
�

�

�

�

�

�

�

�

2

ÆMINIUM: A Permission-Based Concurrent-by-Default Programming
Language Approach

SVEN STORK, KARL NADEN, and JOSHUA SUNSHINE, Carnegie Mellon University
MANUEL MOHR, Karlsruhe Institute of Technology
ALCIDES FONSECA and PAULO MARQUES, University of Coimbra
JONATHAN ALDRICH, Carnegie Mellon University

Writing concurrent applications is extremely challenging, not only in terms of producing bug-free and main-
tainable software, but also for enabling developer productivity. In this article we present the ÆMINIUM

concurrent-by-default programming language. Using ÆMINIUM programmers express data dependencies
rather than control flow between instructions. Dependencies are expressed using permissions, which are
used by the type system to automatically parallelize the application. The ÆMINIUM approach provides a
modular and composable mechanism for writing concurrent applications, preventing data races in a prov-
able way. This allows programmers to shift their attention from low-level, error-prone reasoning about
thread interleaving and synchronization to focus on the core functionality of their applications. We study
the semantics of ÆMINIUM through μÆMINIUM, a sound core calculus that leverages permission flow to
enable concurrent-by-default execution. After discussing our prototype implementation we present several
case studies of our system. Our case studies show up to 6.5X speedup on an eight-core machine when lever-
aging data group permissions to manage access to shared state, and more than 70% higher throughput in a
Web server application.

Categories and Subject Descriptors: D.3.3 [Programming Languages]; D.1.3 [Concurrent Program-
ming]; D.1.5 [Object-Oriented Programming]

General Terms: Languages, Theory, Performance

Additional Key Words and Phrases: Access permissions, permissions, data groups, concurrency

ACM Reference Format:
Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P., and Aldrich, J. 2014. ÆMINIUM:
A permission-based concurrent-by-default programming language approach. ACM Trans. Program. Lang.
Syst. 36, 1, Article 2 (March 2014), 42 pages.
DOI:http://dx.doi.org/10.1145/2543920

1. INTRODUCTION

In recent years concurrency has become ubiquitous in a wide range of software sys-
tems, from high-performance computers to ordinary laptops, smart phones, and even

This work was partially supported by the Portuguese Research Agency – FCT, through a scholarship
(SFRH/BD/33522/2008), CISUC (R&D Unit 326/97) and the CMU/Portugal program (R&D Project Aemi-
nium CMU-PT/SE/0038/2008). Supporting work on the Plaid language was funded through the US NSF
grant no. CCF-1116907.
Authors’ addresses: S. Stork (corresponding author), K. Naden, and J. Sunshine, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA; email: svens@cs.cmu.edu; M. Mohr, Karlsruhe Institute
of Technology, Karlsruhe, Germany; A. Fonseca and P. Marques, University of Coimbra, Coimbra, Portugal;
J. Aldrich, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
c© 2014 ACM 0164-0925/2014/03-ART2 $15.00
DOI:http://dx.doi.org/10.1145/2543920

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2543920&domain=pdf&date_stamp=2014-03-01

�

�

�

�

�

�

�

�

2:2 S. Stork et al.

embedded systems. The concurrency models used by applications running on these
systems differ widely, including parallel number crunching, task synchronization, and
inter-thread communication for hiding I/O latency, among many others.

The problem of concurrency cannot be successfully solved without considering soft-
ware engineering concerns. Today most software leverages libraries, frameworks, and
other reusable software components, and is large enough to be difficult for a single
programmer to fully understand. This often leads to cases where a small change
in one component breaks a completely unrelated component. In addition to those
correctness concerns comes the question of efficiency. Adve and Boehm [2010] show
that correct and efficient concurrency support requires programming language sup-
port. In particular it is shown that race freedom, at the very least, must be sup-
ported in programming languages to allow efficient cooperation between hardware and
software.

In this article we present ÆMINIUM [Stork 2013], which is to our knowledge the
first system to combine automatic parallelization with type-based safe deterministic
and nondeterministic concurrency. The ÆMINIUM type system is based on access per-
missions, which express constraints on program aliasing, allowing us to overcome one
of the major obstacles in prior automatic parallelization work. This aliasing informa-
tion allows the compiler to easily build a dependency graph and then to parallelize
the code. A novel permission splitting operation allows programmers to express when
two operations that access the same data are conceptually independent, allowing the
compiler to safely extract nondeterministic concurrency in addition to deterministic
parallelism.

Our approach permits the user to expose potential parallelism in a predictable way
through permissions, but puts the runtime system in charge of the highly platform-
dependent task of scheduling that potential parallelism onto hardware resources.
Library code can also be more reusable, as the programmer only exposes potential
parallelism with permissions, rather than committing to a particular parallelization
strategy which may conflict with client code.

The main contributions of this article are as follows.

— A concurrent-by-default programming language leverages permissions and data
groups to automatically, safely, and deterministically parallelize applications based
on permission flows. While an initial sketch of the approach was presented in
Stork et al. [2009], this article fills in the sketch to show how the system actu-
ally works, and provides a different (and more workable) design for data group
permissions.

— We present a safe approach to integrating nondeterminism into the implicit paral-
lelism model mentioned before. Our approach leverages access permissions to data
groups, allowing developers to explicitly specify when nondeterminism is permisible
while ensuring the absence of data races.

— A core calculus called μÆMINIUM makes the model just described precise and
allows formal reasoning about the system. The formal system consists of:
— a type system that extracts dependency information and ensures the absence of

race conditions;
— a concurrent-by-default evaluation semantics which models dataflow parallelism

at a fine granularity, in contrast to prior type-based concurrency models that
used threads or explicit fork-join parallelism; and

— a proof of type soundness and race freedom.
— We provide a detailed description of our prototype implementation in the Plaid

programming language infrastructure.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:3

— Several case studies evaluate our initial implementation which show the benefits
and applicability of our system to selected example programs.

1.1. Approach

In ÆMINIUM the programmer uses permissions to specify which data he is accessing
and in which way he needs to access the data (e.g., if he is willing to share access to the
data with other parts of the code or if he wants exclusive access). Encoding this per-
mission information allows the system to check for the correctness of each function as
well as their composition in a modular way. Based on the permission flow through the
application ÆMINIUM infers potential concurrent executions by computing a dataflow
graph [Rumbaugh 1975] which can then be executed by exploiting available, and po-
tentially concurrent, computation resources. ÆMINIUM’s type system prevents data
races by either enforcing synchronization when accessing shared data or by correctly
computing dependencies to ensure a happens-before relationship (meaning conflicting
accesses will be ordered according to their lexical order).

Note. ÆMINIUM is implemented in Plaid [Aldrich et al. 2009] which already has
first-class support for permissions. We therefore present all examples in ÆMINIUM/
Plaid syntax. Plaid’s syntax is sufficiently close to Java’s syntax to be readily under-
stood. We ignore Plaid’s special features (such as typestate) and for the purposes of
this article, we consider Plaid’s states to be equivalent to Java’s classes.

To illustrate these concepts, consider the transfer function shown shortly, which
transfers a specific amount between two bank accounts. It first withdraws the specified
amount of money from the “from” account and then deposits the same amount into the
“to” account.
� �

method void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
deposit(to, amount);

}
� �

For this example we assume that the order in which we perform the withdraw and
deposit operations does not matter. In particular, they could be executed concurrently
because both the withdraw and deposit operations should only affect the specified bank
account and no other. To encode this extra information ÆMINIUM uses permission an-
notations. Permissions [Boyland 2003] specify aliasing and access information for ob-
jects. The transfer method specifies that it requires a unique permission to both bank
accounts and an immutable permission to the amount parameter. The unique permis-
sion means that there is only one valid reference to the specified object in the whole
system at the moment of a function call, and modifications to the object within the
function are possible. The immutable permission specifies that there might be multi-
ple aliases to this object but none of them can be used to change the object.

Assuming the method declarations for the deposit and withdraw methods given
shortly, ÆMINIUM is now able to compute the permission flow within the transfer
method. The unique permission of the “to” parameter flows to the deposit method
while the unique permission of the “from” parameter flows to the withdraw. But we
only have one immutable permission to the “amount” object while both withdraw and
deposit require one each. Because immutable permissions explicitly allow aliasing

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:4 S. Stork et al.

Fig. 1. Permission flow in the transfer example. We use the notation var : perm to indicate that we have
permission “perm” for variable “var”.

ÆMINIUM automatically splits the one immutable permission into two permissions,
which are then passed to the two method calls.
� �

method void withdraw(unique Account account,
immutable Amount amount) {...}

method void deposit(unique Account account,
immutable Amount amount) {...}

� �

The permission flow of the transfer method is shown in Figure 1. After the split
operation the unique “to” and immutable “amount” permissions are passed to deposit
method while the unique “from” permission and immutable “amount” permission flow
to the withdraw method. After those methods complete ÆMINIUM will automatically
join the previously split immutable permissions. The permission flow graph corre-
sponds to the dataflow graph which is used to execute the transfer methods. Al-
though this example illustrates only unique and immutable data, we will later show
how ÆMINIUM supports shared mutable data with shared permissions and an atomic
synchronization primitive.

Note that in this example, passing a unique Account object to be modified by a
method is isomorphic to passing an immutable Account object as an argument and
receiving an updated Account as the result of the method. One can thus think of state
being threaded through the program following the permissions. In this sense, permis-
sions allow us to treat an imperative program as if it were purely functional, with
corresponding benefits for reasoning and parallelization. An analogy can be made to
monads [Moggi 1991] such as the state monad in Haskell, which conceptually threads
the state of the heap through the program computation. However, embedding permis-
sions in a linear logic and providing splitting rules, as discussed shortly, adds flexibility
compared to a monadic approach. While we do not explore the monad analogy further
in the article, we believe some readers may find it helpful.

In the following example we explore a hypothetical mistake, in which the pro-
grammer tries to implement the available_balance method to compute the available
balance of a given account. For this the caller must pass in the account object along

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:5

with an immutable permission. Due to a mistake the programmer adds a call to the
withdraw method, which attempts to withdraw the specified amount from the given
account. The withdraw method, though, requires a unique permission to the account
and we only have an immutable permission to the specified account. This will result in
a typechecking error because an immutable permission cannot be converted into the
required unique permission—and fortunately so, because an immutable object can be
accessed in parallel, so allowing a modifying access could result in a race condition.
� �

method immutable Amount available_balance(immutable Account account) {
// ...
withdraw(account, amount); // typecheck error
// ...

}
� �

1.2. Outline

The article is organized as follows: Section 2 provides an overview of the concept of
the ÆMINIUM language; Section 3 gives a detailed description of the core calculus;
Section 4 presents an overview of our initial prototype implementation; and Section 5
presents its evaluation; Section 6 discusses the current limitations of our prototype
system and future work; Section 7 compares our approach with previous approaches
and, finally, Section 8 concludes.

2. OVERVIEW

In this section we describe the ÆMINIUM programming language, which realizes a
concurrent-by-default programming model [Stork et al. 2009] with a concrete design
and precise semantics. ÆMINIUM uses access permissions [Beckman et al. 2008] for
objects and data group permissions for data groups [Leino 1998] to compute the per-
mission flow throughout the code (explained in the next sections). The compiler uses
this information to compute a dataflow graph, which can then be executed in parallel
on available computing resources.

While the general ÆMINIUM approach is language agnostic, we use an extended
Java syntax for presenting the examples in this section. This requires extending the
Java syntax with the missing language constructs and permission annotations. We are
currently working on a prototype implementation in the Plaid [Aldrich et al. 2009] lan-
guage. Plaid has permissions built-in as a first-class language construct and therefore
requires only minor extensions to support ÆMINIUM.

2.1. Access Permissions

Access Permissions (AP) have been studied in the past for checking interface proto-
col compliance and verifying the correct use of synchronization [Beckman et al. 2008].
In ÆMINIUM we use access permissions, and more precisely the flow of the access
permissions through the application, to model possible concurrent execution strate-
gies for a program. Access permissions are abstract capabilities associated with object
references. The primary purpose of access permissions is to keep track of how many
references to a given object exist in a moment in time, and to specify what kind of
operations are permitted on the object at that moment. In ÆMINIUM we adopted the
following three permissions kinds.

— Unique. A unique access permission to an object reference indicates that there is
exactly one reference (the current reference to that object) at this moment in time.
A unique access permission allows clients to read and modify the object.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:6 S. Stork et al.

— Shared. A shared access permission to an object reference indicates that there are an
arbitrary number of references to the object in the system and all the permissions
are shared. A shared access permission allows the client to read and modify the
object.

— Immutable. An immutable access permission to an object reference indicates that
there are an arbitrary number of references to the object in the system and all of
them are immutable. An immutable access permission allows only read access to the
object.

Access permissions follow the rules of linear logic [Girard 1987]. They are analogous
to physical resources that are unavailable once consumed. Permissions can be con-
verted from one type to another as long as the previously described invariants hold.
For instance, a unique AP can be split into two shared APs. Because of the linearity of
APs the unique AP is gone, having been replaced by two shared APs. Each of the shared
APs can be further split into more shared APs, but not into unique or immutable
permissions. Using fractions [Boyland 2003] for keeping track of the individual AP
allows permissions to be joined, eventually enabling the recovery of a unique access
permission.

The type system computes the AP flow in the program and automatically splits/joins
APs as needed. In ÆMINIUM two expressions may execute concurrently if their per-
missions do not interfere: that is, they have a disjoint set of unique permissions or an
arbitrary set of overlapping shared and immutable permissions. To avoid data races
ÆMINIUM only allows access to shared data within atomic blocks. The AP flow obeys
the lexical order of statements, meaning that if two pieces of code need the same unique
AP, the unique AP will first flow to the first expression and then to the second one.

2.2. Data Groups

Although pure APs define a clean execution model for unique and immutable data,
our permission splitting rules will allow all operations on shared data to proceed con-
currently. We need a way to express when one operation on a shared data structure
depends on another. Furthermore, we’d like to control these dependencies, as well as
synchronization on shared data, at a granularity greater than one object at a time.

To address this challenge we leverage Data Groups (DG, [Leino 1998]). A data group
represents an abstract collection of objects. Using data groups for grouping multiple
objects differs from previous work [Leino et al. 2002], which used data groups exclu-
sively to partition the state of one object. When an object is part of a data group, we
say that this object is owned by that data group. In ÆMINIUM each shared object
must be part of exactly one data group. The specific data group an object is in can
change during runtime execution. To transfer a shared object from one data group to
another one, all shared permissions to the object must be joined into a unique per-
mission. Only when a unique permission has been reassembled is it possible to split
this unique permission into shared permissions associated with a different data group.
We write shared〈myGroup〉 to indicate that the shared object is part of the data group
myGroup. Data groups need to be declared in a state but are instance specific (like
instance-specific fields). When an object is allocated, the data groups associated with
it are instantiated by the compiler/runtime system. The global set of data groups par-
titions the heap of shared objects into disjoint parts, which do not overlap.

Additionally, we adapt the concept of access permissions to data groups and call
them data Group Permissions (GP). ÆMINIUM currently defines the following data
group permissions.

— Exclusive. There is at most one exclusive GP to a data group in the whole system
at a time. This resembles a unique AP. Similar to a unique permission, an exclusive

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:7

Fig. 2. Permissions in ÆMINIUM. Shows different permission kinds and what each permission controls
(including arity). Access permissions control access to objects and group permissions control access to data
groups of shared objects. There can only exist one unique, exclusive, or protected permission to an object
or data group at a time in the system, while there can be an arbitrary number of shared and immutable
permissions. Shared permissions refer to the data group to which they belong (e.g., shared〈α〉 means the
object belongs to data group α).

GP represents the only currently existing permission through which the data of the
data group can be accessed.
An exclusive group permission behaves like “thread-local” data (although we do not
have the notions of threads in ÆMINIUM). An execution path that holds an exclu-
sive group permission can safely access the associated shared objects of the group
without synchronization. This is an important feature as many data structures in-
trinsically require shared access permissions to the objects they are composed of
(e.g., a doubly linked list which requires at least two valid references to the linked
node objects).

— Shared. A shared GP resembles a shared AP: there can be an arbitrary number of
shared GP in the system. Having a shared GP does not grant any kind of access to
the associated data because there is the danger of data races.

— Protected. A protected GP indicates that access to the shared data is safe because the
access to the shared data group has been protected by a corresponding atomic block.
The semantics of protected permissions is that there can only be one protected per-
mission per data group at a time. This is enforced by the runtime system. In contrast
to an exclusive permission, a protected permission cannot be split into shared per-
missions; doing so would be tantamount to requesting concurrency within an atomic
block, likely with confusing and even error-prone semantics.

Figure 2 provides a global overview of all available permissions in the ÆMINIUM
system. Access permissions are used to classify object references and consist of unique,
shared, and immutable. By definition every shared object must be associated with a
data group (e.g., α) for which we use a data group permission exclusive, shared, and
protected.

2.2.1. Management of Data Group Permissions. Unlike the automatic splitting of access
permissions, data group permissions are split and joined manually to provide the pro-
grammer with better control over dependencies between operations. By default, each
operation on a data group depends on the previous operation on that data group; when
the operations are conceptually independent, an explicit split block is used to split an
exclusive GP into an arbitrary number of shared GPs (see Figure 3). The split block

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:8 S. Stork et al.

Fig. 3. Group permission splitting/joining via shared and atomic blocks. The notation gr : gp means that
we have group permission gp for data group gr.

specifies data groups for which it splits the available permission (either exclusive or
shared) into more shared permissions (one for each statement in the body). Group per-
missions to data groups not mentioned are simply passed into its body. The available
permissions inside the body are partitioned into disjoint sets. Each one of those permis-
sion subsets flows to one statement of the body. This means that if multiple statements
in the block require the same unique AP, or any GP that is not mentioned in the split
block, then the code will not typecheck because permissions cannot be duplicated. Af-
ter the completion of all body statements, the split block joins the generated shared
permissions back to the permission that existed before the block was entered.

In order to give programmers control over the granularity of synchronization, each
atomic block protects access to objects in the particular data groups that are specified
at the atomic block entry point. It will provide a protected GP for the specified data
group to its body expression. The specification of the data group is optional as the com-
piler can automatically infer the required data groups from the provided arguments
at the call site. This is similar to C++ which can deduce template parameter type
from the provided arguments. In ÆMINIUM’s case the type of the arguments encodes
which data groups the shared objects are associated with and the compiler can use
this information to deduce the required data group parameter information. Providing
an explicit annotation, however, provides useful documentation of the programmer’s
intent and helps catch unintended data accesses. In particular, the semantics of the
atomic block is that its body is executed as if it has exclusive access to the shared
data associated with the specified data group. Similar to the split block, the atomic
block will upon its completion revert the GP to the state it was in before entering the
atomic block. The semantics of split and atomic blocks is illustrated by example in
Figure 3.

Data groups are declared inside states in a similar way to fields (see Figure 4,
line 6). Data groups are only visible inside states and their substates (similar to Java’s
protected). Before accessing data associated with those inner groups, the programmer
must gain access to those data groups via an ‘‘unpackInnerGroups {. . .}’’ construct.
The unpackInnerGroups block, similar to the focus operation from Fahndrich and
DeLine [2002], will trade the permission to the owner group of the receiver object
for permissions to inner groups defined in the receiver’s state. This exchange prohibits
recursive method calls from accessing the same inner groups, which would violate the
permission invariants (e.g., only one exclusive data group permission per data group).
What happens is that when unpackInnerGroups is called, the exclusive permission for
the "owner" is replaced by exclusive permissions for the inner data groups of the re-
ceiver object (i.e., the "this" object). This approach transitively avoids the need for

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:9

1 state DoubleLinkedListItem〈data〉 {
2 ... // standard double linked list item
3 }
4

5 state DoubleLinkedList〈data〉 {
6 group〈internal〉 // inner data group
7

8 // ‘head’ belonging to inner data group ‘internal’
9 shared〈internal〉 DoubleLinkedListItem〈internal, data〉 head;

10

11 method void
12 add〈exclusive owner, shared data〉(shared〈data〉 Object〈data〉 o)
13 : shared〈owner〉 // shared permission to the receiver
14 {
15 // owner : exclusive, data : shared
16 unpackInnerGroups {
17 // internal : exclusive, data : shared
18 // access internal data directly
19 }
20 // owner : exclusive, data : shared
21 }
22

23 method void
24 add〈shared owner, shared data〉(shared〈data〉 Object〈data〉 o)
25 : shared〈owner〉 // shared permission to the receiver
26 {
27 // owner : shared, data : shared
28 unpackInnerGroups {
29 // internal : shared, data : shared
30 atomic 〈internal〉 {
31 // internal : protected, data : shared
32 // need protection to access internal data
33 }
34 }
35 // owner : shared, data : shared
36 }
37 ...
38 }

Fig. 4. A doubleLinkedList with data groups. The example has two add methods. The first one requires an
exclusive permission to the owner and transitively provides an exclusive permission to the inner groups,
and does not require synchronization. The second version only requires a shared permission to the owner
and only provides shared permissions to the inner groups, requiring synchronization, that is, atomic blocks.
In comments “// ” we show which permissions we currently hold via the notation dg : gp, meaning for data
group dg we have permission gp.

synchronization. Analogously, when the client has either a shared or protected per-
mission to the owner (rather than exclusive), the owner permission is replaced by a
shared permission to the inner groups. The unpackInnerGroups block could automat-
ically be inferred by the compiler (by simply determining which statements need in-
ner data groups and wrapping them in an unpackInnerGroups block), but adding it
explicitly aids in documenting the programmer’s intent. Despite the manual group
permission management ÆMINIUM’s type system guarantees the absence of race
conditions.

2.2.2. Discussion and List Example. The introduction of data groups and data group per-
missions allows programmers to introduce nondeterminism when they need it, but
ensures that they are explicit about where nondeterminism is permitted and helps

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:10 S. Stork et al.

them to control the granularity of parallelization, and therefore of synchronization.
Nondeterminism can only be introduced via explicit split blocks, and its impact is
limited to accesses within that block. This explicitness helps ensure that program-
mers have thought about the semantics of their program enough to avoid errors due to
unexpected nondeterminism. Furthermore, data groups allow coarse-grained synchro-
nization because an atomic block on a data group protects all the objects within that
data group, eliminating the need to synchronize separately on each object. In the case
of an exclusive group permission, no synchronization is needed at all.

To make this more clear, consider the doubly linked list example in Figure 4.
In line 5, the DoubleLinkedList state is defined with group parameter data, us-
ing the same syntax as Java type parameters. The data group parameters specifies
the data group to which the objects stored in the list belong. Line 6 defines a new
data group called “internal”. Line 9 declares the “head” field pointing to the chain of
“DoubleLinkedListItems” which are all associated with the “internal” data group of
the surrounding “DoubleLinkedList”. Because inner groups are not visible outside the
state it is impossible for these objects to leave the scope of the state. This strong encap-
sulation resembles ownership types [Clarke et al. 1998], and allows ÆMINIUM de-
velopers to incrementally refine their internal data structures to increase internal
concurrency (e.g., in our case study that follows, modifying a hash table that uses
one data group for all hash buckets to an implementation that uses one data group per
hash bucket).

Lines 12 and 24 show the definitions of two add functions that specify data group pa-
rameters along with their required permissions. The signatures of the two add methods
are identical, with the exception that the add method in line 12 requires an exclusive
permission to the data group that owns the receiver, while the add method in 24 re-
quires a shared GP. The effect of this difference can be observed in the implementation
of the corresponding bodies. In the case of the add method that requires an exclusive
permission to the receiver’s data group, the unpackInnerGroups can provide an exclu-
sive permission to the inner data groups, which in turn allows the programmer to ac-
cess the shared inner state without any synchronization. In the case of the add method
that requires a shared permission to the receiver’s data group, the unpackInnerGroups
can only provide a shared permission to the inner data groups, requiring the program-
mer to synchronize on the inner data group (line 30).

Note that the current design of ÆMINIUM only protects against race conditions and
not against deadlocks. The latter has been handled in prior work [Boyapati et al. 2002],
which is orthogonal to our approach and is left out of this discussion for simplicity.

2.3. Producer/Consumer Example

After the discussion of access permissions, data groups, and their relationships we
now present a producer/consumer example in ÆMINIUM (see Figure 5). The program
starts execution at the global entry method main (line 19). When entering the body
it has an exclusive permission to a data group α. This permission will first flow into
the createQueue method call (line 21). The exclusive permission matches the method
permission requirements as specified in line 16. After the createQueue call returns
the exclusive permission to α, the permission flows into the split block at line 23. As
previously described, the split block will replace the exclusive permission with one
corresponding shared permission for each statement in its body. This leads to the fact
that one shared permission to α is flowing in parallel to the producer and consumer
method calls (line 24 and 25). After those calls have been completed and therefore
have returned their shared permissions to α, the share block will collect them and join
them back together to an exclusive permission (line 26). This newly gained exclusive
permission is then fed to the disposeQueue method call. Note that if either producer

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:11

1 state ProducerConsumer {
2 method void producer〈shared γ 〉(shared〈γ 〉 Queue〈γ 〉 q) {
3 // α : shared
4 atomic 〈γ 〉 {
5 // α : protected
6 ...
7 }
8 }
9 method void consumer〈shared γ 〉(shared〈γ 〉 Queue〈γ 〉 q) {

10 // α : shared
11 atomic 〈γ 〉 {
12 // α : protected
13 ...
14 }
15 }
16 method shared〈γ 〉 Queue〈γ 〉 createQueue〈exclusive γ 〉(){...}
17 method void disposeQueue〈exclusive γ 〉(shared〈γ 〉 Queue〈γ 〉 q){...}
18

19 method void main〈exclusive α〉() {
20 // α : exclusive
21 shared〈α〉 Queue〈α〉 q = createQueue〈α〉()
22

23 split 〈α〉 {
24 producer〈α〉(q) // α : shared
25 consumer〈α〉(q) // α : shared
26 }
27 // α : exclusive
28 disposeQueue〈α〉(q)
29 }
30 }

Fig. 5. Producer/consumer example.

Fig. 6. Dataflow graph for producer/consumer example.

or consumer want to access the shared queue, they first have to protect their access
to this data group via an atomic block (lines 4 and 11). Figure 6 shows the resulting
permission flow and the derived dataflow graph for this example program.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:12 S. Stork et al.

1 method void exchange〈exclusive S,
2 exclusive I,
3 exclusive O〉(shared〈S〉 Socket s,
4 shared〈I〉 Packet inp,
5 shared〈O〉 Packet outp) {
6 receivePacket〈S, I〉(s, inp);
7 checkPacket〈I〉(inp);
8 updatePacket〈O〉(outp);
9 sendPacket〈S, O〉(s, outp);

10 }

Fig. 7. Exchange source code.

Fig. 8. Dataflow graph for exchange function (for simplicity we show only the flow of data group permissions
as the access permissions do not cause additional dependencies).

2.4. Dataflow is not Fork/Join

ÆMINIUM supports both dataflow and fork-join parallelism. To better understand
the difference between those concepts, consider the example shown in Figure 7. The
exchange function, which could be part of a bidirectional ring network implementation,
receives a new packet via the provided socket s into the packet inp. It then checks the
newly received packet inp for errors (e.g., that checksums match). The function then
updates the outgoing packet outp (e.g., updates header fields and recomputes check-
sums), before this packet is sent through the socket.

Assuming that all functions called in the exchange method require exclusive permis-
sions to the corresponding data groups, the permission flow forms a graph as shown
in Figure 8. The graph shows that receiving the incoming packet can be performed in
parallel to updating the outgoing packet. As soon as the incoming packet has been re-
ceived the newly received packet can be checked. When additionally the updates of the
outgoing packet have completed, the outgoing packet can be sent in parallel to checking
of the incoming packet. This kind of parallelism is naturally supported by ÆMINIUM’s
dataflow approach, but cannot be directly expressed in a fork-join paradigm unless
extra dependencies or synchronization is used.

3. FORMAL LANGUAGE

This section formalizes the object-oriented μÆMINIUM core language. We briefly dis-
cuss the syntax of the language and then elaborate on how the static and dynamic
semantics of the calculus prohibit race conditions. We conclude this section by describ-
ing the soundness properties we have proved for μÆMINIUM. The goal of μÆMINIUM
is to explore a simple, efficient mechanism to track data dependencies via permission
flow and to guarantee the absence of race conditions. Because only shared data can

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:13

(programs) P ::= 〈CL, main〉
(class decl.) CL ::= class C〈α, β〉

extends D〈α〉 {G F M}
(field decl.) F ::= T f
(group decl.) G ::= group〈gn〉
(method decl.) M ::= Tr m〈gp γ 〉(Tx x) { e }
(main meth.) main ::= C〈α〉 main〈exclusive α〉() { e }
(values) v ::= o | null
(references) r ::= x | v
(group ref.) gr ::= r.gn | α

(expressions) e ::= a
| unpackGroupsOf r in e
| let x = e in e
| atomic 〈gr〉 e
| split 〈gr〉 between e1 ‖ e2
| inatomic 〈gr〉 e

(atoms) a ::= r
| r.f
| r.f := r
| r.m〈gr〉(r)
| new C〈gr〉(r)

(types) T ::= C〈gr〉 | G
(object) obj ::= C[f = v]
(group perm.) gp ::= exclusive | shared | protected
(group state) S ::= U | L
(class table) CT ::= • | CT, 〈C �→ CL〉
C, D, E ∈ CLASSES m ∈ METHODS

f ∈ FIELDS x, y, this ∈ VARS

α, β, γ ∈ GROUP VARS o ∈ OBJ. REFS.
gn ∈ GROUP NAMES

Fig. 9. μÆMINIUM grammar.

lead to race conditions and the tracking of object permissions and data group permis-
sions can be done using similar mechanisms, we focused the core calculus on modeling
data groups and data group permissions, assuming that all data is implicitly shared
and omit immutable and unique permissions from our formal system (note that our
implementation has support for all discussed permissions). μÆMINIUM’s typecheck-
ing rules generate a data group configuration representing the graph of dependencies
between primitive expressions in the language; this configuration is used along with
runtime permissions to model parallel execution in the dynamic semantics.

3.1. Syntax

The grammar of μÆMINIUM is shown in Figure 9 and is formulated as an extension to
Featherweight Java (FJ, [Igarashi et al. 2001]). Our extensions are highlighted in red.

In a nutshell the major extensions to FJ are: (i) addition of data group parameters
to method calls, and class and method declarations; (ii) addition of group types, and

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:14 S. Stork et al.

extension of object types to be parameterized with group parameters; (iii) new lan-
guage constructs to deal with data groups and to support assignment.

We use the overbar notation to abbreviate a list of elements (e.g., x : T = x1 :
T1, . . . , xn : Tn). Unless otherwise mentioned this notation includes the empty list.
We write • to indicate the empty sequence.

A program consists of a set of classes and a main method. In μÆMINIUM the global
starting expression of FJ is explicitly wrapped in a main method, to provide an initial
data group for the top-level objects. A class declaration (CL) gives the class a unique
name C and defines its data group parameters, internal data groups (G), fields (F), and
methods (M). Note that the sequence of data group parameters may not be empty, and
instead of having an explicit owner parameter, the first data group parameter specifies
the data group to which the class instances belong. μÆMINIUM does not provide an
explicit constructor. Upon creation of a new object all its fields are initialized to null
and must later be explicitly set. Fields (F) are declared with a name and type. Data
groups (G) are declared by name, which is passed to the group constructor. Methods
(M) specify their result type, the data group permissions they require, their formal
parameters, and a body expression.

We syntactically distinguish between expressions and possibly effectful atoms.
Atoms are straightforward and consist of field read and assignment, method invo-
cation, and new object creation. Besides the standard let binding (let), expressions
consist of atomic blocks (atomic) which specify the data group they protect access
to and a body expression; an operation that exchanges permission to the owner of an
object for permission to its inner data groups (unpackGroupsOf), which specifies the
object and an expression which should gain access to the inner groups of the specified
object (the unpackInnerGroups of ÆMINIUM essentially limits the object reference to
the receiver object); and a share primitive (split), which specifies which data groups
should be shared between the two specified expressions. Note that the sequence of
data group references in the share construct must be nonempty. The inatomic primi-
tive (inatomic) does not appear at the source level and is only used as an intermediate
form for tracking entered atomic blocks. We use a global class table (CT) to map class
names to class declarations.

3.2. Static Semantics

This section first provides an overview of all definition forms, then discusses the de-
tailed typing rules. We implicitly assume that names of fields, groups, and methods in
a class declaration are unique.

3.2.1. Typing Context. The typing context � contains all the typing information for ob-
ject references and data group references. We use G as the type for all data group
references.

(Typing Context) � ::= • | �, r : C〈gr〉 | �, gr : G

3.2.2. Permission Context. The permission context � is a linear context that keeps track
of the currently available permissions. We write gr : gp to indicate that we have group
permission gp for data group gr.

(Linear Context) � ::= • | �, gr : gp

3.2.3. Data Group Configuration. The data group configuration G hierarchically tracks
the data group requirements of an expression, including any ordering or concurrency
among those requirements. It vaguely resembles NESL’s [Blelloch and Greiner 1996]
approach for tracking profiling information, but instead of tracking operation costs we

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:15

track permission requirements. A data group configuration can either be empty (•);
a collection of group references ({gr}), indicating the permission requirements of the
current expression; the sequential composition of data group configurations (⊕), used
to combine data group configurations of expressions that are sequentially ordered, or
the parallel composition of data group configurations (‖), used to combine data group
configurations of expressions that are executed in parallel. We also define a global
data group configuration table (GT) which maps class and method tuples to data group
configurations.

(DG configuration) G ::= • | {gr} | (G1 ⊕ G2) | (G1 ‖ G2)

(G table) GT ::= • | GT , 〈(C, m) �→ G〉
Example. Let us consider a simplified example to provide an intuition for how the

data group configuration is used to control execution. Let us assume we have a given
expression e which represents a normal let binding with a corresponding data group
configuration G. It consists of the sequential composition of the data group configu-
rations of its subexpressions (i.e., G = (G1 ⊕ G2) where G1 and G2 are data group
configurations of subexpressions e1 and e2). Furthermore, assume without loss of gen-
erally that the required data groups for those subexpressions are requiredPerms(G1) =
{gr0, gr1} and requiredPerms(G2) = {gr0}.
� �
G := (G1 ⊕ G2) requiredPerms(G1) = {gr0, gr1}

requiredPerms(G2) = {gr0}
e := let x = e1 in e2

� �

For the moment consider the simple evaluation judgment δ|G
 e �→ e′ � G′, meaning,
given the runtime permissions δ and the expression e with its data configuration G,
the expression e steps to a new expression e′ with its new data group configuration G′.
� �

{gr0, gr1 } | G
 let x= e1 in e2 �→ let x = e′
1 in e2 � G′

G′ := (G′
1 ⊕ G2) requiredPerms(G′

1) = {gr1}
requiredPerms(G2) = {gr0}

e′ := let x = e′
1 in e2

� �

The first subexpression e1 requires all available runtime permissions, and because of
the sequential composition operator ⊕ the runtime system needs to satisfy its require-
ments first. Therefore there are no runtime permissions for the second expressions e2
left. The system steps e1 to e′

1 and updates its data group configuration to G′
1. As shown

before, assume that with this step all remaining operations in e′
1 solely depend on the

runtime permission gr1 indicated by requiredPerms(G′
1) = {gr1}. In the next execution

step, the runtime system again first needs to satisfy the dependencies of e′
1 before e2.

But this time e′
1 does not require all available runtime permissions, which allows the

system to provide the remaining runtime permissions to e2. This allows the system to
step e′

1 and e2 in parallel as shown next.
� �

{gr0, gr1 } | G′
 let x = e′
1in e2 �→ let x = e′′

1 in e′
2 � G′′

G′′ := (G′′
1 ⊕ G′

2)

e′′ := let x = e′′
1 in e′

2� �

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:16 S. Stork et al.

fields(C) = F returns fields of class C and its superclasses
groupDecls(C) = gn returns the declared groups of class C and its super-

classes
override(C, m) ok checks if a method correctly overrides another

method
requiredPerms(G) = gr returns the set of all permissions in G

requiredTokens(e) = {gr@L} return the set of group access tokens for which e con-
tains an corresponding inatomic .

mdecl(C, m) = M looks up the method declaration of m in class C
mbody(C, m) = γ .x.e × G looks up the method body of m in class C, and re-

turns the body expression with the method parameter
names and the data group configuration

Fig. 10. μÆMINIUM helper functions.

3.2.4. Typing Judgments. We typecheck an expression with the judgment �|�|�
C e :
T | G, which reads: given the typing context �, the store typing �, and the permission
context �, the expression e checks in the context of class C with type T and has data
group configuration G.

We use the judgment Tf f ok in C to check that the given field declaration is valid in
class C.

We use the judgment Tr m〈gp γ 〉(Tx x) { e } ok in C to check that the method decla-
ration is valid in class C.

3.2.5. Helper Functions. Throughout the typing and evaluation rules we use several
helper functions to abbreviate common functionality. For space reasons we delegate
the full definitions of these functions to a companion technical report (submitted
as supplementary material) and just provide a short overview of their effects in
Figure 10.

3.2.6. Typing Rules. The typing rules are shown in Figure 11. Most rules are straight-
forward; we highlight the most interesting ones. T-PROGRAM starts the checking with
a top-level data group α. The T-UNPACKGROUPSIN-* rules exchange a permission
to the data group of an object for a permission to the inner groups of that object.
In the case that we have a unique permission to the receiver object we get exclusive
group permissions (i.e., T-UnpackGroupsIn-Exclusive) in all other cases we get shared
group permissions (i.e., T-UnpackGroupsIn-Shared). We could always unpack inner
group permissions to shared group permissions, but making the distinction allows us
to avoid unnecessary synchronization overhead in the case we know that we do not
need it (i.e., in the case of a unique object). T-SPLIT splits the incoming permission
context in two, duplicating the named shared permissions, while T-ATOMIC allows the
protected expression to treat a shared data group as protected. T-LET supports sequen-
tial composition, as specified by the group configuration G1 ⊕ G2, while T-SHARE spec-
ifies parallel use of any shared groups, as specified by the group configuration G1 ‖ G2.
T-FIELD-READ and T-FIELD-ASSIGN require an exclusive or protected permission to
the first data group parameter (gr0) of the object being read or assigned. This ensures
that either a data group is unshared, or it is locked with an atomic section before being
used. Field reads and writes generate a data group configuration that is just the group
being read or assigned. Finally, T-CALL ensures that the data groups required by the
called function are provided by the caller. For a more detailed description of each rule
refer to Stork et al. [2010].

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:17

T-PROGRAM
CL ok main = C〈α〉 main〈exclusive α〉() { e }

(α : G)| • |(α : exclusive)
 e : T |G
T <: C〈α〉

〈CL, main〉 : C〈α〉

T-FIELD
CT(C) = class C〈α, β〉 extends D〈α〉 {G FM}
(α : G, β : G, this : C〈α, β〉, G : G)
 E〈grE〉 ok

E〈grE〉 f ok in C

T-METHOD
CT(C) = class C〈α, β〉 extends D〈α〉 {G FM}

override(C, m) ok
� = (this : C〈α, β〉, α : G, β : G, γ : G)

�
 Tx ok � , (x : Tx)| • |(γ : gp)
C e : Te | G
Te <: Tr

Tr m〈gp γ 〉(Tx x) {e} ok in C

T-CALL
�|�
 r : Tr, p : Tp, gr : G

�
 gr : gp Tr = D〈grD〉
CT(D) = class D〈α, β〉 extends E〈α〉{G F M}

mdecl(D, m) = Tresult m〈gp γ 〉(Tx x){ e }
Tp <: [gr, grD /

γ ,α,β] Tx

Tr <: [gr, grD /
γ ,α,β] D〈α, β〉

�|�|�
C r.m〈gr〉(p) : [gr, grD/
γ ,α,β] Tresult | {gr}

T-CLASS
M ok in C F ok in C

class C〈α, β〉 extends D〈α〉 {G F M} ok

T-UNPACKGROUPSIN-EXCLUSIVE
�|�
 r : C〈gr〉 � = �′, (gr0 : exclusive)

groupDecls(C) = gn
�, (r.gn : G)|�|�′, (r.gn : exclusive)
 e : T | G

�|�|�
C unpackGroupsOf r in e : T | ({gr0, r.gn} ⊕ G)

T-UNPACKGROUPSIN-SHARED
�|�
 r : C〈gr〉

� = �′, (gr0 : gp) gp ∈ {shared, protected}
groupDecls(C) = gn

�, (r.gn : G)|�|�′, (r.gn : shared)
 e : T | G
�|�|�
C unpackGroupsOf r in e : T | ({gr0, r.gn}} ⊕ G)

T-SPLIT
{gp} ⊆ {exclusive, shared} � = �1, �2, �r

�|�|(�1, gr : shared)
C e1 : T1 |G1
�|�|(�2, gr : shared)
C e2 : T2 |G2

G = (G1 ‖ G2)

�|�|(�, gr : gp)
C split 〈gr〉 between e1 ‖ e2 : ⊥ | G

T-ATOMIC
�|�
 gr : G �|�|(�, gr : protected)
C e : T | G

�|�|�, (gr : shared)
C atomic 〈gr〉 e : T | ({gr} ⊕ G)

T-INATOMIC
�|�
 gr : G �|�|�, (gr : protected)
C e : T | G

�|�|�, (gr : shared)
C inatomic 〈gr〉 e : T | ({gr} ⊕ G)

T-LET
�|�|�1
 e1 : T1 | G1 (�, x : T1)|�|�1, �R
C e2 : T2 | G2

�|�|�1, �R
C let x = e1 in e2 : T2 | (G1 ⊕ G2)

T-REFERENCE
�|�
 r : D〈gr〉

�|�|�
C r : D〈gr〉 |•

T-FIELD-READ
�|�
 r : D〈gr〉, gr0 : G
gp ∈ {exclusive, protected}

fields(D) = Tf f

�|�|�, (gr0 : gp)
C r.fi : Tfi | {gr0}

T-FIELD-ASSIGN
�|�
 rv : Tv, r : D〈gr〉, gr0 : G

gp ∈ {exclusive, protected}
fields(D) = T f Tv <: Tfi

�|�|�, (gr0 : gp)
C r.fi := rv : Tv | {gr0}

T-NEW
CT(D) = class D〈α, β〉 extends E〈α〉{G F M}

�|�
 gr : G

�|�|�
C new D〈gr〉() : [gr /
α,β] D〈α, β〉 | •

Fig. 11. Static semantics of μÆMINIUM.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:18 S. Stork et al.

3.3. Dynamic Semantics

This section first provides an overview of the definition forms used, then discusses the
evaluation rules in detail. Instead of generating an explicit dataflow graph, the dy-
namic semantics uses the data group configuration together with runtime permission
tokens to model the permission flow at runtime and emulate the dependencies.

3.3.1. Store. The store μ is a mapping of object references o to objects obj. A store can
either be a potentially empty set of object mappings or race, which indicates the case
that a race condition occurred during the execution (our soundness theorem will show
that these races cannot occur in well-typed code). An object is a record consisting of all
instance fields. The inner groups (i.e., data groups that are declared by every object)
along with their corresponding state are managed separately in the group access token
context (refer to Section 3.3.3).

(store) μ ::= 〈o �→ obj〉 | race
During the evaluation of an expression, differential stores (μδ) containing the ac-

cessed objects are generated. Those differential stores are merged via the � operator.
To generate a new global heap we write μ′ = [μδ] μ for element wise update/substitu-
tion of objects.

μδ = μδ1 � μδ2 =

⎧⎪⎨
⎪⎩

μδ1 , μδ2 dom(μδ1) ∩ dom(μδ2) = •

race OTHERWISE

μ′ = [μδ] μ =
{
race μδ = race
[o �→ obj] μ ∀〈o �→ obj〉 ∈ μδ

3.3.2. Runtime Permission Context. The runtime permission context δ is used to model
permission flows at runtime and is either empty or consists of a set of o.gn (i.e.,
runtime permissions). The runtime semantics do not allow an expression to execute
until all of its required permissions, as expressed in its group configuration, are avail-
able. A runtime permission can be split and can flow along different paths, just as
static permissions can.

The top-level permission context always contains only one initial permission to the
global data group of the main function. More runtime permissions are successively
generated by unpacking inner groups.

(runtime permission context) δ ::= • | δ, o.gn

3.3.3. Group Access Token Context. The group token context 	 is a set of group access
tokens, that is, group references along with their current locking state S = {U|L}. A
locking state U indicates an unlocked state, meaning that one atomic block referring
to that data group can be entered. A locking state L indicates a locked state mean-
ing that an atomic block referring to that data group is currently executing. There is
a controversial discussion [Boehm 2009] regarding the correct semantics for atomic
blocks. Some argue that transactional semantics should be used while others argue
that lock-based semantics should be used. We decided to use a lock-based approach for
its simplicity of implementation and semantics. In the future we might reconsider this
decision and evaluate a transactional semantics [Moore and Grossman 2008].

There exists exactly one group access token for every data group in the system and
unlike runtime permissions, group access tokens cannot be split. In several rules the
unlocked group access token context is split in a nondeterministic way. This mod-
els nondeterminism of how atomic blocks can lock data groups. Locked group access

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:19

E-TRANS-Z
(μ|δ|	|G|e) �→ (μ|δ|	|G|e)

E-TRANS-N
μ|δ|	|G
 e �→ e1 � μδ |	1|G1 μ1 = [μδ] μ (μ1|δ|	1|G1|e1) �→∗ (μ′|δ|	′|G′|e′)

(μ|δ|	|G|e) �→∗ (μ′|δ|	′|G′|e′)

Fig. 12. μÆMINIUM program state transitions rules.

E-FIELD-READ
G = {vg.gn} vg.gn ∈ δ μ
 〈v �→ C[f = vf] 〉 μδ = 〈v �→ C[f = vf] 〉

μ|δ|	|G
 v.fi �→ vfi � μδ |	|•

E-FIELD-ASSIGN
G = {vg.gn} vg.gn ∈ δ μ
 〈vr �→ objr〉

objr = C[fr = vfr , fri = vfi, fr = vfr] obj′r = C[fr = vfr , fri = ov, fr = vfr] μδ = 〈vr �→ obj′r〉
μ|δ|	|G
 vr.fri := ov �→ ov � μδ |	|•

E-NEW
G = • groupDecls(C) = gn onew fresh μδ = 〈onew �→ C[f = null] 〉

μ|δ|	|G
 new C〈vg.gn〉() �→ onew � μδ |	, onew.gn@U|•

E-CALL
G = {vg.gn}

vg.gn ∈ δ μ
 〈vr �→ C[f = vfr] 〉 mbody(C, m) = α.x.e × Ge G′ = [vg.gn/α] [vp/x] [vr/this]Ge

μ|δ|	|G
 vr.m〈vg.gn〉(vp) �→ [vg.gn/α] [vp/x] [vr/this] e � •|	|G′

Fig. 13. Dynamic semantics of μÆMINIUM atoms.

tokens are forced to flow into the expression that contains the corresponding
inatomic . This approach is not strictly necessary but allows us to formulate a stronger
preservation induction hypothesis.

(group context) 	 ::= • | 	, o.gn@S

3.3.4. Evaluation Judgment. To evaluate expressions we use the judgment μ|δ|	|G

e �→ e′ � μδ |	 ′|G′, which reads as follows: given the store (μ), the runtime permissions
(δ), the group access tokens (), and the data group configuration (G), the expression e
steps to e′ and produces a differential store (μδ), an updated set of group access tokens
(′), and an updated data group configuration (G′).

3.3.5. Program State. A program state is a quintuple of the form (μ|δ|	|G|e), consisting
of a store (μ), a runtime permission context (δ), a group access token context () of
available tokens, a data group configuration (G), and an expression (e). A program
state represents a consistent state of the execution. To transition from one program
state to another, the expression takes a step following the evaluation judgment and
then generates a new global store (see E-TRANS-N in Figure 12).

3.3.6. Evaluation Rules. The evaluation rules for atoms are shown in Figure 13 and the
rules for expressions are shown in Figure 14 and 15. Once again we describe the most
interesting rules. E-FIELD-READ demonstrates the basic approach: we look up the per-
missions required based on the group context G (which was computed by the typecheck-
ing rules), and the read cannot execute unless and until the required permission is in
the permission context δ. Other atom rules are similar. The E-UNPACKGROUPSOF-*
rules make the inner permissions available to the enclosed expression if and only if
the permission to the outer object is available; otherwise the enclosed expression can

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:20 S. Stork et al.

E-UNPACKGROUPSOF-REPLACE
G = ({v′.gn′, vr.gn} ⊕ Ge)

δ = δ′, v′.gn′, μ|δ′, vr.gn|	|Ge
 e �→ e′ � μδ |	′|G′
e G′ = ({v′.gn′, vr.gn} ⊕ G′

e)

μ|δ|	|G
 unpackGroupsOf vr in e �→ unpackGroupsOf vr in e′ � μδ |	′|G′

E-UNPACKGROUPSOF-NONE
G = ({v′.gn′, vr.gn} ⊕ Ge) v′.gn′ /∈ δ μ|δ|	|Ge
 e �→ e′ � μδ |	′|G′

e G′ = ({v′.gn, vr.gn} ⊕ G′
e)

μ|δ|	|G
 unpackGroupsOf vr in e �→ unpackGroupsOf vr in e′ � μδ |	′|G′

E-LET-1
G = (G1 ⊕ G2) δ1 = δ ∩ requiredPerms(G1)

	 = 	1, 	2 requiredTokens(e1) ⊆ 	1
μ|δ1|	1|G1
 e1 �→ e′

1 � μδ |	′
1|G′

1
G′ = (G′

1 ⊕ G2) 	′ = 	′
1 ∪ 	2

μ|δ|	|G
 let x = e1 in e2 �→ let x = e′
1 in e2 � μδ |	′|G′

E-LET-2
G = (G1 ⊕ G2) δ2 = δ − requiredPerms(G1)

	 = 	1, 	2 requiredTokens(e1) ⊆ 	1
requiredTokens(e2) ⊆ 	2

μ|δ2|	2|G2
 e2 �→ e′
2 � μδ |	′

2|G′
2

	′ = 	1 ∪ 	′
2 G′ = (G1 ⊕ G′

2)

μ|δ|	|G
 let x = e1 in e2 �→ | let x = e1 in e′
2 � μδ |	′|G′

E-LET-12
G = (G1 ⊕ G2) δ1 = δ ∩ requiredPerms(G1) δ2 = δ − δ1

	 = 	1, 	2 requiredTokens(e1) ⊆ 	1 requiredTokens(e2) ⊆ 	2 μ|δ1|	1|G1
 e1 �→ e′
1 � μδ1 |	′

1|G′
1

μ|δ2|	2|G2
 e2 �→ e′
2 � μδ2 |	′

2|G′
2 	 = 	′

1 ∪ 	′
2 G′ = (G′

1 ⊕ G′
2) μδ = μδ1 � μδ2

μ|δ|	|G
 let x = e1 in e2 �→ let x = e′
1 in e′

2 � μδ |	′|G′

E-LET-VALUE
G = (• ⊕ G2) G′ = [v/x]G2

μ|δ|	|G
 let x = v in e2 �→ [v/x] e2 � •|	|G′
E-UNPACKGROUPSOF-VALUE

μ|δ|	|G
 unpackGroupsOf vr in v �→ v � •|	|•

E-SPLIT-1
G = (G1 ‖ G2) δ1 = δ ∩ requiredPerms(G1) 	 = 	1, 	2 requiredTokens(e1) ⊆ 	1

requiredTokens(e2) ⊆ 	2 μ|δ1|	1|G1
 e1 �→ e′
1 � μδ |	′

1|G′
1 	′ = 	′

1 ∪ 	2 G′ = (G′
1 ‖ G2)

μ|δ|	|G
 split 〈v.gn〉 between e1 ‖ e2 �→ split 〈v.gn〉 between e′
1 ‖ e2 � μδ |	′|G′

E-SPLIT-2
G = (G1 ‖ G2) δ2 = δ ∩ requiredPerms(G2) 	 = 	1, 	2 requiredTokens(e1) ⊆ 	1

requiredTokens(e2) ⊆ 	2 μ|δ2|	2|G2
 e2 �→ e′
2 � μδ |	′

2|G′
2 	′ = 	1 ∪ 	′

2 G′ = (G1 ‖ G′
2)

μ|δ|	|G
 split 〈v.gn〉 between e1 ‖ e2 �→ split 〈v.gn〉 between e1 ‖ e′
2 � μδ |	′|G′

E-SPLIT-12
G = (G1 ‖ G2) δ1 = δ ∩ requiredPerms(G1) δ2 = δ ∩ requiredPerms(G2)

	 = 	1, 	2 requiredTokens(e1) ⊆ 	1 requiredTokens(e2) ⊆ 	2 μ|δ1|	1|G1
 e1 �→ e′
1 � μδ1 |	′

1|G′
1

μ|δ2|	2|G2
 e2 �→ e′
2 � μδ2 |	′

2|G′
2 μδ = μδ1 � μδ2 	′ = 	′

1 ∪ 	′
2 G′ = (G′

1 ‖ G′
2)

μ|δ|	|G
 split 〈v.gn〉 between e1 ‖ e2 �→ split 〈v.gn〉 between e′
1 ‖ e′

2 � μδ |	′|G′

Fig. 14. Dynamic semantics of μÆMINIUM expressions [1/2].

only take steps for which these permissions are not required. There are three variants
of the let and share rules: one where the first expression takes a step, one where the
second steps, and one where both expressions step (this can occur even in the sequen-
tializing LET construct if the permissions required do not overlap). The rules for split
differ in that LET divides the permissions without duplicating any, while SPLIT dupli-
cates the permissions named in the split block. Finally, the rules for the atomic block
do not pass a permission to the named data group inwards until a lock is acquired, at
which point the state of the lock changes to @L and the expression changes to inatomic

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:21

E-ATOMIC-STEP1
G = ({v.gn} ⊕ Ge)

v.gn /∈ δ μ|δ|	|Ge
 e �→ e′ � μδ |	′|G′
e

G′ = ({v.gn} ⊕ G′
e)

μ|δ|	|G
 atomic 〈v.gn〉 e �→ atomic 〈v.gn〉 e′ � μδ |	′|G′

E-ATOMIC-STEP2
G = ({v.gn} ⊕ Ge) δ = δ′, v.gn

v.gn@U /∈ 	 μ|δ′|	|Ge
 e �→ e′ � μδ |	′|G′
e

G′ = ({v.gn} ⊕ G′
e)

μ|δ|	|G
 atomic 〈v.gn〉 e �→ atomic 〈v.gn〉 e′ � μδ |	′|G′

E-ATOMIC-INATOMIC
G = ({v.gn} ⊕ Ge)

v.gn ∈ δ 	 = 	′′, v.gn@U 	′ = 	′′, v.gn@L

μ|δ|	|G
 atomic 〈v.gn〉 e �→ inatomic 〈v.gn〉 e � •|	′|G

E-INATOMIC-STEP
v.gn ∈ δ 	 = 	′′, v.gn@L

G = ({v.gn} ⊕ Ge) μ|δ|	′′|Ge
 e �→ e′ � μδ |	′′′|G′
e

	′ = 	′′′, v.gn@L G′ = ({v.gn} ⊕ G′
e)

μ|δ|	|G
 inatomic 〈v.gn〉 e �→ inatomic 〈v.gn〉 e′ � μδ |	′|G′

E-SPLIT-VALUE
G = (• ‖ •)

μ|δ|	|G
 split 〈v.gn〉 between v1 ‖ v2 �→ null � •|	|•

E-INATOMIC-VALUE
	 = 	′′, v.gn@L v.gn ∈ δ 	′ = 	′′, v.gn@U

μ|δ|	|G
 inatomic 〈v′.gn〉 v �→ v � •|	′|•

Fig. 15. Dynamic semantics of μÆMINIUM expressions [2/2].

for tracking purposes. For a more detailed description of each rule refer to Stork et al.
[2010].

3.4. Proof

We prove the correctness of our system by induction on the derivation of program state
transitive rules (refer to Figure 12). We prove the type safety following the standard
approach [Pierce 2002] by proving progress and preservation separately.

Our definition of correctness means that every well-formed program is free of data
races. As outlined in Section 2.2.2 ÆMINIUM currently does not handle deadlocks.
Therefore a correct ÆMINIUM program, while free of deadlocks, might still have po-
tential deadlocks.

The intuitive idea behind the proof is that to avoid race conditions at runtime our
type system checks that all accesses to shared data groups are correctly protected
using an atomic block. Accessing the same object of the heap in a conflicting manner
would result in a race heap. Our proof shows that using ÆMINIUM’s type system no
such conflicting operations can occur at runtime.

3.4.1. Type Safety. We state type safety as follows: If �|�|�
wf (μ|δ|	|G|e) and
(μ|δ|	|G
 e) �→∗ (μ′|δ′|	 ′|G′|e′) then �|�′|�
wf (μ′|δ′|	 ′|G′|e′) and not stuck. In words
this means that every well-formed (refer to Definition 3.1) program state can take
an arbitrary amount of steps and will result in another well-formed program state.
We prove this theorem through induction by leveraging our progress and preservation
lemma (refer to Sections 3.4.2 and 3.4.3).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:22 S. Stork et al.

Definition 3.1 (Well-Formed Program State). A program state is well typed, writ-
ten as ·|�|�
wf (μ|δ|	|G|e), if :

— ·|�|�
 e : T |G;
— �|�
 μ;
— if o.gn ∈ δ then there exists the corresponding o.gn : gp ∈ �;
— μ �= race;
— (o.gn@U ∈ 	 ∨ o.gn@_ /∈) =⇒ � inatomic 〈o.gn〉 . . . ∈ e;
— o.gn@L ∈ 	 =⇒ ∃ exactly one inatomic 〈o.gn〉 . . . ∈ e.

3.4.2. Progress. Our progress lemma is stated as follows.

LEMMA 3.2 (PROGRESS). If �|�|�
wf (μ|δ|	|G|e) (i.e., a well-formed program
state) then either:

— e is a value and G = •; or
— μ|δ|	|G
 e �→ e′ � μδ |	 ′|G′ for some e′, μδ , 	 ′,G′; or
— e stops execution with null-dereference, meaning that the expression e contains a

subexpression of the form null.f ; or
— e is waiting for resource to become available.

In other words, for every well-formed program state, the expression e is either a value,
or can take a step to e′, caused a null pointer execption, or is waiting for being able to
run (i.e., waiting until all the previous expressions it depends on have executed). We
prove the correctness of our progress lemma through induction on �|�|�
C e : T |G
(refer to Stork [2013]).

3.4.3. Preservation. We state our preservation lemma as follows.

LEMMA 3.3 (PRESERVATION). If �|�|�
wf (μ|δ|	|G|e) with �|�|�
 e : T |G and
μ|δ|	|G
 e �→ e′ � μδ |	 ′|G′ and μ′ = [μδ] μ then there exists:

— �′ ⊇ �;
— T′;

such that:

— �|�′|�
wf (μ′|δ|	 ′|G′|e′) with �|�′|�
 e′ : T′ |G′ and T′ <: T.

In other words, if we start with a well-formed program state and the expression
e steps to e′ we end in a well-formed program state again. We prove this lemma by
induction on (μ|	F |	L|G|e) �→∗ (μ|	 ′

F |	 ′
L|G′|e′) (refer to Stork [2013]).

4. IMPLEMENTATION

Our implementation is based on the Plaid programming language and is publicly avail-
able in our Google Code repository [Stork et al. 2012]. The overall system architec-
ture is shown in Figure 16. The compiler user writes Plaid code and feeds it into our
compiler. The compiler first translates the Plaid source code into an Abstract Syntax
Tree (AST). The newly generated AST is then used by the typechecker to check that
the input program does not violate Plaid’s typing rules. In addition to typechecking
the program, the typechecker also computes a sequential dependency graph based on
the permission flow. The dependency graph design and optimizations follow the gen-
eral idea of Cliff Click’s sea of nodes [Click and Paleczny 1995] in which he replaces

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:23

Fig. 16. System architecture.

the AST representation with a graph structure. The AST and the dependency graph
are then used by the Æminiumfier which analyses and transforms the sequential
dependency graph into a parallel dependency graph. The parallel dependency graph
and the AST are then used by by the task builder to cluster operations into more coarse
tasks. The generated task graph and AST are used by the code generator to generate
the final Java bytecode.

The generated code uses the Plaid and ÆMINIUM runtime libraries to create and
manage objects and parallelism. The Plaid runtime is responsible for managing states,
objects, and Java interoperability. The ÆMINIUM runtime is responsible for managing
the execution of the tasks generated by the program. The following sections elaborate
on the extensions we made to the Plaid compiler.

4.1. Plaid Primer

This section provides a short introduction to the Plaid programming language, ex-
plaining all necessary constructs required for this article. Please refer to the official
Plaid language specification [Aldrich et al. 2012] for a more in-depth overview of Plaid.
By design, the Plaid language resembles the Java language as much as possible. The
main conceptional difference between Plaid and Java is the usage of states instead of
classes. Conceptionally, Plaid uses state abstractions to naturally encode the various
states an object can be in a direct and checkable way. We discuss state composition and
state change semantics in Sunshine et al. [2011]. An overview of Plaid’s type system is
given in Naden et al. [2012]. Those concepts are orthogonal to ÆMINIUM’s paralleliza-
tion approach and we therefore limit ourselves to a subset of Plaid which most closely
resembles normal Java.

Listing 1 shows simple counter code emphasizing the commonalities with Java.
In line 1 we define a new state Object. States, similar to Java classes, consist of a
collection of fields and methods that operate on those fields. Instead of using the class

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:24 S. Stork et al.

1 state Object {
2 method immutable String toString() [local immutable Object this];
3 }
4

5 state Counter case of Object {
6 var immutable Integer count = 0;
7

8 method void inc() [unique Counter this] {
9 this.counter = this.counter + 1;

10 }
11

12 method void dec() [unique Counter this] {
13 this.counter = this.counter 1;
14 }
15

16 method immutable Integer get() [local immutable Counter this] {
17 this.counter
18 }
19

20 method immutable String toString() [local immutable Counter this] {
21 "Counter(" + this.count.toString() + ")"
22 }
23 }

Listing 1. Basic Plaid Example.

1 method immutable Integer fibonacci(immutable Integer n) {
2 match (n <= 2) {
3 case True { 1 }
4 default {
5 fibonacci(n−1) + fibonacci(n−2)
6 }
7 }
8 }

Listing 2. Plaid Fibonacci Example.

keyword Plaid uses the state keyword to declare such a collection. As in Java, we call
the instances of states objects. Line 2 shows that the Object state defines only one
method called toString. Plaid’s method declaration follows the same syntax as a Java
method declaration, with the following exceptions. All method declarations in Plaid
start with the keyword method to indicate the start of a new method declaration. Note
that Plaid does not support Java’s modifiers (i.e., public, final, abstract, etc.) but
has its own (discussed later). After the method keyword we have the return type of
the method followed by the method name and its parameter list. After the parame-
ter list we have the so-called environment of the method declared in square brackets.
The environment is an implicit parameter list specifying all the variables that are
implicitly passed into the method or are captured from the enclosing lexical environ-
ment. As shown in the example, the environment contains the declaration of the this
reference. Note the additional local keyword in front of the immutable permission of
the this reference. local is a permission modifier that allows the caller of a method
to recover the permission passed in, without requiring the user to worry about con-
crete fractions (refer to Naden et al. [2012]). The this reference is implicitly passed
into the method and therefore we need to specify which permissions we need. After
the environment we usually would declare the method body in curly braces, but in

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:25

1 immutable state Boolean { ... }
2

3 state True case of Boolean { ... }
4

5 state False case of Boolean { ... }

Listing 3. Plaid Boolean.

this case we finish the declaration with a semicolon to indicate an abstract method
declaration.

In line 5 we define a new state Counter as a substate of Object. Plaid uses the
case of instead of Java’s extends to declare subtyping. The Counter defines a local
field in line 6. All fields and variable declarations start with either val (immutable)
or var (mutable). In lines 8 and 12 the Counter defines various methods to increase,
decrease, or retrieve the current counter value. In Plaid, like in Smalltalk [Goldberg
and Robson 1983], everything is an object. This means, unlike in Java, there are no
primitive types (like int, boolean, etc.). The addition operation “this.count + 1” in
line 8 is translated into a method call with the first operand as the receiver, namely
“this.count.+(1)”. This is possible because Plaid supports methods named after op-
erator symbols. Another important observation is the absence of the return statement
in Plaid. Plaid automatically returns the value of the last statement in a method body.
In line 20 the Counter object implements the abstract toString method as defined by
its superstate.

Pattern matching is the only control-flow mechanism built into the Plaid program-
ming language. The pattern matching in Plaid currently works on the type level, and
does not allow the automatic binding of internal fields to local variables. The simplest
way to describe Plaid’s match statement is to think of Java’s switch statement com-
bined with instanceof operations to test for matching types instead of values. An exam-
ple of Plaid’s pattern matching is shown in Listing 2. The example shows a Plaid im-
plementation of the Fibonacci number computation. The example uses a global method
defined in line 1. Global methods in Plaid are like static methods in Java, meaning
they can be called without having an object instance available. In line 2 the match
block starts. It will take the result of the expression n <= 2 and check which case
matches the result type. The result of the comparison is of type Boolean.

Note that in Plaid booleans are not part of the language and are implemented as
part of the standard library. Listing 3 shows an abbreviated version of Plaid’s boolean
declaration. Line 1 defines the top-level Boolean type. Lines 3 and 5 define two orthogo-
nal subtypes, one for true values and one for false values. The definition of the Boolean
state also demonstrates Plaid’s default permission. The state declaration is annotated
with an immutable permission. This allows the user to omit the permission annotation
for the Boolean type and the Plaid compiler will automatically extend it with default
permission specified on the state declaration (in this case an immutable permission).

Coming back to the Fibonacci example in Figure 2 line 3 we define a case to check
if the value of the comparison operations is of type True. If so we simply return the
constant value one. Line 4 declares the default case, which is used when no other case
applies. In this case we simply use the recursive definition of Fibonacci numbers to
compute the result. Note that the result of the method body is the value to which
the last statement reduces. In this case, the last statement is the match block, which
evaluates to the value of the executed case.

4.2. Typechecker Extensions

Because Plaid’s typechecker already had support for access permissions, our first ex-
tension was adding support for data groups and data group permissions. The over-
all implementation of data groups and permissions is straightforward and analogous

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:26 S. Stork et al.

Name Description

Chained Splits Simplifies chains of split nodes introduced by binary per-
mission split rules.

Chained Joins Simplifies chains of split nodes introduced by binary per-
mission split rules.

Unique Join/Split Removes unnecessary split/join operations which split noth-
ing off a unique permission.

Symmetric Join/Split Transforms sequential dependencies to symmetric permis-
sions into parallel dependencies.

Fig. 17. Parallelizing peephole optimizations.

to the existing implementation of access permissions (with the exception that access
permissions are automatically split/merged, while group permissions are manually
split/merged). The second extension we made to the typechecker was the generation
of a permission flow graph. Because of Plaid’s eager typechecker implementation (i.e.,
access permissions are merged back as soon as possible) the resulting permission flow
graph does not capture all the possible parallelism. Instead of reimplementing Plaid’s
typechecker in a noneager way, we decided to remove the eagerness-induced sequen-
tiality via an extra compiler pass (refer to Section 4.3).

4.3. Æminiumfier

The ÆMINIUM parallelizing pass runs directly after the typechecking pass and trans-
forms the sequential dependency graph inferred by the typechecker into a parallel
version by applying multiple peephole optimizations [McKeeman 1965]. A peephole op-
timization searches for specific patterns inside generated code (in our case the “code”
is the dependency graph) and replaces those patterns by a simpler or more efficient
one. The following sections explain each optimization and Figure 17 provides a short
summary.

4.3.1. Simplification of Chained Splits. Typechecking follows a bottom-up approach. This
leads to cases where multiple subsequent permissions can be split off the same vari-
able before they get merged back. A simple example of such a case would be typecheck-
ing a method call where the same variable is passed multiple times as a parameter
to the call. This chaining of permission splits is unnecessary and can be optimized.
Instead of having a binary split node and building chains of them we simply merge
those nodes to create one n-ary split node. Figure 18 illustrates this operation. The
graph on top shows a chain of split nodes along with the nodes depending on them
(δ1, ..., δn+1). The optimization is applied locally to individual nodes. For every node in
the graph the algorithm checks whether the current node is a split node. If it is a split
node it will check if the input permission is the same as the output permission and if
the current node depends on another split block. If all conditions hold the algorithm
deletes the current split block from the graph while preserving its dependencies (see
Figure 19).

4.3.2. Simplification of Chained Joins. Similar to chained splits, the typechecker can
generate chained join nodes that merge the chained split permissions back into the
original permission. Therefore the same principle can be applied and we can reduce
these chains to a single join node. Figure 20 shows the approach and the algorithm.
The algorithm operates on individual nodes. It first selects all join nodes. Then for ev-
ery join node the algorithm checks whether the node joins the input permission into

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:27

Fig. 18. Chained split block optimization.

Fig. 19. Node delete operation.

the same kind of permission. If the node does, the algorithm checks if there is any other
join node depending on the current node. If all conditions hold the algorithm deletes
the current node, again while preserving dependencies.

4.3.3. Simplification of Unique Split/Join Sequences. The typechecker may sometimes need
to split off a unique permission from a variable, leaving a none permission associated
with the variable. Later, when the unique permission is returned to the variable, the
typechecker merges the incoming unique permission with the available none permis-
sion. This is a typical scenario for method calls where the permission gets conceptually
split off from the variable and later (after the method call) merged back. Figure 21
shows the scenario on the left-hand side where a unique permission from α has been
split off to satisfy the operations δ2. Figure 21 also shows the algorithm to implement
this optimization, which simply removes those unnecessary nodes.

4.3.4. Simplification of Symmetric Join/Split Sequences. The current version of the
typechecker implements a greedy approach for merging permissions back. For every
operation, the greedy approach splits off the required permissions and joins them back
as soon as they become available again (i.e., the operation completes). This leads to
the problem that if two operations require a symmetric permission the typechecker
creates unnecessary dependencies.

To solve this issue we want to detect such unnecessary join/split patterns and elimi-
nate them such that both operations can operate in parallel. Figure 22 shows how we

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:28 S. Stork et al.

Fig. 20. Chained join block optimization.

Fig. 21. Simplify unique join/split sequences.

remove those inner join/split nodes and reorganize the graph so that we initially split
multiple symmetric permissions off the original permission and execute the operations
in parallel.

4.4. Taskbuilder

Generating a new task for every node in the dependency graph (i.e., one task per opera-
tion) is prohibitively expensive because the ratio of task work to task creation overhead
is too small. Therefore, we developed the Taskbuilder Pass, which combines multiple
operations into bigger tasks. Figure 23 shows the basic idea. The taskbuilder takes
as input a dependency graph (see Figure 23(a)) and then computes which operations
can be mapped into the same task without losing parallelism. Figure 23b shows the
input graph with the task clustering. The taskbuilder outputs a graph consisting only
of tasks (see Figure 23(b)).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:29

Fig. 22. Symmetric join/split optimization.

The general idea behind the taskbuilder is called edge zeroing. The taskbuilder uses
a cost metric to estimate the overall execution costs of a specific dependency graph. The
algorithm then analyses, for every edge in the dependency graph, how removing the
edge and merging the connecting nodes would affect the execution cost of the whole
graph. If the execution cost does not increase, the taskbuilder removes the current
edge from the graph and merges together the nodes formerly connected by that edge.
The following sections explain the taskbuilder in more details.

Our taskbuilder algorithm is based on Sarkar’s Algorithm (SA, [Sarkar 1989]). To
work properly, SA needs to know the runtime costs for every operation in the graph.
This cost can be easily estimated for all operations except method calls. To enable
SA to perform more aggressive optimizations, we provide a simple categorization of
the methods. We differentiate between normal methods and cheap methods. Cheap
methods, defined via cheap annotations on their declarations, are relatively short in
their execution and do not justify the creation of parallelism by themselves. We prefer
annotations to inference for modularity reasons, but the compiler verifies that methods
annotated as cheap call only other cheap methods. Other static [Blelloch and Greiner
1996] or dynamic [Acar et al. 2011] approaches to determine runtime costs have been
proposed and are generally applicable to our system.

4.5. Code Generator

While the taskbuilder tries to minimize the number of tasks, there are still a few opti-
mizations that can be performed during code generation to further reduce the number
of created tasks. The following sections present several optimizations that can help in
this regard (refer to Figure 24 for a summary overview). We discuss each optimiza-
tion separately to focus on its core idea. We present all optimizations in the context of
method calls, but notice that the optimizations are also applicable to optimizing other
constructs, such as case statements in a match block. To focus on the optimization tech-
niques, and for brevity reasons, we use the generic scheduling algorithm as a basis for
our extensions when we present those optimizations.

Sequentializing Single Task Graphs. If the taskbuilder manages to reduce the task
graph of a whole method body to a single task, then code generation will inline this
task. This results in the generation of a sequential method body, equivalent to the
sequential method body that would have been generated by the standard Plaid code
generator.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:30 S. Stork et al.

Fig. 23. Taskbuilder approach.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:31

Name Description

Sequentializing Single Task Graphs Generate sequential code for methods which
have a task graph of only one node.

Inlining Starter Task Inline start task into method body code block
.

Inlining Body Task Inline body task into the method body code
block.

Fig. 24. Overview of code generation optimizations.

method PlaidObject m(. . .) {

τ@[δ] 〈ω〉
}

Listing 4. Single Task Function Graph.

method PlaidObject m(. . .) {
δτ

}

Listing 5. Single Task Function Code.

method PlaidObject m(. . .) {

τ\τb

τb

}

Listing 6. Inline Body Task Graph.

public PlaidObject m(. . .) {
// create variables

1© PlaidObject[] _ = new PlaidObject[
∣∣∣{VarDecl(x) ∈ {δ : τ@[δ] 〈ω〉}}

∣∣∣];
// create task objects

2© ∀τi ∈ {τ\BODY_TASK(τ)} : Task Tτi = new Task(
∣∣DEPS(τi)

∣∣) {
public void run() {

IS_CASE_TASK(τi) =⇒ if (CASE_MATCH_COND(τi)) { δτi }
¬IS_CASE_TASK(τi) =⇒ δτi
∀τ ′ ∈ RDEPS(τi) : if (Tτ ′ ! = BODY_TASK(τ) &&

Tτ ′ .decDepCount() == 0) {
schedule(Tτ ′);

}
}

};

// compute dependencies and schedule tasks
3© ∀τi ∈ START_TASKS(τ) : schedule(Tτi);

// wait for dependencies of the body task to finish
4© ∀τi ∈ DEPS(BODY_TASKS(τ)) : Tτi .wait();

5© return δBODY_TASKS(τ);

}

Listing 7. Inline Body Task Code.

Inlining Body Tasks. Because the method always has to wait for the main body task
to complete, we can inline this task into the method body and avoid the creation and
synchronization overhead for this task. Listing 6 shows our code generation strategy,
which is comprised of the following steps.

1© Variable extraction. No changes.
2© Task Creation. We create all tasks except the body task.
3© Task scheduling. No changes.
4© Wait for dependencies. Wait for all tasks the body task depended on to complete.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:32 S. Stork et al.

method PlaidObject m(. . .) {

τs

τ\τs

}

Listing 8. Inlining Start Task Graph.

public PlaidObject m(. . .) {
// create variables

1© PlaidObject[] __ = new PlaidObject[
∣∣∣{VarDecl(x) ∈ {δ : τ@[δ] 〈ω〉}}

∣∣∣];
// execute start task code

2© δSTART_TASK(τ)

// create task objects
3© ∀τi ∈ {τ\START_TASK(τ)} : Task Tτi = new Task(

∣∣DEPS(τi)
∣∣) {

public void compute() {
IS_CASE_TASK(τi) =⇒ if (CASE_MATCH_COND(τi)) { δτi }
¬IS_CASE_TASK(τi) =⇒ δτi
∀τ ′ ∈ RDEPS(τi) : if (Tτ ′ .decDepCount() == 0) { schedule(Tτ ′); }

}
};

// compute dependencies and schedule tasks
4© ∀τi ∈ RDEPS(START_TASKS(τ)) : schedule(Tτi);

// wait for dependencies of the body task to finish
5© return TBODY_TASK(τ).wait();

}

Listing 9. Inlining Start Task Code.

5© Execute body task. Execute the remaining operations of the body task and return
the value of the last statement.

Inlining Single Starter Task. If a task graph has only one starter task, we can inline
this task, similar to the inlining of the body task.

1© Variable extraction. No changes.
2© Execute start task code. Execute the operations associated with the start task

directly in method body.
3© Task Creation. We create all tasks except the start task.
4© Task scheduling. Schedule all start tasks which depend on the original start task.
5© Wait for body task. No changes.

4.5.1. Dynamic Load Balancing. Despite the optimizations discussed earlier, our system
can produce significantly more tasks than we have parallel execution units. To elim-
inate the high costs of task creation and scheduling we implemented the dynamic
load-balancing approach shown in Listing 10. Every method that supports parallel ex-
ecution first performs a check whether we have enough parallelism (i.e., enough gener-
ated tasks to utilize the available computation units) or not by calling the PARALLELIZE
method. If this method returns false it means that we have enough work and should
not generate new work. In this case we simply execute the sequential method body
instructions. If the return value is true we need to generate more parallel work and
we execute the parallel method body implementation as described earlier.

The PARALLELIZE method implementation checks whether there are threads without
work. Because we call the PARALLELIZE method on every method invocation, determin-
ing all the threads’ current state is prohibitively expensive. To overcome this problem
we guard the check with a global variable estimating the lack of parallel work. This
global variable is updated when threads create new tasks and when threads are run-
ning out of work. To further optimize runtime overhead, all accesses to this variable
are not synchronized. The lack of synchronization obviously leads to race conditions
and lost updates. In the scheme we apply when updating the variable, lost updates

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:33

public PlaidObject m(PlaidObject pthis, ...) {
if (PARALLELIZE() == false) {

... // sequential code
} else {

... // parallel code
}

}

Listing 10. Dynamic Load Balancing.

atomic { GLOBAL_DATAGROUP.enterAtomic();
... =⇒ ...

}
Listing 11. Atomic Block Translation.

only ever lead to the creation of additional tasks and never to starving threads (refer
to our implementation for the exact details).

An important observation is that when we execute the sequential code branch the
sequentiality is only enforced for the current method. If the sequential code calls a
function which contains potential parallel executions this function will do the same
check to determine if it should parallelize the code or not. This is an important feature
of the system as it allows us to recover from heavily imbalanced code paths. The draw-
back of this approach is that we have to check for parallelization on every method that
has potential parallelism.

4.5.2. Atomic Block Implementation. Our implementation allows seamlessly mixing code
with and without data groups. If we use code without data groups we are talking
about plain shared permissions and atomic blocks without any data group parame-
ters. In this data-group-less mode we implicitly pass a share data group permission to
an anonymous global data group into every method. Figure 11 shows that we simply
translate an atomic block into an enterAtomic and leaveAtomic method call on the
corresponding data group. Once we entered a global atomic block we decided for sim-
plicity reasons to sequentialize the execution of its body. This means that when we call
a method from inside a global atomic block this method needs to execute sequentially
even if it could execute in parallel. There are two approaches to achieve this behavior.
The first option is to have a dynamic check at runtime to force sequential execution.
The second option is to have two versions of every method: one version that is called by
default and another version that can only be called from inside an atomic block directly
or transitively (refer to AtomJava [Hindman and Grossman 2006]). We decided to go
for the dynamic approach because it can be easily merged with dynamic load balancing
and avoids code explosion. Listing 12 shows the implementation of the global atomic
block sequentializing check.

In the case that we have actual data groups we translate an atomic block the same
way, with the exception of replacing the GLOBAL_DATAGROUP with the corresponding data
groups specified by the user. Note that we do not have to sequentialize the execution of
methods called from inside a nonglobal atomic block, as we have explicit specified data
group permissions which automatically enforce sequentialization where necessary.

4.6. Implementation Reflection

The goal of our implementation was to be as fast as possible. During our initial ex-
periments it became quite obvious that creating and executing fine-grained tasks on a

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:34 S. Stork et al.

public PlaidObject m(PlaidObject pthis, ...) {
if (GLOBAL_DATAGROUP.inAtomic()) {

... // sequential code
} else {

... // parallel code
}

}

Listing 12. Global Atomic Test.

large scale was prohibitively expensive. Therefore our goal was to eliminate as many
tasks as possible. In our experience, the load-balancing method resulted in the most
dramatic reduction in number of tasks. The dynamic load-balancing approach only
generates as many tasks as needed to utilize system resources. Despite this fact, all
the other optimizations we described play an important part in our achieved perfor-
mance (refer to Section 5). Those optimizations are important as they help to reduce
the number of tasks and increase the overall task size (which helps to counteract the
task switching cost). Like so many other cases, it is not a single optimization but rather
a combination of several that results in the best possible performance.

5. EVALUATION

We evaluated our system by conducting several case studies of which we present
only a selection in this section. The remaining case studies can be found in Stork
[2013].

Inspired by the Problem-Based Benchmark Suite1 we developed a dictionary bench-
mark to evaluate the effectiveness of data groups. Our implementation2 is based on
a hash table using separate chaining to handle collisions. We developed two versions,
a global version which uses plain shared permissions for its internal data structures
and a fine version in which every bucket has its own data group.

We evaluated two use cases, one in which we have a unique permission to the dictio-
nary and one in which we have a shared permission. Our benchmark first inserts the
identity mapping for the numbers 20 to 216 into the dictionary (initialization). Then
we look up every mapping to check for correctness (checking). We run each bench-
mark case 50 times on an eight-core SMP system (using Intel Xeon X5460 CPUs) with
16GB of memory running Fedora 7 using the Java HotSpot 64-bit Server VM (build
20.4-b02). We used a dictionary with 64 hash buckets. To avoid artificial patterns we
randomized the sequence in which the numbers are inserted/checked with a constant
seed to guarantee reproducibility.

Figure 25 shows the results of our dictionary benchmark. The first bar “global/
unique” (15.12s) represents the results of the global dictionary implementation with
a unique permission to the dictionary. The linearity of the unique permission sequen-
tiallizes all insert/check operations. In the second bar “global/shared” (15.13s) we have
a shared permission to the dictionary, which allows us to perform our operations in
parallel. This case performs no better because each parallel operation must immedi-
ately synchronize on the entire shared dictionary structure, thus sequentializing all
the accesses. The third bar “fine/unique” (9.99s) uses the implementation which uti-
lizes data groups for its internal representation. This scenario is faster than any of the
cases using the global implementation, because of the use of fine-grained data groups,
one for each bucket. The unique receiver permission allows us to get exclusive group

1http://www.cs.cmu.edu/∼pbbs/
2http://goo.gl/nzvLd

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:35

Fig. 25. Dictionary benchmark results.

permissions to the inner groups of the dictionary. This means we do not require pro-
tection to access data within those data groups and therefore we avoid unnecessary
synchronization operations. The last case “fine/shared” (2.32s) also allows the parallel
execution of our operations. Because the implementation associates each bucket with
its own data group, we achieve a very fine-grained protection mechanism which allows
the parallel modification of disjoint parts of the dictionary. This results in a speedup of
6.5X compared to the “global/shared” version.

The second case study we present consists of a Web server application3. We compiled
the Web server in two ways. First we compiled it as a plain Plaid program (resulting in
a sequential program) and second we compiled it with ÆMINIUM enabled. As a control
we implemented equivalent Java versions (sequential and parallel). We hosted the
Web server in a quad-core machine (Intel Core 2 Q6600 with 4GB of memory running
Ubuntu 11.04 and using the OpenJDK 64-bit Server VM (build 20.0-b11)), serving the
Python 2.7 documentation4. We mirrored the whole documentation three times to our
local machine using the puf5 tool. The puf tool uses up to 20 connections to parallelize
the file downloads and therefore allows us to emulate multiple clients.

Figure 26 shows the average performance values measured. The Plaid version of the
Web server is the slowest (49.1s) followed by the sequential Java version (48.5s). This
makes sense as Plaid is generally slower than Java. The ÆMINIUM-compiled version
of the Web server is the second fastest (37.4s) version. It is approximately 31% faster
than its sequentially compiled counterpart. The reason for this is that the Web server
in the ÆMINIUM-compiled version is able to handle multiple requests in parallel. This
allows the overlapping of communication and computation and results in a higher
throughput. The manually parallelized Java version delivered the best performance
(31.2). The performance difference between the parallelized Java and the ÆMINIUM
version is bigger compared to their sequential counterparts. This effect is caused by the
parallel execution and the overlap of communication and computation which hides the
communication costs to some degree. Because the communication effect is reduced,

3http://goo.gl/rU3P2
4http://docs.python.org/
5http://puf.sourceforge.net/

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:36 S. Stork et al.

Fig. 26. Web server benchmark results.

Fig. 27. Integral performance graph.

the computation part gains relatively more weight, with the result that lower base
performance of the Plaid programming language has a greater impact.

In our integral case study we investigated ÆMINIUM’s capabilities to parallelize
purely functional, highly computation-intensive problems. We developed a small in-
tegral library which computes the integral of a user-defined function. The integral is
computed by subdividing the overall interval into infinitesimally small intervals for
which we calculate the approximate area, and then add up all fractions to compute the
area of the whole integral. We evaluated the performance by computing the integral
of the square function (i.e., f (x) = x2) for the interval [0, 1]. We run the sequential
Plaid and parallel ÆMINIUM version on our eight-core machine each 20 times. The
average runtime and standard deviation of both cases are shown in Figure 27. The
Plaid version requires 8.9s while the ÆMINIUM version needs only 4.2s. This results
in a speedup of 2.1 meaning that ÆMINIUM was able to parallelize the program and
achieve some performance improvements. But it also means that the ÆMINIUM ver-
sion was only twice as fast on an eight-core machine, which would suggest a speedup
closer to eight. Our investigation revealed that the main source for this poor per-
formance lies in the Plaid’s object system. As described previously, Plaid does not

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:37

Program Total
SLOC

Annot.
SLOC

Type Annot. Group Arg. ÆMINIUM
Constr.

webserver∗ 227 47 (20.7%) 59 0 0
dic/global∗ 169 41 (24.2%) 65 0 3
dic/fine∗ 251 71 (28.3%) 109 10 2
Total∗ 647 159(24.6%) 233 10 5

webserver† 227 0 (0.0%) 0 0 0
dic/global† 169 5 (3.0%) 2 0 3
dic/fine† 251 41 (18.3%) 41 10 2
Total† 647 52(7.9%) 43 10 5

Fig. 28. Annotation overhead over Java.

support primitive types which means that every value in Plaid is an object. This means
that in this computation-heavy application we have to create a new object for every
floating point value we compute. Our investigation showed that this particular bench-
mark allocates more than 1.8 billion (1.8 × 109) floating point objects. This means that
overall performance of our benchmark is limited by the throughput of the virtual ma-
chine memory system. This result does not invalidate the ÆMINIUM approach, because
the problem is a current limitation of the Plaid language implementation and not of
ÆMINIUM.

We evaluated our annotation overhead by comparing our ÆMINIUM programs to
their equivalent Java versions. We counted how many lines of the source code (SLOC,
measured with wc) we had to modify by: annotating types (i.e., add permission infor-
mation to types), how often we had to specify additional group parameters to method
calls, and how many ÆMINIUM-specific operations we used (e.g., atomic blocks).
Figure 28 shows the numbers for the case studies we presented. The values marked
with “∗” are versions fully annotated and values marked with “†” are programs which
use Plaid’s default permission mechanism which allows omitting the permission an-
notation by specifying a default permission in the state declaration. This allows the
compiler to automatically insert a default permission wherever the user did not spec-
ify a permission explicitly (e.g., in Java all strings are immutable by design and there-
fore the default permission for strings could be immutable, which allows the user to
simply write String instead of immutable String when he specifies a string type). The
numbers show that type annotations are the most common source of overhead and
that Plaid’s default permission helps to reduce it. The second important observation
is that the more developers specify, the more performance the compiler can achieve.
This means users can start with a simple version of a program and then incrementally
add more annotations to increase the performance. It is worth pointing out that us-
ing Plaid’s default permission approach we are able to extract concurrency in the Web
server example without the need for any additional annotations. Overall we achieve
a reasonable 7.9% annotation overhead which is comparable to the 10.7% reported by
DPJ [Bocchino et al. 2009]. Further improvements to our system (e.g., type inference)
should allow us to further mitigate the programmer’s burden. The reader should also
take into account that the access permission information in Plaid serves additional
purposes (e.g., checking typestate).

6. FUTURE WORK

While our current prototype system demonstrated the potential of our approach, it
has a few shortcomings we would like to address in future versions. The following

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:38 S. Stork et al.

paragraphs elaborate the most interesting and useful directions for future extensions.
Permissions and data groups provide a nice abstraction for many situations but

there are corner cases in which they can be cumbersome or not sufficient. For instance,
the programmer may want to impose an order on two operations, perhaps because
the operations have effects that are not currently captured in our permission system
(e.g., I/O). In this case the programmer would have to write “ghost permissions” that
represent the effect. Another situation would be when the user has to write multiple
versions of the the same method for different permission configurations. To solve these
issues, investigation into refined permission abstractions is necessary. These new ab-
stractions should not only allow more fine control by the programmer, but also allow
the compiler to infer permissions and implementations when possible.

Our current implementation does not support global state. While global state is gen-
erally considered a bad thing, there are situations where it is extremely convenient.
An example may include using I/O methods such as println\printf that rely on global
state to access the standard output device.

In the current system we use static costs for the operations and method calls. We
already distinguish between cheap and heavy functions in order to optimize the task
graph. One way to improve this approach would be be to use an aggressive static anal-
ysis to try to prove a bound on method costs. Another, and more promising, approach
would be to have a Just-In-Time (JIT) version of our compiler. This JIT would analyse
the cost of functions at runtime and then optimize code depending on the gathered
profiling information.

7. RELATED WORK

Deterministic Parallel Java (DPJ, [Bocchino et al. 2009]) is a parallel programming lan-
guage with deterministic-by-default semantics. DPJ uses regions (which correspond to
ÆMINIUM’s data groups) to partition the store and provides explicit fork-join parel-
lelism. DPJ has special language constructs (e.g., for loops, cobegin blocks, etc.) which
allow parallel execution of statements that do not interfere with each other. Code out-
side those constructs executes sequentially. DPJ recently added support for race-free
nondeterministic parallelism as well [Bocchino et al. 2011].

The most significant difference between ÆMINIUM and DPJ is that programmers in
ÆMINIUM think and write code with permissions in mind. Parallelism in ÆMINIUM is
implicitly inferred based on the permission flow of those permissions. Implicit paral-
lelism means that ÆMINIUM programs are not tied to a particular amount or granular-
ity of parallelism specified by the programmer; instead, the runtime is free to adapt to
the parallelism available in the underlying hardware. Likewise, the runtime can par-
allelize a library, or not, depending on whether the client is already taking advantage
of parallel resources.

On a technical level, our implicit parallelism uses a dataflow model, which can in
some programs capture more parallelism than can be expressed in DPJ’s fork-join
model (refer to Section 2.4) . This dataflow computation makes our formal system quite
different than prior fork-join or thread-based type systems. Our split block (developed
independently of DPJ’s nondeterminism; see Stork et al. [2010]) also differs conceptu-
ally from DPJ’s nondeterministic parallelism construct: it does not specify that code
executes in parallel, but rather that two blocks of data can be accessed independently
without affecting (high-level) program semantics. Finally, Plaid’s permissions and data
groups are tied to individual objects, in contrast to DPJ’s globally declared regions; our
design is more object based, and helps express idioms such as uniqueness that are not
supported in DPJ.

Craik and Kelly [2010] describe a system which uses ownership information to au-
tomatically parallelize code in a dataflow style. Craik’s ownership contexts are similar

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:39

to ÆMINIUM’s data groups, but they do not have the concept of unique or immutable
permissions. Their system supports only deterministic parallelism. While they provide
an argument for soundness, our formal model goes further in incorporating a small-
step operational semantics model of parallelism and a rigorous progress/preservation
proof approach.

The FX programming language [Gifford and Lucassen 1986] uses an implicit
dataflow approach similar to ÆMINIUM. The FX language classifies every expression
into one the following four categories: producer (i.e., can read, write, and allocate mem-
ory), observer (i.e., can read and allocate memory) function (i.e., can allocate memory),
and pure (i.e., side-effects free). Based on the effects of each expression the system can
compute a dataflow graph based on the interference on the global heap and extract
concurrency. Compared to ÆMINIUM, FX only supports deterministic parallelism and
computes interference using effects with a global granularity rather than fine-grained
data groups.

Data-Centric Synchronization (DCS) [Vaziri et al. 2010] is an explicitly parallel sys-
tem where synchronization is expressed by associating object fields with atomic sets.
Each method declares which atomic sets it accesses and the runtime system inserts
synchronization to ensure that no methods with conflicting atomic sets will be exe-
cuted at the same time.

Fortress [Allen et al. 2008] has concurrent-by-default evaluation semantics for some
language constructs (e.g., loops). When the programmer uses these constructs, she is
indicating that it is safe to parallelize execution. ÆMINIUM takes this concurrent-by-
default principle and applies it to the whole language, not just a few language con-
structs. Furthermore it provides a type system for controlling parallelism according
to dependencies which, in the case of Fortress, might be missed by the programmer,
causing errors.

ÆMINIUM’s dataflow parallelism generalizes fork-join parallelism, which was no-
tably supported by Cilk [Blumofe et al. 1995]. Cilk extends C with three additional
keywords for explicit parallelism: cilk, spawn, and sync. Every method annotated with
cilk can be asynchronously spawned-off with the spawn keyword. sync keyword is used
to wait for a previously started asynchronous task. ÆMINIUM essentially attempts to
infer spawn and sync points based on typed dependencies, and can also capture more
general dataflow patterns of parallelism.

Axum (formerly known as Maestro) [Microsoft Corporation 2009] is an actor-based
programming language. Axum comes with several operators to allow the explicit con-
struction of dataflow graphs, which can be hierarchically composed. For efficiency rea-
sons, Axum also provides domains, containers for state, which allows associated actors
to access the enclosed state. Actors can either be readers or writers of shared state and
scheduling will follow the one-writer or multiple-reader model. Axum and ÆMINIUM
share similar concepts, in particular the dataflow approach, and the use of data group-
s/domains combined with explicit access specifications.

Boyapati et al. [2002] describe an explicitly concurrent extension to Java that as-
sociates each object with an owner (related to our data groups), and checks that the
owner is locked before accessing the object. Deadlocks are also prohibited via a lock
ordering protocol.

Athapascan-1 [Galilée et al. 1998] is a language that dynamically computes and uses
a dataflow graph to execute the code. In Athapascan-1 the user writes tasks which can
be asynchronously spawned off. Tasks are annotated with information about which
shared data they access and in which way. The semantics of Athapascan-1 preserves
the deterministic result of execution and can roughly been seen as a dynamic version of
DPJ. Compared to ÆMINIUM, Athapascan-1 uses a dynamic approach while ÆMINIUM
uses a static approach for computing the dataflow graph.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:40 S. Stork et al.

SharC [Anderson et al. 2008] is a data race checker for C programs. SharC uses a
lightweight type annotation system which bears some resemblance to ÆMINIUM’s per-
mission and data group approach. SharC has private and read-only annotations which
compare to ÆMINIUM’s unique and immtable permissions. In SharC, all shared data
accesses need to be marked with an locked(lock) indicating which lock needs to be held
before accessing the corresponding data. This resembles ÆMINIUM’s shared permis-
sions associated with data groups. To allow for more flexibility, SharC uses on top of a
static typesystem additionally dynamic runtime checks. Unlike ÆMINIUM, SharC is a
checker only and can only check that a user-parallelized program is accessing its state
in a safe manner.

The biggest differentiator for ÆMINIUM is that while nearly all the systems men-
tioned already have explicit parallel programming constructs or libraries, in the case
of ÆMINIUM code executes in parallel by default, to the extent allowed by permis-
sion dependencies. Compared to the implicitly parallel models in FX and Craik et al.,
ÆMINIUM supports a richer set of permissions that enables expressing the programs
from our case studies.

8. CONCLUSION

We presented ÆMINIUM, an automatic parallelization methodology with type-based
safe deterministic and nondeterministic concurrency. ÆMINIUM uses the permission
flow and data groups to automatically parallelize code and supports dataflow and
fork-join parallelism. We further presented μÆMINIUM, a core calculus for the
concurrent-by-default programming language ÆMINIUM along with its soundness
proof. We presented our initial prototype implementation and several case studies
showing the benefits and applicability of the ÆMINIUM concept to selected use cases.
The ÆMINIUM approach is modular, composable, incremental, and provably avoids
race conditions. The fundamental concept of ÆMINIUM is generally applicable and not
limited to object-oriented languages. With ÆMINIUM programmers can focus on the
core functionality of their applications by shifting concerns about race conditions and
parallelization to ÆMINIUM.

REFERENCES

Acar, U. A., Charguéraud, A., and Rainey, M. 2011. Oracle scheduling: Controlling granularity in implicitly
parallel languages. In Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’11).

Adve, S. V. and Boehm, H.-J. 2010. Memory models: A case for rethinking parallel languages and hardware.
Comm. ACM 53, 8, 90–101.

Aldrich, J., Sunshine, J., Saini, D., and Sparks, Z. 2009. Typestate-oriented programming. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’09).

Aldrich, J., Beckman, N. E., Bocchino, R., Naden, K., Saini, D., Stork, S., and Sunshine, J. 2012. The plaid
language: Typed core specification. Tech. rep. CMU-ISR-12-103, Carnegie Mellon University.

Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J., Ryu, S., Steele Jr, G., and Tobinhochstadt, S.
2008. The fortress language specification version 1.0. Tech. rep., Sun Microsystems.

Anderson, Z., Gay, D., Ennals, R., and Brewer, E. 2008. Sharc: Checking data sharing strategies for multi-
threaded C. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08). ACM Press, New York, 149–158.

Beckman, N. E., Bierhoff, K., and Aldrich, J. 2008. Verifying correct usage of atomic blocks and typestate. In
Proceedings of the ACM International Conference on Object Oriented Programming Systems, Languages
and Applications (OOPSLA’08).

Blelloch, G. E. and Greiner, J. 1996. A provable time and space efficient implementation of NESL. In Pro-
ceedings of the 1st ACM SIGPLAN International Conference on Functional Programming (ICFP’96).
213–225.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

ÆMINIUM: Concurrent-by-Default Programming Language Approach 2:41

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y. 1995. Cilk: An
efficient multithreaded runtime system. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’95).

Bocchino, Jr., R. L., Adve, V. S., Dig, D., Adve, S. V., Heumann, S., Komuravelli, R., Overbey, J., Simmons, P.,
Sung, H., and Vakilian, M. 2009. A type and effect system for deterministic parallel Java. In Proceed-
ings of the ACM International Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’09).

Bocchino, Jr., R., Heumann, S., Honarmand, N., Adve, S., Adve, V., Welc, A., and Shpeisman, T. 2011. Safe
nondeterminism in a deterministic-by-default parallel language. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’11). 535–548.

Boehm, H.-J. 2009. Transactional memory should be an implementation technique, not a programming
interface. Tech. rep. HPL-2009-45, HP Laboratories.

Boyapati, C., Lee, R., and Rinard, M. 2002. Ownership types for safe programming: Preventing data races
and deadlocks. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems, Languages and Applications (OOPSLA’02). 211–230.

Boyland, J. 2003. Checking interference with fractional permissions. In Proceedings of the 10th International
Symposium on Static Analysis.

Clarke, D. G., Potter, J. M., and Noble, J. 1998. Ownership types for flexible alias protection. In Proceed-
ings of the ACM International Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’98). 48–64.

Click, C. and Paleczny, M. 1995. A simple graph-based intermediate representation. In Papers from the ACM
SIGPLAN Workshop on Intermediate Representations (IR’95). ACM Press, New York, 35–49.

Craik, A. and Kelly, W. 2010. Using ownership to reason about inherent parallelism in object-oriented pro-
grams. In Proceedings of the 19th Joint European Conference on Theory and Practice of Software, and
the International Conference on Compiler Construction (CC’10/ETAPS’10). 145–164.

Fahndrich, M. and Deline, R. 2002. Adoption and focus: Practical linear types for imperative programming.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’02). Vol. 37, ACM Press, New York, 13–24.

Galilée, F., Cavalheiro, G. G., Louis Roch, J., and Doreille, M. 1998. Athapascan-1: On-line building data flow
graph in a parallel language. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques. 88.

Gifford, D. K. and Lucassen, J. M. 1986. Integrating functional and imperative programming. In Proceedings
of the ACM Conference on LISP and Functional Programming (LFP’86). 28–38.

Girard, J.-Y. 1987. Linear logic. Theor. Comput. Sci. 50, 1.
Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and its Implementation. Addison-Wesley

Longman Publishing, Boston, MA.
Hindman, B. and Grossman, D. 2006. Atomicity via source-to-source translation. In Proceedings of the Work-

shop on Memory System Performance and Correctness (MSPC’06). ACM Press, New York, 82–91.
Igarashi, A., Pierce, B. C., and Wadler, P. 2001. Featherweight Java: A minimal core calculus for Java and

GJ. In Proceedings of the ACM International Conference on Object Oriented Programming Systems,
Languages and Applications (OOPSLA’01).

Leino, K. R. M. 1998. Data groups: Specifying the modification of extended state. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems, Languages and Applications
(OOPSLA’98).

Leino, K. R. M., Poetzsch-Heffter, A., and Zhou, Y. 2002. Using data groups to specify and check side effects.
ACM SIGPLAN Not. 37, 5, 246–257.

McKeeman, W. M. 1965. Peephole optimization. Comm. ACM 8, 443–444.
Microsoft Corporation 2009. Axum programmer’s guide.

http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx.
Moggi, E. 1991. Notions of computation and monads. Inf. Comput. 93, 1, 55–92.
Moore, K. F. and Grossman, D. 2008. High-level small-step operational semantics for transactions. In Pro-

ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’08).

Naden, K., Bocchino, R., Aldrich, J., and Bierhoff, K. 2012. A type system for borrowing permissions. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’12). ACM Press, New York, 557–570.

Pierce, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

�

�

�

�

�

�

�

�

2:42 S. Stork et al.

Rumbaugh, J. 1975. A parallel asynchronous computer architecture for data flow programs. Ph.D. thesis,
MIT-LCS-TR-150, MIT.

Sarkar, V. 1989. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, Cambridge, MA.
Stork, S. 2013. ÆMINIUM- Freeing programmers from the shackles of sequentiality. Ph.D. thesis, School of

Computer Science, Carnegie Mellon University.
Stork, S., Aldrich, J., and Marques, P. 2010. Micro-AEmimium language specification. Tech. rep. CMU-ISR-

10-125R2, Carnegie Mellon University.
Stork, S., Marques, P., and Aldrich, J. 2009. Concurrency by default: Using permissions to express dataflow

in stateful programs. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Ori-
ented Programming Systems Languages and Applications. 933–940.

Stork, S., Naden, K., and Sunshine, J. 2012. AEminium code repository. http://goo.gl/olbMs.
Sunshine, J., Naden, K., Stork, S., Aldrich, J., and Tanter, E. 2011. First-class state change in plaid. In

Proceedings of the ACM International Conference on Object Oriented Programming Systems, Languages
and Applications (OOPSLA’11). ACM Press, New York, 713–732.

Vaziri, M., Tip, F., Dolby, J., and Vitek, J. 2010. A type system for data-centric synchronization. In Proceed-
ings of the ACM International Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’10).

Received October 2012; revised June 2013; accepted October 2013

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 2, Publication date: March 2014.

