefully clarify or better understand the
outcomes of the skill assessment. In other words, if a student did
well on the skill assessment, did they comparably do well on the
concept assessment, and if they did poorly on the skill assessment
did they similarly do poorly on the concept assessment? The
linkage of skill and concepts is discussed widely in the cognitive
science literature (e.g. [19]), in programming cognition literature
(e.g. [20]), and examined in recent studies (e.g. [16]).

As became apparent after the fact in the original MWG, teachers
entering into studies like this one have a set of expectations
regarding the performance of the students on the tasks making up
the study. In this study we captured and reviewed these
expectations, as described in Section 7.

The concept assessment was a multiple-choice exam and was
scored in two ways. A complete score for each student was
computed from the 27 questions that cover nine concept areas:
Fundamentals, Logical Operators, Selection, Definite Loops,
Indefinite Loops, Arrays, Function/Method Parameters,
Function/Method Return Values and Recursion. For details on
the instrument, its validity, etc., please refer to [23]. A subset
score was also computed from the concept areas that the working
group determined were used in the skill assessment. That subset
of 15 questions was from the concept areas: Fundamentals,
Logical Operators, Selection, Function/Method Parameters and
Function/Method Return Values. Section 5 describes the concept
assessment and it’s scoring.

The skill assessment (the clock problem) was scored with a test
harness. The harness contained a set of black box tests that
validated the functionality of the student’s programs as described
in Section 3. The students wrote their programs in their language
of instruction. The languages were Java, Python, and C/C++.

2.2 Cohort
The total cohort for our study consisted of 418 first-year students
who have taken at least one introductory programming course at
university level. Some students had taken a few other non-
programming CS courses, and a few had taken a substantial
number. The amount of programming education for the cohort
varied between 4 and 10 ECTS with a weighted average of 7
ECTS. (An ECTS credit is a broad measure of student effort,
including formal teaching and self-study time. 1 ECTS credit is
equivalent to 25-30 hours of student effort [9]).

Members of the working group recruited the students for the
cohort. Most of the students were recruited within the institution
of the WG member, but some were from other institutions.
Overall, the cohort represents students from 12 institutions in 10
countries. 18% of the cohort is from the USA, and 82% is from
Europe. Approximately 50% of the total cohort is from a single
European university.

For organization of data collection and analysis, we divided the
cohort into eight groups. The groups vary in many ways, e.g.:

 amount and type of programming education prior to
data collection

 amount of additional non-programming CS education

 program of study (CS major, CS minor, Engineering,
CS/programming as an elective, etc.)

 type(s) of programming language(s) used

 language of instruction (native/foreign)

Table 1 provides an overview of the eight groups in the cohort
and which parts of the assessment they took part in, although not
all students who attempted both parts completed both parts.

Table 1: Overview of Cohort. “Credits” reflect the volume of
study, measured in ECTS credits

G
ro

u
p

s

C
ou

rs
e

se
ct

io
n

s

S
tu

d
y

p
ro

gr
am

L
an

gu
ag

e
an

d

st
yl

e

P
ro

gr
am

m
in

g

C
re

di
ts

O
th

er
 C

S
C

re
di

ts

N

C
on

ce
p

t
te

st

C
lo

ck
 t

es
t

R1 1 Eng. Python(proc.) 5 0 151 x x

R2 1 Eng.+CS Python (OO) 10 0-10 58 x x

P 1 CS Java (OO) 10 25 26 x x

T 8 Mostly
CS

Java (OO) and
C (proc.)

10 20 57 x x

V 1 CS C# (proc.) ~10 ? 17 x

Q 2 CS C/C++ (proc.) 4 21 49 x x

S 1 Eng. C++ (proc.) 6 0 40 x x

U 1 CS Java (OO) 8 0 20 x

3. THE CLOCK TASK
As a test of programming ability, students were asked to
undertake a simple programming task. A reference
implementation was written in Java, with the instructions to
students embedded in comments in the code.

16

3.1 The Problem
Students were asked to complete the implementation of a class
(called Time) representing a 24-hour clock. The behavior of the
clock with respect to wrap-around of the hours, minutes and
seconds values was described with examples. The clock has four
operations which students were asked to implement: a tick
operation which advances the stored time by one second, a
comparison operation which determines the order of two times,
and add and subtract methods which calculate the sum or
difference of two time values.

The problem is designed to focus on students’ ability with the
concepts of selection, arithmetic and Boolean expressions,
although it also touches on their understanding of method
parameters and return values. Unlike the original MWG, it is also
designed only to require students to implement a part of a
complete program, with a strong bias towards ADT
implementation, rather than the original algorithm-focused input-
parse-output-loop style.

Students undertook the task in “closed lab” settings of around 90
minutes duration (group S had 75 minutes, and group U 110). For
most groups, the task was completed as part of a course and most
of the students on that course undertook it. In three cases (R1, R2
and P) the students were volunteers comprising 10-30% of their
respective cohorts. Analysis of their performance in the courses
from which they were recruited suggests that the volunteers were
representative of their cohorts. Most of the participants were
mildly incentivized to participate, either by entry to a small-prize
raffle (T,S and U), a coursework grade bonus (Q) or a small prize
and a grade bonus (R1 and R2). Group P students received no
incentive.

3.2 Reference Implementation
The reference version of the task was written in Java, and
translated into other (implementation) languages by individual
investigators. The instructions for undertaking the task were
included (as comments) in a skeleton implementation (Time.java)
provided as a starting point for students (see Appendix A). This
skeleton included the class boiler-plate code down to the level of
skeletons of the required methods as well as the descriptive
comments. As well as the skeleton code, the reference
implementation included an example solution and a test harness.
The intention was that the test harness and skeleton
implementation of the Time class should be provided to students
as a starting point and a check for their work. In some institutions
however, the test harness was not provided to students, although it
was subsequently used to assess the accuracy of their
implementations.

The skeleton of the Time class included full implementations of
the entire class, with the exception of the bodies of the methods
students were required to complete. In the case of the comparator
method the skeleton body included a return statement to ensure
that the skeleton compiled. As well as these methods, the skeleton
also included constructors and a toString() method (to produce a
printable representation of the time value) to support testing of the
implementation.

The reference implementation also included a test harness
containing 8-10 black-box tests for each of the four methods to be
completed in the Time class. These tests covered both simple
cases; all of the rollover cases for the tick() and add() methods,
and the “borrow” cases for subtract(). In addition, the Java and

OO Python implementations included tests for common
implementation problems (e.g. equality/identity confusions).

The test harness was organized so that all the tests for a particular
method were performed, independent of any failures, but tests for
subsequent methods were only executed if all prior tests had
passed. This was intended to avoid presenting students with a
long list of failure messages before they had started their work,
but had the effect of “ordering” students’ approach to the tasks.
Students using the test harness were discouraged from working on
methods before all the tests on “previous” methods passed. The
order of method tests in the reference test harness was: tick(),
compareTo(), add(), and subtract().

3.3 Translations
The reference implementation was translated into C/C++, C#
(which was eventually unused) and two variants in Python. In
addition, the comments in both Python versions were also
translated into the local (natural) language for use in one of the
institutions. Other institutions where the students’ first language
was not English nevertheless used the English versions of the
instruction/comment. All versions are available on request from
the first author.

4. THE TASK: ANALYSIS & RESULTS

4.1 Analysis
The participants’ Clock Task submissions were evaluated
using black-box tests. Using the same four sets of tests – one
for each method that needed to be implemented – provided to
most of the participants as part of the programming task.
However, in evaluating submissions, all tests were run, even if
an earlier test had failed. A method in one submission was
judged completely correct if it passed all of the tests for that
method; passing only some of the tests for a method was a
failure. Combining the results for each method in a submission
determined the overall mark for that submission, which is an
integer between 0 and 4 – a count of how many of the methods
in a submission passed all the tests.

4.1.1 Results
Table 2: Results on the Clock Task

C
oh

or
t

T
es

t
H

ar
ne

ss
?

N
u

m
b

er
 o

f
st

u
d

en
ts

A
ve

ra
ge

 #
 o

f
m

et
h

od
s

w
or

k
in

g

Success by method
(%)

ti
ck

()

co
m

pa
re

T
o(

)

ad
d

()

su
b

tr
ac

t(
)

R1 Yes 149 3.04 82 81 72 68

R2 Yes 57 3.86 98 98 96 93

P Yes 26 3.27 92 92 73 73

T Yes 38 3.21 84 89 76 71

Q No 15 0.80 33 13 27 7

S No 40 0.93 33 29 17 14

U No 20 0.65 30 15 10 10

combined Yes 270 3.26 87 87 78 74

combined No 75 0.83 32 22 17 12

17

combined All 345 2.72 75 73 65 61

Table 2 shows, for each cohort, the average number of methods
successfully completed by the participants as well as the
percentages of participants who successfully completed each
individual method. On average, the participants completed 2.72
methods out of 4. This overall average leans towards the larger
cohorts however, and as is obvious from the table, there were
substantial differences between the cohorts, with a group of
cohorts scoring very high and another group very low. As Table 2
also illustrates, a significant factor in this two-way split appears to
be whether the cohorts had been provided with a test harness or
not. In all cases, it was reported that students had previously been
exposed to ideas of testing software, but had not been asked to
take a systematic approach to it in their work. Below, we will
discuss the results of the two groups separately.

4.1.2 Cohorts with a Test harness
In four cohorts (R1, R2, P, T), the students completed an average
of 3.26 methods out of four, with the majority of students
completing all four. In all of these cohorts, the students were
provided with a test harness as described in Section 3.

The test harness strongly encouraged the students to attempt each
method in order and not skip ahead before they had a working
solution to the previous method. It is unsurprising; therefore, the
first method (tick()) was correctly implemented more than the
other methods, with the number of successful submissions
decreasing at each successive method.

Table 2 suggests there were two points in the four-method
sequence that caused some of the students to get stuck and not
make further progress. Some fell at the first hurdle: about 13 % of
the with-harness students could not produce a working
implementation of the tick() method. Nearly all of those who
succeeded with tick also did well on the next method,
compareTo(); in one cohort (T), the result was better for the
second method than the first. The second spot of difficulty arrived
with the third method, add(); about 9 % of the students failed at
this point, but those who succeeded went on to produce a fully
working solution to the last method, subtract(). The correlations
between methods shown in Table 3 bears out this interpretation:
success in implementing tick() and compareTo() correlate
relatively strongly with each other, as do add() and subtract() with
respect to each other. These results suggest that the students found
the first two methods to be easier than the other two.

Table 3: Correlation between Performance on Sub-tasks in
Clock Task, calculated for each student

Sub-task

ti
ck

()

co
m

pa
re

T
o(

)

ad
d(

)

su
bt

ra
ct

()

tick() 1 .500 .354 .352

compareTo() 1 .262 .391

add()

1 .591

subtract() 1

4.1.3 Cohorts without a Test harness
Due to ambiguity in the methodology as explained to working
group members, participants at some institutions were not
provided the ‘test harness’. Some of these participants were only
given the Time class; others were given the Time code with a
main method, but no test cases.

In contrast to the cohorts discussed above, submissions from
participant cohorts not provided with the test harness (i.e., cohorts
Q, S, and U) have an average of 0.83 correct methods.

A few participants left traces of creating their own test harness in
their submissions, others may have created testing facilities but
not submitted them. Evidence suggests that less than 5% of the
students did any systematic testing. However, even in the absence
of a test harness, many student code submissions pass many of the
unit tests for one, or more, methods.

Not having the test harness requires students to identify and
correctly implement all the corner cases, as well as avoiding
inserting any unrecognized bugs of their own.

The possible implications of not having the test harness:

 It requires participants to understand the use of the
Clock class from its documentation alone, rather than
from the examples provided by the harness.

 It requires participants either to create their own test
cases, or not test their work at all.

 It requires participants using OO languages to realize
the Time class will be used by an object of another
class, which might be a novel approach for them.

 The harness imposes an order of work – non-harness
students may lack scaffolding without the ordering
imposed by the harness.

 A failing test in the harness may discourage students
from moving on to subsequent sub-tasks.

Mistakes (made less likely with the harness) seen in non-harness
participants (cohort U):

 including a main() method (2/20)
 creating a loop in the tick() method (3/20)

Observing that several students in the no-harness group have
partial solutions, an alternative analysis of these submissions was
devised. The same unit tests were run for the no-harness
submission. However, instead of recording a binary success / fail
for each method, the numbers of tests passed for each method
were tallied. Table 4 summarizes the results.

45 of 75 (60%) of the submissions were judged partially correct
code whereas only 3 of 75 (4%) of the submissions were judged
completely correct.

Table 4: Detailed success rates for non-harness students
(n=75)

Sub-task
Partial success

(%)
Complete

success(%)
Total
(%)

tick() 19 33 52

compareTo(
)

37 23 60

add() 21 19 40

subtract() 21 12 33

18

Figure 1 shows histograms of the number of test cases passed by
students not provided with a test harness for a) the tick() method,
b) the compareTo() method, c) the add() method, d) the subtract()
method, and e) all methods combined. As can be seen from this
figure, students in these cohorts had a tendency to either pass
none of the tests for a particular method, or pass all of them. This
leads to an apparent bi-modality in the outcomes at the method
level, which is not apparent at the aggregate level. This probably
represents a relaxation of the ordering imposed by the test
harness, with students here successfully completing some, but not
all, method implementations. The “spike” in successful
completion of the compareTo() method (with 2 successful unit
tests passed) is an artifact; the skeleton provided for this method
coincidentally passes two of the tests.

It should be noted that:

 3 of 75 submissions passed all N tests
 42 of 75 submissions passed between 1 and N-1 tests
 22 of 75 submissions passed at least one unit test for

each method
In these cohorts, too, a trend can be observed in that the students
were more successful with the first methods than the later ones,
although there is more variation in this respect in the no-harness
group than in the with-harness one. This greater variation is likely
to be a reflection of the no-harness students being less constrained
in their choice of which methods to tackle and when. It may be
that the order of appearance of the methods in the provided
skeleton, which was the same as the order of the method tests in
the test harness, suggested an implicit order in which students
attempted implementation.

Figure 1: Partial success for the non-harness groups

19

5. THE ASSESSMENT INSTRUMENT

5.1.1 Assessment of Conceptual Understanding
The Foundational CS1 (FCS1) Assessment Instrument was used
to measure students’ conceptual understanding of programming
concepts [24]. The FCS1 is a validated exam of topics commonly
found in a first computer science course and is written in pseudo-
code so that it can be used in courses that use a variety of
programming languages and pedagogies.

The exam uses a multiple-choice question format to investigate
topics in three different dimensions: definition, tracing, and code-
completion. The definition questions explore a student’s
understanding of a concept, while the tracing questions ask
students to predict the outcome of the execution of a piece of
code. Code-completion is the code-writing task, where students
are asked to fill in missing portions of code to complete a function
to produce a certain result.

The validity of the assessment instrument has previously been
demonstrated using a three-pronged mixed methods approach integrating both quantitative and qualitative techniques. Think
aloud interviews provided evidence that students were reading
and reasoning with the pseudo-code to answer questions in the
manner intended. Statistical analysis techniques demonstrated
both the quality of the questions themselves as well as a
correlation with external faculty definitions and measures of CS1
knowledge [24].

5.1.2 Data Collection & Analysis
The FCS1 was administered via a web-based survey tool at six
different universities. The exam was given under testing
conditions – a closed laboratory setting with proctors to supervise
the testing environment. Students were given one hour to
complete the assessment, and the majority (96.1%) finished
within the time limit, or at least did not appear to have run out of
time1. A two-page overview of the pseudo-code syntax was
provided to each student before the exam began and was available
for reference throughout the assessment.

5.1.3 Results
We received a total of 231 valid responses to the FCS1
assessment. Before data analysis could begin, outliers from the
data set that would bias or skew the results were removed.
Exclusionary criteria include: empty submission, entered the same
answer to 10 or more questions in a row, and spending less than
15 minutes on the entire exam (an average of 33 seconds per
question.) A second researcher verified the rules for exclusion
and independently reviewed all of the exams that were removed
from the data set to confirm that they met one or more of the
exclusionary criteria. After scrubbing, the final data set consisted
of 217 responses.

The FCS1 was then scored, awarding a 1 for a correct answer and
a 0 for an incorrect answer. (Any question left blank was not
scored.) The maximum score was a 25, and the minimum score
was a 2 out of a total of 27 questions. Student participants

answered an average of 11.35 (42.02%, σ = 4.711) questions
correctly. Questions about math operators and if statements were
among the most commonly answered correctly. The programming

1 A participant was determined to have run out of time if they worked on

the assessment for the full hour and left a significant percentage (>35%)
of the questions at the end blank.

constructs related to function parameters, function return values,
and definite loops were the most difficult questions. The
distribution of performance on the concept assessment by cohort
is shown in Table 5. There was a statistically significant
difference between groups as determined by one-way ANOVA
(F(6,210)=23.119, p = 0.000). A Tukey post-hoc test revealed
that cohorts R2 and P scored significantly higher than all of the
other cohorts (16.81 and 16.36 respectively). Further, the Tukey
post-hoc test identified a subset of cohorts (R1, T, and Q) that
performed better than the remaining two cohorts. There was no
statistically significant difference between the remaining two
cohorts (p = 1.000).

Table 5: Overall Student Scores on the FCS1 Assessment
Instrument by Cohort

Cohort N
Averag

e
% σ Median

R1 15 11.27 41.73 3.97 11

R2 16 16.81 62.27 4.56 17

P 25 16.36 60.59 4.23 15

T 57 12.02 44.51 4.08 12

V 17 7.53 27.89 3.47 7

Q 49 10.31 38.17 3.38 10

S 38 7.69 28.49 2.68 8

A subsequent analysis examined the performance of students on
the subset of topics on the FCS1 assessment that were identified
as learning objectives in the clock task skills assessment:
fundamentals, logical operators, selection statement, function
parameters and function return values. The maximum score was a
14, and the minimum score was a 0 out of a total of 15 questions.

Student participants answered an average of 5.96 (39.76%, σ =
2.657) questions correctly.

Table 6: Student Scores on the FCS1 Assessment Instrument
on Task Topics by Cohort

 Questions about math operators and logical operators were
among the most commonly answered correctly. The programming
constructs related to function parameters and function return
values remained the most difficult questions. The distribution of
performance on the concept assessment by cohort is shown in
Table 5. There was a statistically significant difference between
groups as determined by one-way ANOVA (F(6,211)=17.168, p =
0.000). A Tukey post-hoc test revealed that cohorts R2 and P
scored significantly higher than all of the other cohorts (8.81 and
8.64 respectively). Further the post-hoc analysis identified that
cohort T participants performed significantly better (6.33 ± 2.42

Cohort N Average % σ Median
R1 15 5.47 36.44 2.45 5
R2 16 8.81 58.75 2.81 8.5
P 25 8.64 57.60 2.66 8
T 57 6.33 42.22 2.42 6
V 17 4.76 31.76 1.64 5
Q 49 5.29 35.24 1.86 6
S 38 4.10 27.35 1.79 4

20

points, p = 0.000) than the S cohort. There were no statistically
significant differences between the remaining cohorts.

6. CORRELATIONS BETWEEN THE
ASSESSMENT AND THE CLOCK TASK
6.1 Overall Task Score and Concept
Assessment
A Pearson product-moment correlation coefficient was computed
to assess the relationship between the scores on the skills and
conceptual assessment instruments as enacted by the clock task
and the FCS1 assessment instrument respectively. There was a
positive correlation between the two variables, r = 0.653, n =140,
p = 000. Overall, there was a strong, positive correlation between
the overall score on the clock task (i.e. the number of tests a
student passed) and their score on the FCS1 assessment (see
Figure 2). Further, there also exists a strong positive correlation
between the clock task score and the score on the subset of the
topics isolated by the task (r = .605, n = 141, p = .000). See Table
7 for more details.

Figure 2: Graph of students' overall score on the Clock task vs
score on the FCS1 Assessment for the overall population

Subsequently, in order to investigate the extent to which the test
harness mediated task performance, we conducted another
correlation study with the total population split into two
subgroups by whether or not they conducted the clock task
assessment with the test harness A Pearson product-moment
correlation coefficient was computed to assess the relationship
between the scores on the skills and conceptual assessment
instruments as enacted by the clock task and the FCS1 assessment
instrument respectively by subgroup.

Table 7: Pearson’s Correlation between Clock Task Score and
Concept Assessment Score

There was a positive correlation between the two variables clock
task score and assessment score for both subgroups. However,
the decrease in correlation (r = .473 and r = .403) suggests that
the test harness is indeed scaffolding students’ performance,
perhaps beyond their ability to fully understand the conceptual
material exercised in the skills task. The weaker correlations in
the “without test harness” subgroup are likely caused by the very
strong floor effect in the task performance (see Figure 1). A
general view of students’ relative performance, separated by the
availability of the test harness is given in Figure 3 and Figure 4.

Figure 3: Graph of students' overall score on the Clock task vs
score on the FCS1 Assessment for students with a test harness.

Cohort N
Overall

FCS1 Score

Task Topics

FCS1 Score

 r p r p

Total 140 .653 .000 .605 .000

With Test Harness 89 .473 .000 .403 .000

Without Test
Harness

51 .287 .041 .392 .004

21

Figure 4: Graph of students' overall score on the Clock task vs
score on the FCS1 Assessment for students without a test
harness

6.2 Sub-task Test Score and Assessment
As described in Section 4.1.3, in order to give participants without
the benefit of the task harness an opportunity to demonstrate their
level of programming skill, the clock task was rescored awarding
one point for each unit test passed rather than an overall pass/fail
score if they had successfully completed all of the unit tests. The
results of this more detailed scoring were used to assess the
relationship between the scores on the skills and conceptual
assessment instruments for those participants who were not given
the testing harness.

A Pearson product-moment correlation coefficient was computed.
There was a positive correlation between the two variables, r =
0.292, n = 48, p = .044. Overall, the results are similar to those
found with the simplified scoring scheme. There was a positive
correlation between the overall score on the clock task and their
score on the FCS1 assessment. Further, there also exists a
somewhat stronger positive correlation between the clock task
score and the score on the subset of the topics isolated by the task
(r = .396, n = 49, p = .005) and no significant correlation between
the clock task score and the score on the subset of the topics that
were deemed outside of the scope of the task.

Further investigation is needed to fully understand the extent the
differences in the ways these two subgroups performed in the
clock task. However, the fact that the correlation of the task and
assessment scores on both task and non-task isolated topics was
similar (.403 and .454 respectively) suggests that while the test
harness clearly scaffolded performance on the clock task it did not
mask students’ latent understanding of the conceptual content
highlighted in the task.

7. TEACHERS’ EXPECTATIONS
As mentioned above the group members who brought data cohorts
were asked to fill in a short survey and describe their predictions
regarding the performance of their students in the FCS1
assessment. They were also asked to posteriori reflect on their
expectations and the actual performances of their students in the
Clock programming task as well as the FCS1. Although all
teachers were very familiar with the original MWG work, only
one of them gathered data in both the original study and this one.

7.1 Expectations regarding the FCS1
The teachers were asked to predict the overall score of their
students (0%-100%) in the FCS1, the topics and subtask that were
easiest and most difficult to their students (they had to choose
from the following list: Fundamentals, logical operators,
Selection, Definite Loops, Indefinite Loops, Arrays, Function
Parameters, Function Return Value, Recursion), and the
percentage of students who might have run out of time. Table 8
presents the teachers’ response regarding the foundational CS1
assessment instrument (FCS1)

Table 8: Teachers’ estimations on their students’ success in
comparison to students’ performance for the FCS1

 All the teachers unanimously thought that Recursion is the most
difficult topic. Fundamentals (i.e. variables, assignments, and so
forth) and selections were considered to be the easiest topics.

Teachers’ estimations were in the range of 40-63% (in literature
the average was 42% [24]). About half of the teachers’ believed
that the students’ conceptual knowledge was better than it
actually was (see Table 5 and Table 6).

In their reflections, teachers mentioned several concerns
regarding factors that might have influenced students’
performance in the assessment. Two teachers were concerned that
students did not have sufficient time. Another teacher was
concerned about the students’ limited knowledge in English, the
language of the test and the task. Another concern mentioned by
one teacher about a possible cultural bias was that the concept of
a 24-hour clock would be difficult to his students, who are
accustomed to a 12-hour clock.

Two teachers had concerns about their students’ conceptual
knowledge. One was concerned that their students had not been
exposed to some topics, such as recursion. Another teacher
stressed that, in his institute, they “prioritize practical
programming skills and techniques over deep conceptual
understanding”.

The teachers mentioned that they were familiar with the literature
relevant to the FCS1 assessment. This has “colored” or “biased”
their expectations.

7.2 Expectations from the Clock
programming task
The teachers were asked to rank the four sub-tasks from the
easiest (score of 1) to the most difficult (score of 4). Table 9
presents their ranking. The majority agreed that the subtract() sub-

Anticipated

Score
Score Easiest Topic

Most
Difficult

Topic

R1 44%
Realist
(2%)

Fundamentals
& Selection

Recursion

R2 63%
Realist
(1%)

Fundamentals
& Selection

Recursion

P 42%
Pessimist

(19%)
Fundamentals Recursion

T 56%
Optimist
(12%)

Selection
Recursion
& Arrays

Q 52%
Optimist
(14%)

Selection Recursion

S 40%
Optimist
(12%)

Fundamentals Recursion

22

task would be the most difficult and that the add() sub-task would
be the second most difficult.

Their explanations emphasized the relations between these two
sub-tasks. The most common argument was that add() is
“algorithmically more complicated” than tick() and compareTo(),
and subtract() is like “the add() function in reverse but will cause
students more difficulty[.]”.

Table 9: Teachers ranking of the sub-tasks

 tick compareTo add subtrac
t

R1+R2 1 2 3 4

P 1 2 3 4

T 2 1 3 4

Q 4 1 3 2

S 1 3 2 4

U 2 1 3 4

Average 1.83 1.67 2.83 3.67

σ 1.17 0.82 0.41 0.82

The tick() and the compareTo() sub-tasks were considered by the
majority to be easier than the add() and subtract() sub-tasks
because tick() requires “a simple manipulation” and compareTo()
requires a “relatively simple code”. They varied, however, in
their choice between the two. These estimations were correct, as
can be seen in from Table 3.

Teachers were also asked to estimate their a priori expectation of
complete success in the Clock task: what proportion of their
students they expected to be able to completely implement the
task (to the point of passing all tests), with the results given in
Table 10.

Table 10: Teachers’ estimations on their students’ success in
comparison to students’ performance for the Clock task

 Overall estimation-
overall

T 66% 50%

S 3% 4%

R1 68% 80%

R2 93% 99%

U 10% 10%

Q 0% 5%

P 73% 33%

8. COMPARISON WITH THE ORIGINAL
MCCRACKEN WORKING GROUP AND
OTHER, MORE RECENT, STUDIES
In this section we compare the original McCracken working
group study [18], the Sweden Group study (SG) [17] and this
study2.

The MWG study conducted a multi-national, multi–institutional
study in which the students were given one of three related
calculator exercises which were deemed to cover all parts of the
learning objectives framework. Two measures were used to
evaluate the students’ attempts: a General Evaluation (GE) which
included execution, verification, validation and style components,
and a Degree of Closeness evaluation (DOC) in which the code
was examined qualitatively. Overall the MWG “found that the
students’ level of skill was not commensurate with their
instructors’ expectations”. As measures of this we note that the
average GE score (which was mainly objective) was 22.9 out of
110.

The SG took the MWG as its starting point and gave the infix,
precedence-free calculator problem to 40 students at one
institution. The study addressed three research questions. The first
of these, and the goal most relevant to this paper, was how well
can the students at one institution solve a calculator problem if
they do not have to deal with various confounding issues
presented in the MWG study (unfamiliar environments and
conditions, the complex explanation of calculators, the need for a
stack for the postfix calculator, the complexities of Java I/O, and
no access to an online Java API). The SG results were much more
encouraging than in MWG. The GE score average was 68.2 out of
110. The authors conclude that “generally the students were able
to do at least part of the problem”. They offer several possible
explanations for these different results, which relate to the
specific issues mentioned above, and which they categorize as
environment, cognitive load and troublesome knowledge.

Another research question from the SG study is “can a modified
version of the instrument used by the MWG provide a useful
assessment?” They refer to MWG as having the goal of
evaluating its instrument, as well as the students. We think this is
a slight misunderstanding, since MWG asked participants to
choose students who “should” be able to solve the calculator
problem. The MWG question was rather: “are instructors’
expectations of their students realistic?”

In the current paper we are reporting on a study with similar goals
to the original MWG but with different assessment instruments,
including a (programming) language neutral test of students’
conceptual understandings. The cohort for this study is larger than
both MWG and SG.

Both MWG and SG used calculator problems. This study used the
clock problem, which was considered to be more in line with
object-oriented environments and less algorithmically complex. A
more important difference between MWG, SG and this study is
that MWG involved a problem that tested all the parts of the
learning objectives framework which they identified. In
particular, the first two parts (abstracting the problem and
generating sub-problems), which have been noted by SG and

2 A note on dates: the original MWG met in 2001, SG produced

their paper for ICER 2013, but this group was able to see a
preprint just before we met.

23

other researchers [16] as too high an expectation. SG gave the
participants a skeleton calculator and some I/O code as a starting
point. Our study also gave a quite explicit skeleton Time class
and the students were told to fill in the method bodies. A testing
framework was also made available to some of the students that
may have given them some scaffolding and a stopping criterion.
Thus, in both the SG study and the current study the design was
essentially given to the students.

In summary, MWG raised the whole issue of student performance
and instructor expectation in a multi-national context. The SG
study was able to remove many of the issues that confounded the
original MWG study. They showed that expecting students to be
able to code a no-precedence infix calculator with considerable
amounts of scaffolding code with a smaller cohort at a single
university produced better results than MWG. The current study
shows that instructors’ expectations appear to be more accurate
than in the era of MWG, that student performance is better when
students need not design a whole application and are able to
easily verify their results, which coincides more closely with the
SG study results than the MWG study.

9. THE WORLD IS DIFFERENT
In the 12 years between the original MWG and this study the
world as experienced by this digital generation of CS students has
changed. Many changes have taken place in the way we teach and
assess our students, and students themselves have changed in
terms of the prior knowledge they bring with them and of the way
they discover information and solve problems.

Changes in teaching and assessment

One of the issues identified as central to the effort of the MWG
was the development of CC2001[8]. The current study takes
place within the context of the development of CS2013[14] which
reviews and enhances CC2001 and the interim CS2008[25]. The
draft documentation for CS2013 identifies a number of interesting
features of the evolution of introductory CS courses from CC2001
to CS2013:

 Increase in the prevalence of “CS0” courses and
multiple pathways into and through the introductory
course sequence;

 Growing diversity in platforms used, e.g. web
development, mobile device programming;

 Broadening of the list of languages used, and trend
towards managed and dynamic and visual languages,
with no particular paradigm or language becoming
favored;

 Increasing adoption of software engineering
innovations, e.g. test-driven development[2], version
control, use of IDEs.

These features were reflected to a limited extent within this study.
There was some diversity in the pathways through the course
sequence among our cohorts, which presented difficulties in
comparing cohorts. All students participated in the task using
desktop or laptop computers, which matched the environments
they were accustomed to using. The only addition to the
languages used in the MWG was Python, while other cohorts used
Java and C/C++ as in the earlier study. The MWG acknowledged
the possibilities of Test-driven Development/Design (TDD)
approaches to allow students to check work at an earlier stage,
and the design of the task in this study made use of TDD
techniques for scaffolding the students’ activity in some cohorts.
However, by no means all the students in this study had

experience in their courses of developing software using a TDD
approach.

In addition to the features identified in CS2013, developments
arising from CS education research have had an impact on
teaching and learning, for example:

 Transition from written exam with pen and paper to
practical exam with computer and the development
tools and resources which students practice with in labs;

 Transition from procedural to object-oriented
programming;

 Recognition of the roles of variables [21];
 Transition toward a systematic and structured focus on

constructive alignment between intended learning
outcome, course activities, and assessment[6], including
instances of assessments specifically designed to
address issues raised by the findings of the MWG[4].

Modern object-oriented programming languages come with a
large class library and a well-documented API to ease access to it,
and many educators take advantage of the opportunity to produce
partially finished programs and/or provide classes as black boxes
for the students to use when solving the problem

In earlier days it was less common to use libraries and typically
students built everything from scratch when they were
programming. With object-oriented programming entering the
stage, it has become much more customary for students to
contribute to already existing code either by using standard
"slave" classes that offer various "low-level" functionality
(typically the Model in an MVC structure) or by using
frameworks that provide an overall structure where the students
contribute by concretizing hot spots in the framework (by
implementing virtual methods/subclasses)[7].

The building blocks that are given to students may be provided as
black-box or white-box components [13]. The former refers to
components that the students are supposed to use by only
referring to the specification of the components whereas the latter
are components that the students must open, read/study, and
modify. In the former case, the consequence is that students read
more APIs (specification level). The latter case has as a
consequence that the students read more code (implementation
level). Overall, students tend to spend more time studying
existing code now than they did when the MWG study was
conducted.

Of course, while the above observations reflect identifiable
trends, such developments are not universally accepted and
practiced, as evidenced, for example by a recent discussion on the
SIGCSE mailing list regarding written coding questions in
examinations, where educators expressed significant support for
requiring students to hand-write code without access to
documentation or syntax-checking[22].

Changes in the students

Today’s students have been described as belonging to the Net
generation, or as Digital Natives[15], who are active experiential
learners, dependent on technology for accessing information and
interacting with others. These students may not readily engage
with the instructional resources, such as textbooks, available to
previous generations. The existence of this generation has been
disputed, however, and it is not clear that a particular learning
style or preferences can be attributed to a whole generation [5].
Nevertheless, while there is little evidence that the level of CS
instruction experienced by students before coming to university

24

has increased significantly, it can be argued [12] that the
increasing use of computers, software and online resources among
young people leads students to have developed theories of how
computing works by the time they start their CS courses.

This type of digital literacy is from a user or user-programming
rather than a professional viewpoint [3], but it carries over into
some specific expectations when students are programming. CS
students now expect “always on” access to the Internet as they
code and this is likely to influence the strategies which they adopt
in attempting to solve programming problems. Instructors and
textbooks (e.g. [1]) often encourage use of online programming
language API documentation while developing programs, as good
software engineering practice. There are many more online spaces
where students can seek answers to specific questions from
instructors or peers within an educational context, for example
Piazza [11] or from members of the wider developer community,
such as StackOverflow (http://stackoverflow.com). The first
instinct of many programmers, students or otherwise, is probably
to search for an answer on Google, which in turn will often find
answers to similar questions which have been asked previously.
More general social media, such as Facebook and Twitter, are
also widely used by students and may be used to seek support.

The influence of these strategies on the activity within this study
is difficult to determine as this behavior was not explicitly
recorded or observed. The task, designed to translate easily to
different programming languages, requires little or no use of API
classes or functions, so online documentation would have been of
little use here. The task was administered in a time-limited
context, albeit with no restriction on access to the Internet. It is
unlikely, though not impossible, that a student would be able to
pose a question and receive an answer online within that
timescale. This consideration influenced the choice of the
problem for the task, as we searched to assure ourselves that this
was not a findable problem with “canned” solutions readily
available.

10. DISCUSSION
Overall, students seem to have performed better on the
programming task used in this working group than in the one used
in the original MWG. In fact, the low-scoring “no harness” groups
in this study performed as well (on the “passed all tests” measure)
as the average “general evaluation” score of 21% across all
cohorts in the MWG.

That having been said, there are clearly two distinct populations
within the current study’s overall cohort: one with an average
completion rate of >3.0 methods, and one with an average < 1.0
(Table 2). There are a number of potentially significant factors
involved in this difference:

Some of the cohorts in the high-average group had more prior
programming material in their University education than others.
That is: the size of the “CS1” component at the end of which they
participated in this study varied from 5-10 ECTS credits (Table
1). Discounting any pre-university programming experience, this
means that some students had twice as much exposure to (and
practice in) programming before attempting the task.

Some groups undertaking the Clock task were provided with the
test harness. This clearly had an effect on their performance in the
Clock task, as shown by the correlations with their performance in
FCS1 (Table 7). We believe that this explained by a scaffolding
effect:

 The test harness guides students in what they need to
do:

o It serves as a definition of correctness for the
students: what is a correct solution like?

o It disambiguates requirements that may have
otherwise been unclear: does tick() mean a
single tick or making the clock tick
continuously?

o It reminds the student of corner cases that
they may otherwise overlook.

 Assuming the student uses the harness, they receive
continuous, instant feedback about their program.

On a related note, students sometimes choose not to write tests
early, even when taught using practices such as TDD (e.g. [10]).
It is apparent from inspection that few, if any, in the no-harness
group wrote a set of tests and then implemented the required
methods; consequently, they would not have had access to
feedback as they worked incrementally on the four methods.

Being given a test harness also meant less work and less mental
load for the students:

 The harness takes care of I/O.
 The harness provides a main method and removes the

need for the students to design any of the overall
structure of their program, which represented two parts
of the MWG learning objectives framework.

 Having the harness simply means that there is less
implementation work to be done: the student does not
need to write tests, is less likely to run out of time, and
is less likely to suffer from time pressure.

Assuming that we are correct in stating that the four methods of
the Time class were in more or less increasing order of difficulty,
then the harness also suggested or even enforced an effective path
from tick() to subtract() so that implementing each preceding
method makes the next one a smaller step in difficulty.
Sequencing learning activities on a topic in order of increasing
complexity helps keep the students’ cognitive load in check [26].

Writing the tests is likely to have been difficult for some students.
Some aspects of test-writing may even have been conceptually
more difficult for them than aspects of the task proper. For
instance, using the Time class from the test code requires an
understanding of object-instantiation that is not required to
implement any of the methods in the Time class itself.

Finally it is worth commenting on our results in looking at
teachers’ expectations of their students’ performance. In the
MWG the teachers were all negatively surprised: “the first and
most significant result was that the students did much more poorly
than we expected” ([18] p. 132). The results of this study in this
aspect are different. Most working group members knew what to
expect. It should be noted that in the original study the
expectation were not empirically measured. Nonetheless, the fact
that in this experiment four out of six felt that the results, whether
poor or high, matched their expectations from the students, imply
that the teachers’ expectation were more attuned to their students.
We cannot rule out, however, the explanation that the teachers,
especially in this group, are familiar with previous studies
reported on students’ behavior, and have colored their
expectations accordingly. It may be that the longest-lasting effect
of the original MWG has been to depress teachers’ expectations
of their students’ ability!

25

11. ACKNOWLEDGEMENTS
The working group would like to acknowledge and thank the
following colleagues who provided access to their students and
helped collect data: Kerttu Pollari-Malmi, Satu Alaoutinen, Timi
Seppälä and Teemu Sirkiä; Tomasz Misztur; Luis Fernando de
Mingo Lopez, Nuria Gomez Blas, Irina Illina, Bernard Mangeol,
Paolo Boldi, Walter Cazzola, Dario Malchiodi, Marisa
Maximiano,Vitor Távora, Grzegorz Filo, Pawel Lempa, Lya van
der Kamp, Eddy de Rooij, Markku Karhu, Olli Hämäläinen,
Lucas Cosson, Erja Nikunen and Antti Salopuro.

12. REFERENCES
[1] Barnes, D. and Kölling, M. Objects first with Java : a

practical introduction using BlueJ. Pearson Education,
Upper Saddle River, N.J., 2011.

[2] Beck, K. Test-driven development: by example. Addison-
Wesley Professional, 2003.

[3] Ben-David Kolikant, Y. (Some) grand challenges of
computer science education in the digital age: a socio-
cultural perspective. In Anonymous Proceedings of the 7th
Workshop in Primary and Secondary Computing Education.
ACM, , 2012, 86-89.

[4] Bennedsen, J. and Caspersen, M. E. Programming in context:
a model-first approach to CS1. In Anonymous Proceedings
of the 35th SIGCSE technical symposium on Computer
science education. (Norfolk, Virginia, USA,). ACM, New
York, NY, USA, 2004, 477-481.

[5] Bennett, S., Maton, K. and Kervin, L. The ‘digital natives’
debate: A critical review of the evidence. British journal of
educational technology, 39, 5, 2008, 775-786.

[6] Caspersen, M. E. Educating novices in the skills of
programming. PhD Thesis, Aarhus University, Science and
Technology, Centre for Science Education, Aarhus,
Denmark, 2007.

[7] Caspersen, M. E. and Christensen, H. B. Here, there and
everywhere - on the recurring use of turtle graphics in CS1.
In Anonymous Proceedings of the Australasian conference
on Computing education. (Melbourne, Australia,). ACM,
New York, NY, USA, 2000, 34-40.

[8] Engel, G. and Roberts, E. Computing curricula 2001
computer science. IEEE-CS, ACM.Final Report, 2001.

[9] European Commission. European Credit Transfer System.
http://ec.europa.eu/education/lifelong-learning-
policy/ects_en. htm, 2013, 7/31, 2013.

[10] Fidge, C., Hogan, J. and Lister, R. What vs. How:
Comparing Students’ Testing and Coding Skills. In
Anonymous Proceedings of the Fifteenth Australasian
Computing Education Conference (ACE2013). Australian
Computer Society in the Conferences in Research and
Practice in Information Technology (CRPIT), 2013, 97-106.

[11] Ghosh, A. and Kleinberg, J. Incentivizing participation in
online forums for education. In Proceedings of the fourteenth
ACM conference on Electronic commerce. (Philadelphia,
Pennsylvania, USA,). ACM, New York, NY, USA, 2013,
525-542.

[12] Guzdial, M. We're too Late for "First" in CS1.
Blog@CACM, http://cacm.acm.org/blogs/blog-

cacm/102624-were-too-late-for-first-in-cs1, (December 7,
2010).

[13] Hmelo, C. E. and Guzdial, M. Of black and glass boxes:
scaffolding for doing and learning. In Anonymous
Proceedings of the 1996 international conference on
Learning sciences. (Evanston, Illinois,). International
Society of the Learning Sciences , 1996, 128-134.

[14] Joint ACM/IEEE-CS Task Force on Computing Curricula.
Computer Science Curricula 2013: Strawman Draft.
http://cs2013.org/strawman-draft/cs2013-strawman.pdf,
(February 2012 2012).

[15] Jones, C., Ramanau, R., Cross, S. and Healing, G. Net
generation or Digital Natives: Is there a distinct new
generation entering university? Computing Education, 54, 3,
2010, 722-732.

[16] Lopez, M., Whalley, J., Robbins, P. and Lister, R.
Relationships between reading, tracing and writing skills in
introductory programming. In Anonymous Proceedings of
the Fourth international Workshop on Computing Education
Research. (Sydney, Australia,). ACM, New York, NY,
USA, 2008, 101-112.

[17] McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K. and
Zander, C. Can First-Year Students Program Yet? A Study
Revisited. In ICER '13: Proceedings of the ninth annual
international conference on International computing
education research. (Sab Diego, CA, USA, August 2013).
ACM, New York, NY, USA, 2013.

[18] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I.
and Wilusz, T. A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students.
SIGCSE Bull, 33, 4, 2001, 125-180.
DOI=10.1145/572139.572181.

[19] Rittle-Johnson, B., Siegler, R. S. and Alibali, M. W.
Developing conceptual understanding and procedural skill in
mathematics: An iterative process. J. Educ. Psychol., 93, 2,
2001, 346.

[20] Rogalski, J. and Samurçay, R. Acquisition of programming
knowledge and skills. Psychology of programming, 18,
1990, 157-174.

[21] Sajaniemi, J. and Kuittinen, M. An experiment on using roles
of variables in teaching introductory programming.
Computer Science Education, 15, 1, 2005, 59-82.

[22] SIGCSE Members. Hand-writing code on exams.
http://listserv.acm.org/scripts/wa-
ACMLPX.exe?A1=ind1305C&L=SIGCSE-members#7, (15-
17 May 2013).

[23] Tew, A. E. Assessing fundamental introductory computing
concept knowledge in a language independent manner. PhD
Thesis, Georgia Institute of Technology, 2010.

[24] Tew, A. E. and Guzdial, M. The FCS1: a language
independent assessment of CS1 knowledge. In Anonymous
Proceedings of the 42nd ACM technical symposium on
Computer science education. (Dallas, TX, USA). ACM, New
York, NY, USA, 2011, 111-116.

[25] The Joint ACM/AIS/IEEE-CS Task Force on Computing
Curricula. Computer Science Curriculum 2008: An Interim
Revision of CS 2001.

26

http://www.acm.org/education/curricula/ComputerScience20
08. pdf, 2008.

[26] Van Merriënboer, J. J., Kirschner, P. A. and Kester, L.
Taking the load off a learner's mind: Instructional design for

complex learning. Educational psychologist, 38, 1, 2003, 5-
13.

Appendix A – Clock Task Reference Implementation Time.java
/**
 * Objects of the Time class hold a time value for a
 * European‐style 24 hour clock.
 * The value consists of hours, minutes and seconds.
 * The range of the value is 00:00:00 (midnight) to 23:59:59 (one
 * second before midnight).
 *
 * Type your UID here:
 * How long did this take you (hours):
 *
 * @version 1.1
 */
public class Time
{
 // The values of the three parts of the time
 private int hours;
 private int minutes;
 private int seconds;

 /**
 * Constructor for objects of class Time.
 * Creates a new Time object set to 00:00:00.
 * Do not change this constructor.
 */
 public Time()
 {
 this.hours = 0;
 this.minutes = 0;
 this.seconds = 0;
 }

 /**
 * Constructor for objects of class Time.

27

 * Creates a new Time object set to h:m:s.
 * Assumes, without checking, that the parameter values are
 * within bounds.
 * For this task, you don't need to worry about invalid parameter values.
 * Do not change this constructor.
 */
 public Time(int h, int m, int s)
 {
 this.hours = h;
 this.minutes = m;
 this.seconds = s;
 }

 /**
 * Add one second to the current time.
 * When the seconds value reaches 60, it rolls over to zero.
 * When the seconds roll over to zero, the minutes advance.
 * So 00:00:59 rolls over to 00:01:00.
 * When the minutes reach 60, they roll over and the hours advance.
 * So 00:59:59 rolls over to 01:00:00.
 * When the hours reach 24, they roll over to zero.
 * So 23:59:59 rolls over to 00:00:00.
 */
 public void tick()
 {
 // Task 1: complete the tick() method
 }

 /**
 * Compare this time to otherTime.
 * Assumes that both times are in the same day.
 * Returns ‐1 if this Time is before otherTime.
 * Returns 0 if this Time is the same as otherTime.
 * Returns 1 if this Time is after otherTime.
 */
 public int compareTo(Time otherTime)
 {
 // Task 2: complete the compareTo method
 return 0;
 }

 /**
 * Add an offset to this Time.
 * Rolls over the hours, minutes and seconds fields when needed.
 */
 public void add(Time offset)
 {
 // Task 3: complete the add method
 }

 /**
 * Subtract an offset from this Time.
 * Rolls over (under?) the hours, minutes and seconds fields when needed.
 */
 public void subtract(Time offset)
 {
 // Task 4: complete the subtract method
 }

 /**
 * Return a string representation of this Time.
 * String is of the form hh:mm:ss with always two digits for h, m and s.
 * Do not change this.

28

 */
 public String toString()
 {
 return pad(hours) + ":" + pad(minutes) + ":" + pad(seconds);
 }

 /**
 * Returns a string representing the argument value, adding a leading
 * "0" if needed to make it at least two digits long.
 * Do not change this.
 */
 private String pad(int value)
 {
 String sign = "";

 if (value < 0) {
 sign = "‐";
 value = ‐value;
 }

 if (value < 10) {
 return sign + "0" + value;
 } else {
 return sign + value;
 }
 }
}
 TimeTester.java
/**
 * Runs tests on instances of the Time class using the main method of this class.
 * Tests are divided into four sets, one for each of the
 * sub‐tasks described in the Time class, which are executed in the
 * order of the sub‐tasks.
 * Sets are only attempted if all the previous sets have passed.
 * Tests within a set are attempted even if previous tests in the set have failed.
 *
 * Do not change this class.
 *
 * @author Ian Utting
 * @version 1.1
 */
public class TimeTester
{
 /**
 * Run all of the sets of tests, running each one only if the previous
 * sets have all passed.
 * This makes the results less cluttered if you are attempting the
 * sub‐tasks in order.
 */
 public static void main(String [] args)
 {
 if (!tickTests()) return;
 System.out.println("All tick() tests passed.");
 if (!compareToTests()) return;
 System.out.println("All compareTo() tests passed.");
 if (!addTests()) return;
 System.out.println("All add() tests passed.");
 if (!subtractTests()) return;
 System.out.println("All subtract() tests passed.");
 System.out.println("All tests passed.");
 }

29

 /**
 * Test the tick() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean tickTests()
 {
 boolean allPassed = true;

 allPassed &= tickTest(new Time(0, 0, 0), "00:00:01");
 allPassed &= tickTest(new Time(0, 0,58), "00:00:59");
 allPassed &= tickTest(new Time(0, 0,59), "00:01:00");
 allPassed &= tickTest(new Time(0,58,59), "00:59:00");
 allPassed &= tickTest(new Time(00,59,59), "01:00:00");
 allPassed &= tickTest(new Time(23,59,59), "00:00:00");

 Time t = new Time(0, 0, 0);
 allPassed &= tickTest(t, "00:00:01");
 allPassed &= tickTest(t, "00:00:02"); // Same t, ticked twice

 return allPassed;
 }

 /**
 * Test the compareTo() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean compareToTests()
 {
 boolean allPassed = true;

 Time t1 = new Time(0, 0, 4);
 Time t1Clone = new Time(0, 0, 4);

 allPassed &= compareToTest(t1, t1, 0);
 allPassed &= compareToTest(t1, t1Clone, 0);

 Time t2 = new Time(0, 0, 5);

 allPassed &= compareToTest(t1, t2, ‐1);
 allPassed &= compareToTest(t2, t1, 1);

 allPassed &= compareToTest(new Time(2, 2, 2), new Time(1, 2, 2), 1);
 allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 1, 2), 1);
 allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 2, 1), 1);
 allPassed &= compareToTest(new Time(1, 2, 2), new Time(2, 2, 2), ‐1);
 allPassed &= compareToTest(new Time(2, 1, 2), new Time(2, 2, 2), ‐1);
 allPassed &= compareToTest(new Time(2, 2, 1), new Time(2, 2, 2), ‐1);

 return allPassed;
 }

 /**
 * Test the add() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean addTests()
 {
 boolean allPassed = true;

 allPassed &= addTest(new Time(1, 1, 1), new Time(2, 2, 2), "03:03:03");
 allPassed &= addTest(new Time(0, 0, 59), new Time(0, 0, 1), "00:01:00");
 allPassed &= addTest(new Time(0, 59, 0), new Time(0, 0, 1), "00:59:01");

30

 allPassed &= addTest(new Time(0, 59, 59), new Time(0, 0, 1), "01:00:00");
 allPassed &= addTest(new Time(23, 0, 0), new Time(1, 0, 0), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 0), new Time(0, 1, 0), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 59), new Time(0, 0, 1), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 59), new Time(23, 59, 59), "23:59:58");

 return allPassed;
 }

 /**
 * Test the subtract() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean subtractTests()
 {
 boolean allPassed = true;

 allPassed &= subtractTest(new Time(2, 2, 2), new Time(1, 1, 1), "01:01:01");
 allPassed &= subtractTest(new Time(0, 1, 0), new Time(0, 0, 1), "00:00:59");
 allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 1, 0), "00:59:00");
 allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 0, 1), "00:59:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(1, 1, 1), "00:00:00");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 0, 2), "01:00:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 2, 2), "00:58:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(2, 2, 2), "22:58:59");

 return allPassed;
 }

 /**
 * Implementation of an individual tick test.
 */
 private static boolean tickTest(Time t, String expected)
 {
 String orig = t.toString();

 t.tick();

 if (t.toString().equals(expected)) return true;

 System.out.println("Test: with Time " + orig + ", tick() failed. " +
 "Expected \"" + expected + "\", got \""+ t + "\"");
 return false;
 }

 /**
 * Implementation of an individual comparison test.
 */
 private static boolean compareToTest(Time t1, Time t2, int expected)
 {
 int result = t1.compareTo(t2);

 if (result == expected) return true;

 System.out.println("Test: with Time " + t1 + ", compareTo(" + t2 + ") failed. " +
 "Expected \"" + expected + "\", got \"" + result + "\"");
 return false;
 }

 /**
 * Implementation of an individual addition test.
 */
 private static boolean addTest(Time t1, Time t2, String expected)

31

 {
 String hdr = "Test: with Time " + t1 + ", add(" + t2 + ") failed. ";
 String origT2 = t2.toString();

 t1.add(t2);

 if (!t2.toString().equals(origT2)) {
 // Second parameter should not be changed
 System.out.println(hdr +
 "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\"");
 return false;
 }

 if (!t1.toString().equals(expected))
 {
 System.out.println(hdr +
 "Expected \"" + expected + "\", got \""+ t1 + "\"");
 return false;
 }
 return true;
 }

 /**
 * Implementation of an individual subtraction test.
 */
 private static boolean subtractTest(Time t1, Time t2, String expected)
 {
 String hdr = "Test: with Time " + t1 + ", subtract(" + t2 + ") failed. ";
 String origT2 = t2.toString();

 t1.subtract(t2);

 if (!t2.toString().equals(origT2)) {
 // Second parameter should not be changed
 System.out.println(hdr +
 "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\"");
 return false;
 }

 if (!t1.toString().equals(expected))
 {
 System.out.println(hdr +
 "Expected \"" + expected + "\", got \""+ t1 + "\"");
 return false;
 }
 return true;
 }
}

32

